
�������������������� �� INSTITUTO DE COMPUTAÇ�OUNIVERSIDADE ESTADUAL DE CAMPINAS

Heapsort beats QuiksortJorge Stol�Tehnial Report - IC-04-008 - Relatório TénioAugust - 2004 - AgostoThe ontents of this report are the sole responsibility of the authors.O onteúdo do presente relatório é de únia responsabilidade dos autores.

Heapsort beats QuiksortJorge Stol�Institute of ComputingUniversity of Campinas13084-971 Campinas, SP - Brazil.August 26, 2004AbstratA simple modi�ation to the textbook implementation of the heap delete minalgorithm uts the number of omparisons by almost 50%. The hange makesheapsort about as fast as quiksort, and even faster when the number of dataelements exeeds 15000 or so.
Heapsort is widely believed to be muh slower than quiksort. This statement isfound in many popular introdutory omputer siene textbooks, whih generallylaim that, on random (or randomized) inputs, heapsort makes about twie as manyomparisons as its ompetitor [1, 3, 2, 4℄.Here we observe that the reputed slowness of heapsort is in fat due to a seem-ingly innoent ode simpli�ation trik used in the heap's delete min proedure. Byomitting this trik (whih is found in most published versions of the algorithm), thenumber of omparisons is redued to about one half of its \usual" value, and heapsortbeomes slightly faster than quiksort.Standard heap delete-min. Let the heap stored in a vetor h[0:: m�1℄, as usual.In the textbook implementation of delete min [1, 3℄, the vaany at h[0℄ reated byremoving the root is �lled with the last element h[m�1℄, whih then must be \bubbleddown" to its proper plae. Namely, while the reloated element h[i℄ is smaller thanits largest hild h[j℄, we swap the two elements and set i j.The average depth of a random element in the heap is log2m + O(1), so thereloated element h[m�1℄ is expeted to sink again by that many levels | espeiallyonsidering that it was taken from the lowest tier. Moreover, at eah step of itsdesent two omparisons are needed: one to identify its largest hild, and anotherone to deide whether a swap is needed. So the expeted number of omparisons inthe standard delete min is 2 log2m +O(1).

2 J. Stol�Improved delete-min. This analysis justi�es the following hange in the heap re-moval algorithm. Instead of �lling h[0℄ with the last element right away, we �rstpropagate the vaany down the heap until it reahes a leaf node. That is, we repeat-edly �nd the greatest hild h[j℄ of the vaany h[i℄, and set h[i℄ h[j℄, i j, untilh[i℄ has no more hildren. Only then we �ll the vaany h[i℄ with the last elementh[m� 1℄. Finally, we \bubble up" the new h[i℄ to its proper plae. That is, while thenew element h[i℄ is greater than its parent h[j℄, we exhange the two elements andset i j. See �gure 1int delete_min(int *h, int *n, int mp(int a, int b), int sgn)/* Deletes the root element from the heap h[0..*n-1℄, returns it. */{ if ((*n) <= 0){ error("empty heap"); }else{ int m = (*n);/* Save urrent root: */int w = h[0℄;int i = 0; /* h[i℄ is a vaant slot. *//* Promote hild into vaany h[i℄ until it reahes the base: */int ja = 1; /* h[ja℄ is the first hild of h[i℄. */while (ja < m){ /* Find largest hild h[j℄ of h[i℄: */int jb = ja + 1; /* h[jb℄ is the seond hild of h[i℄. */int j = ((jb < m) && (sgn*mp(h[ja℄, h[jb℄) > 0) ? jb : ja);/* Promote largest hild into hole: */h[i℄ = h[j℄; i = j; ja = 2*i + 1;}/* One less element in heap: */m--;if (i < m){ /* Fill h[i℄ with h[m℄, bubble it up: */int v = h[m℄, j;while ((i > 0) && (sgn*mp(v, h[j=(i-1)/2℄) < 0)){ h[i℄ = h[j℄; i = j; }h[i℄ = v;}*n = m;return w;}} Figure 1: The modi�ed delete min proedure.

