
Reliable Systolic Computing through

Redundancy⋆

Kunio Okuda1, Siang Wun Song1, and Marcos Tatsuo Yamamoto1

Universidade de São Paulo, Brazil,
{kunio,song,mty}@ime.usp.br,
http://www.ime.usp.br/∼song/

Abstract. The systolic array paradigm has low communication demand
because it does not use costly global communication and each processor
communicates with few other processors. It is thus suitable to be used
in cluster computing. The systolic approach, however, is vulnerable in a
heterogeneous environment where machines perform differently. In this
paper we propose a redundant systolic solution with high-availability to
deal with this problem. We analyze the overhead that results from the
need to coordinate the actions of the redundant processors and show that
this overhead is worth the performance improvement it provides.

Keywords: cluster computing, heterogeneity, redundancy, high-availability

1 Introduction

Since the early eighties, systolic arrays have been proposed to implement numer-
ically intensive applications, e.g. image and signal processing operations such as
the discrete Fourier transform, product of matrices, matrix inversion, etc. for
VLSI implementation on silicon chips [3]. Given a sequential algorithm speci-
fied as nested loops, more formally as a system of uniform recurrence equations,
dependence transformation methods [4–6] map the specified computation into a
time-processor space domain that can be mapped onto a systolic array.

One nice property of a systolic algorithm is that each processor communi-
cates only with a few other processors. It is thus suitable for implementation on
a cluster of computers in which we wish to avoid costly global communication
operations. A recent work [2] explores the systolic array paradigm in cluster
computing. This approach, however, is not adequate in a heterogeneous environ-
ment where the performance of the computers may vary along time. Since the
systolic structure is based on tightly-coupled connections, the existence of one
single slow processor can compromise and degrade the overall performance. In
this paper we propose a solution based on redundancy to deal with this problem.
There are many techniques for dependable computing based on check-pointing

⋆ Partially supported by CNPq Proc. No. 55.0094/2005-9 and 30.5218/03-4. The au-
thors wish to thank the anonymous referees for their helpful comments.



and roll-back recovery [7]. The redundant approach is simple but we introduce
some overhead to coordinate the actions of the redundant processors. We show
that this overhead is worth the performance improvement it provides. The ex-
perimental results show that the incurred overhead is small compared to the
overall performance we get over the non-redundant solution.

2 Matrix multiplication example

- -+ = + = + =
× × ×

- -+ = + = + =
× × ×

- -+ = + = + =
× × ×

? ? ?

? ? ?

c11 c12 c13

c21 c22 c23

c31 c32 c33

a11a12a13

a21a22a23

a31a32a33

b11

b21

b31

b12

b22

b32

b13

b23

b33

Fig. 1. Basic systolic matrix multiplication algorithm.

In [2] we use the systolic array structure to solve two basic problems: matrix
product and alignment of two strings. We now use the matrix product example
to illustrate the redundancy method. Given two n× n input matrices A and B,
we wish to compute matrix C = AB. The basic systolic matrix multiplication
algorithm is shown in Figure 1. For matrices of size n × n, the number of pro-
cessors p used is n2. The input elements of A and B enter the systolic array and
move across the array while elements of the product C remain in the processors.

To implement this systolic algorithm on a cluster, synchronization can be
implemented by using non-blocking sends and blocking receives. However, as
observed in [2], the basic systolic algorithm is not suitable for cluster computing
because of the fine granularity and the large number of processors required. To
make the granularity coarser we consider sub-matrices instead of single elements
in the basic algorithm. Assume the number of processors is P = p×p and assume
also n divides p. We can view the product of two n × n matrices as multiplying
two p × p matrices whose elements are n/p × n/p sub-matrices.

3 Use of redundancy

The redundancy approach to deal with heterogeneity is relatively straightforward
but nonetheless promising in terms of the results obtained. For this approach to
be feasible, we rely on the abundance of computing resources in the cluster. One
issue that needs to be addressed is how we employ redundancy. Another issue



Fig. 2. Redundant systolic structure with degree of redundancy = 2.

is that the use of redundancy may incur in overhead and we need to investigate
the influence of this overhead on the overall performance.

Assume we want to implement a parallel systolic algorithm that requires p
processors. To implement this algorithm, we use kp processors, where k is a small
integer. To facilitate the presentation, we use k = 2. We first define a few terms.
A redundancy group is a collection of processors that execute the same compu-
tation, with the same input data and produce the same output. The number of
processors in each redundancy group is called the degree of redundancy. For sim-
plicity, we assume the same degree of redundancy for all the redundancy groups.
For each redundancy group of degree k, identify each processor of the group by
the label h, where 0 ≤ h < k. With this, we denote by redundancy layer h the
collection of processors with label h. We use the term bad processor to denote a
processor that out-stands negatively in terms of available capability to process
the given application. Similarly, we denote by good processor the processor that
out-stands in the group positively in performance.

The proposed redundant structure will be composed by copies of the orig-
inal systolic array by adding, if necessary, communication channels among the
redundancy layers, as shown in Figure 2.

Fig. 3. Replicated independent systolic arrays.

A straightforward way to employ redundancy is merely to have k copies
of the original systolic structure and perform computation in each redundancy
layer independently (see Figure 3). Whichever redundancy layer finishes first
would report the desired result. There is practically no overhead incurred. Note,
however, the existence of one bad processor in a redundancy layer determines
the bad performance of the entire layer.



The above discussion motivates the definition of the bad performance proba-

bility of the redundant system. Given a redundant systolic structure of degree of
redundancy k and total of kp processors in each redundant layer of p processors,
and given the existence of m bad processors, the bad performance probability is
the probability of the redundant system to perform poorly due to the influence
of at least one of the m bad processor. To compute this probability, consider
k urns each with p balls. Given that a total of m balls are red (bad), it is the
probability of all the urns having at least one red ball.

