INSTITUTO DE COMPUTACAO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Heapsort beats Quicksort
Jorge Stolfi

Technical Report - 1C-04-008 - Relatério Técnico

August - 2004 - Agosto

The contents of this report are the sole responsibility of the authors.

O conteido do presente relatério é de (inica responsabilidade dos autores.

Heapsort beats Quicksort

Jorge Stolfi

Institute of Computing
University of Campinas
13084-971 Campinas, SP - Brazil.

August 26, 2004

Abstract

A simple modification to the textbook implementation of the heap delete_min
algorithm cuts the number of comparisons by almost 50%. The change makes
heapsort about as fast as quicksort, and even faster when the number of data
elements exceeds 15000 or so.

Heapsort is widely believed to be much slower than quicksort. This statement is
found in many popular introductory computer science textbooks, which generally
claim that, on random (or randomized) inputs, heapsort makes about twice as many
comparisons as its competitor [1, 3, 2, 4].

Here we observe that the reputed slowness of heapsort is in fact due to a seem-
ingly innocent code simplification trick used in the heap’s delete_min procedure. By
omitting this trick (which is found in most published versions of the algorithm), the
number of comparisons is reduced to about one half of its “usual” value, and heapsort
becomes slightly faster than quicksort.

Standard heap delete-min. Let the heap stored in a vector h[0..m — 1], as usual.
In the textbook implementation of delete_min [1, 3], the vacancy at h[0] created by
removing the root is filled with the last element A[m—1], which then must be “bubbled
down” to its proper place. Namely, while the relocated element hli| is smaller than
its largest child h[j], we swap the two elements and set i < j.

The average depth of a random element in the heap is log, m + O(1), so the
relocated element h[m — 1] is expected to sink again by that many levels especially
considering that it was taken from the lowest tier. Moreover, at each step of its
descent two comparisons are needed: one to identify its largest child, and another
one to decide whether a swap is needed. So the expected number of comparisons in
the standard delete_min is 2log, m + O(1).

2 J. Stolfi

Improved delete-min. This analysis justifies the following change in the heap re-
moval algorithm. Instead of filling h[0] with the last element right away, we first
propagate the vacancy down the heap until it reaches a leaf node. That is, we repeat-
edly find the greatest child A[j]| of the vacancy hli], and set hli] < h[j], i + j, until
hli] has no more children. Only then we fill the vacancy h[i] with the last element
hlm —1]. Finally, we “bubble up” the new h[i] to its proper place. That is, while the
new element hfi| is greater than its parent h[j], we exchange the two elements and
set 7 <— 7. See figure 1

int delete_min(int *h, int *n, int cmp(int a, int b), int sgn)
/* Deletes the root element from the heap h[0..*n-1], returns it. */
{ if ((*n) <= 0)
{ error("empty heap"); }
else
{ int m = (*n);
/* Save current root: */
int w = h[0];
int i = 0; /* h[i] is a vacant slot. */
/* Promote child into vacancy h[i] until it reaches the base: */
int ja = 1; /* h[jal is the first child of h[i]. =/
while (ja < m)
{ /* Find largest child h[j] of h[i]: */
int jb = ja + 1; /* h[jbl is the second child of h[i]. */
int j = ((jb < m) && (sgn*cmp(h[jal, h[jbl) > 0) ? jb : ja);
/* Promote largest child into hole: */
hlil = h[jl; i = j; ja = 2%i + 1;
}

/* One less element in heap: */

m--;
if (i < m)
{ /% Fill h[i] with h[m], bubble it up: */
int v = hlml, j;
while ((i > 0) && (sgn*cmp(v, h[j=(i-1)/2]) < 0))
{ nlil = h[jl; 1 = j; %
hli] = v;
}
*n = m;
return w;
}

Figure 1: The modified delete_min procedure.

Heapsort beats Quicksort 3

This change, which increases the code by only a couple of lines, is advantageous
because propgating the vacancy requires only one element comparison per level, rather
than two. As in the creation phase, the relocated element h[m — 1] is expected to rise
O(1) levels on the average. Therefore the overall number of comparisons of delete_min
is expected to be cut in half — a conclusion that is well supported by experiments.