Heapsort beats Quiksort 3This hange, whih inreases the ode by only a ouple of lines, is advantageousbeause propgating the vaany requires only one element omparison per level, ratherthan two. As in the reation phase, the reloated element h[m�1℄ is expeted to riseO(1) levels on the average. Therefore the overall number of omparisons of delete minis expeted to be ut in half | a onlusion that is well supported by experiments.The speedup may seem paradoxal, sine the modi�ed version allows the vaanyto propagate all the way to the heap's base, whereas the original version begins withthe same sequene of swaps but stops earlier, at the level where h[m � 1℄ should beinserted. However, as disussed above, the orret level is likely to be very lose tothe base anyway; so all the extra omparisons needed to identify that level on theway down are essentially wasted.Heapsort. This improvement in delete min has a signi�ant impat in the ost(number of omparisons) of heapsort. Reall that heapsort �rst inserts the n inputelements, one by one, into an inverted heap (with the largest element at the root).Then the largest element from the heap is repeatedly removed and plaed into theoutput array, from last to �rst. The heap an be stored in the �rst m elements of thesame array h[0::n� 1℄ that holds the input and output data, so that only a onstantamount of extra storage is needed | a onvenient feature that has kept heapsortpopular in spite of its pereived slowness ompared to quiksort.In the heap reation phase, the next input element h[m℄ is inserted at very end ofthe heap, whih is position h[m℄ itself (so this step redues to m m+1), and thenit is \bubbled up" to its proper level. By the above reasoning, the new element isexpeted to rise only O(1) levels. Therefore the ost of heapsort is dominated by thatof delete min, and the improvement above is expeted to redue that ost by 50%, inthe limit of large n.Tests. Table 1 shows the observed average and standard deviation of the omparisonounts for the two versions of heapsort, standard and modi�ed, as well as for animplementation of quiksort. For eah algorithm and input data size n, the threealgorithms were exeuted on the same set of 50 data vetors. The ith data vetorwas an array of pseudo-random integers generated by the random funtion from theLinux C library, with seed i. The quiksort implementation swithes to insertion sortwhen n � 5, the threshold whih appears to minimize the omparison ount.A Linux C implementation of heap insertion/deletion proedures and heapsort,inorporating this hange, and the testing program above an be found in http://www.i.uniamp.br/~stolfi/EXPORT/heapsort.tgz.

4 J. Stol�Referenes[1℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdution toAlgorithms. MGraw-Hill, 1990.[2℄ Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting andSearhing. Addison-Wesley, Reading, Mass., 1973.[3℄ Robert Sedgewik. Algorithms in Modula-3. Addison-Wesley, Reading, Mass.,1993.[4℄ Nivio Ziviani. Projeto de Algoritmos. Pioneira Thomson Learning, So Paulo, 2ndedition, 2004.Algorithm n min max avg sdvstandard 4 6 7 6.6 0.5modi�ed 4 5 8 6.6 0.8quiksort 4 3 6 5.0 0.9standard 16 73 91 83.5 3.6modi�ed 16 57 75 67.5 4.0quiksort 16 43 69 53.1 6.7standard 64 568 611 589.1 11.6modi�ed 64 404 451 425.2 11.7quiksort 64 307 477 363.8 37.4standard 256 3346 3442 3392.6 21.8modi�ed 256 2211 2307 2265.0 22.0quiksort 256 1874 2629 2152.0 179.3standard 1024 17575 17823 17707.7 51.7modi�ed 1024 11085 11309 11201.5 49.7quiksort 1024 10437 13702 11431.4 634.2standard 4096 87057 87462 87299.3 113.2modi�ed 4096 52919 53298 53141.1 95.7quiksort 4096 51579 63633 57035.1 2712.8standard 16384 414045 415111 414678.2 228.5modi�ed 16384 244846 245871 245424.0 231.5quiksort 16384 258139 291150 270903.5 7958.1standard 65536 1919497 1922237 1920931.2 472.9modi�ed 65536 1111554 1113934 1112846.9 461.2quiksort 65536 1210014 1431337 1286681.8 48848.0Table 1: Comparison ounts for standard heapsort, modi�ed heapsort, andquiksort on 50 arrays of n pseudo-random integers.