Fig. 4. Communication phase in the redundancy layers (left) and computation phase
in the redundancy groups (right).

Alternatively, we can employ redundancy in each of the processors of the
original systolic array (see Figure 4). In the original systolic algorithm each
processor repeats three phases: data input from neighbor processors, computation

of the received data, and output of computed data to neighbor processors. On
the right of Figure 4 we show that each individual processor of the original
systolic algorithm defines a redundant group, in which all its processors execute
the same computation of the computation phase in parallel. The running time of
the redundancy group to execute a computation is given by the processor that
finishes first the given computation. Given k urns each with p balls, and knowing
that m balls are red, the bad performance probability is the probability of at
least one urn containing all red balls.

During the computation phase, there is a competition among the redundant
processors, so that only the result obtained by the fastest processor is considered.
We create two processes in each processor: the computation process computes the
product of the sub-matrices of A and B, and the control process coordinates the
processors of the redundancy group to determine the winner. The two processes
share the same memory and mutual exclusion is enforced so that only one process
can access shared data at a time. The control process needs to be informed when
the computation process has finished the computation. The computation, on
the other hand, needs to be informed by the control process when to abort its
computation.



Fig. 5. The ring topology used by the token ring algorithm to ensure mutual exclusion.

To guarantee that only one processor is the declared winner within a redun-
dancy group, we use the token ring algorithm [1]. The processors of the group
have the ring topology and each processor is identified by an integer label from
0 to k − 1. A token circulates from processor to processor in the ring. When the
token reaches processor k − 1, it returns to processor 0 and the cycle repeats.
The processor that holds the token at any moment has the priority to enter a
critical region and thus can execute the necessary tasks exclusively. If a processor
holding the token does not want to enter the critical region, it simply passes the
token forward to the next processor in the ring. See Figure 5. The token carries
a token value, initially defined to be -1. The processor that finishes its computa-
tion and that currently holds the token assigns its label as the new token value
and then passes it forward, declaring itself to be the winner. The new token
circulates in the ring to signal all the participants to abort their computation.

4 Experimental Results

Fig. 6. Running times in a homogeneous environment

We ran experiments on a cluster of 16 microcomputers with a Switch 3COM
3300 and Fast Ethernet 100Mbit/s. Each microcomputer consists of a 1.2GHz
Athlon Thunderbird processor with 256 KB L2 cache, 768 MB PC133 SDRAM
and a 30 GB ATA100 hard disk. The operating system is Debian Linux 2.2.19.
We use ANSI C, compiled under version GNU gcc 2.95.2-13, POSIX Threads



package for the local threads and LAM-MPI for the message exchanges. The test
consists of running a sequence of 50 problems of matrix products. Figure 6 shows
results in a homogeneous environment, with no slow machines. The matrix sizes
tested were 180 × 180 up to 420 × 420.

Fig. 7. Heterogeneous environment - “redundant - 2 slow”: each group has a slow
machine, and “redundant - group slow”: all the machines of a group are slow.

Fig. 8. Running times in a heterogeneous environment for different matrix sizes

To simulate a heterogeneous environment, we made one or more machines to
act as slow machines, by running another process simultaneously. In Figure 7 we
assume there is at least one slow machine in a redundancy group. Figure 8 shows
the same results for several matrix sizes and slow machines with different degrees
of slowness. Figure 9 shows the running times of the normal systolic algorithm
without redundancy and the redundant systolic algorithm, for two matrix sizes
and different degrees of slowness of the bad machine.

The experiment shows clearly the benefit of the redundant approach. The
most interesting fact we observe in this experiment is that the redundant solution
does not depend on the degree of slowness of the bad machine.



Fig. 9. The effect of one slow machine on the performance.

5 Conclusion

The systolic array paradigm has less demand on communication because they
do not use the global communication primitives. The tightly coupled nature of
its processors, however, show the vulnerability to the presence of even one single
slow machine in the system. This paper proposes a way to use the abundant
computing resources to deal with this problem. The use of redundancy do incur
in additional cost, due to the overhead to implement the redundancy control
mechanism. We compared the behavior of the sequential algorithm, the systolic
algorithm without redundancy, and the redundant systolic algorithm, in homo-
geneous environment and also in a heterogeneous environment where one or more
machines are forced to act as slow machines. Our experiment shows the benefit
of the redundant approach. Despite the overhead, the redundant solutions out-
perform the non-redundant one. We note also that the redundant solution does
not depend on the degree of slowness of the bad machine.

References

1. D. Bird. Token Ring Network Design. Addison-Wesley, 1994.
2. U. K. Hayashida, K. Okuda, J. Panneta, and S. W. Song. Generating parallel

algorithms for cluster and grid computing. In The 2005 International Conference

on Computational Science - ICCS 2005, volume 3514 of Lecture Notes in Computer

Science, pages 509–516. Springer Verlag, 2005.
3. H. T. Kung. Why systolic architectures. IEEE Transactions on Computers, 15:37–

46, 1982.
4. D. I. Moldovan. Parallel Processing: from Applications to Systems. Morgan Kauf-

mann Publishers, 1993.
5. K. Okuda. Cycle shrinking by dependence reduction. In Proceedings 2nd Interna-

tional Euro-Par Conference, volume 1123 of Lecture Notes in Computer Science,
pages 398–401. Springer Verlag, 1996.

6. P. Quinton and Y. Robert. Algorithmes et architectures systoliques. Masson, 1989.
7. M. Treaster. A survey of fault-tolerant and fault-recovery techniques in parallel

systems. ArXiv Computer Science e-prints, pages 1–11, January 2005.