The speedup may seem paradoxal, since the modified version allows the vacancy
to propagate all the way to the heap’s base, whereas the original version begins with
the same sequence of swaps but stops earlier, at the level where h[m — 1] should be
inserted. However, as discussed above, the correct level is likely to be very close to
the base anyway; so all the extra comparisons needed to identify that level on the
way down are essentially wasted.

Heapsort. This improvement in delete_min has a significant impact in the cost
(number of comparisons) of heapsort. Recall that heapsort first inserts the n input
elements, one by one, into an inverted heap (with the largest element at the root).
Then the largest element from the heap is repeatedly removed and placed into the
output array, from last to first. The heap can be stored in the first m elements of the
same array h[0..n — 1] that holds the input and output data, so that only a constant
amount, of extra storage is needed — a convenient feature that has kept heapsort
popular in spite of its perceived slowness compared to quicksort.

In the heap creation phase, the next input element h[m] is inserted at very end of
the heap, which is position h[m] itself (so this step reduces to m < m+ 1), and then
it is “bubbled up” to its proper level. By the above reasoning, the new element is
expected to rise only O(1) levels. Therefore the cost of heapsort is dominated by that
of delete_min, and the improvement above is expected to reduce that cost by 50%, in
the limit of large n.

Tests. Table 1 shows the observed average and standard deviation of the comparison
counts for the two versions of heapsort, standard and modified, as well as for an
implementation of quicksort. For each algorithm and input data size n, the three
algorithms were executed on the same set of 50 data vectors. The ith data vector
was an array of pseudo-random integers generated by the random function from the
Linux C library, with seed 7. The quicksort implementation switches to insertion sort
when n < 5, the threshold which appears to minimize the comparison count.

A Linux C implementation of heap insertion/deletion procedures and heapsort,
incorporating this change, and the testing program above can be found in http:/
/www.ic.unicamp.br/~stolfi/EXPORT/heapsort.tgz.

4 J. Stolfi

References

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill, 1990.

2] Donald E. Knuth. The Art of Computer Programming, Volume II1: Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.

(3] Robert Sedgewick. Algorithms in Modula-3. Addison-Wesley, Reading, Mass.,
1993.

[4] Nivio Ziviani. Projeto de Algoritmos. Pioneira Thomson Learning, So Paulo, 2nd
edition, 2004.

Algorithm n min max avg sdv
standard 4 6 7 6.6 0.5
modified 4 5 8 6.6 0.8
quicksort 4 3 6 5.0 0.9
standard 16 73 91 83.5 3.6
modified 16 57 75 67.5 4.0
quicksort 16 43 69 53.1 6.7
standard 64 068 611 089.1 11.6
modified 64 404 451 425.2 11.7
quicksort 64 307 477 363.8 37.4
standard 256 3346 3442 3392.6 21.8
modified 256 2211 2307 2265.0 22.0

quicksort 256 1874 2629 2152.0 179.3
standard 1024 17575 17823 17707.7 51.7
modified 1024 11085 11309 11201.5 49.7
quicksort 1024 10437 13702 11431.4 634.2
standard 4096 87057 87462 87299.3 113.2
modified 4096 02919 03298 53141.1 95.7
quicksort 4096 51579 63633 07035.1 | 2712.8
standard | 16384 | 414045 | 415111 | 414678.2 228.5
modified 16384 | 244846 | 245871 | 245424.0 231.5
quicksort | 16384 | 258139 | 291150 | 270903.5 | 7958.1
standard | 65536 | 1919497 | 1922237 | 1920931.2 472.9
modified | 65536 | 1111554 | 1113934 | 1112846.9 461.2
quicksort | 65536 | 1210014 | 1431337 | 1286681.8 | 48848.0

Table 1: Comparison counts for standard heapsort, modified heapsort, and
quicksort on 50 arrays of n pseudo-random integers.

