
Computing Maximum Subsequence in Parallel?

C. E. R. Alves1, E. N. Cáceres2, and S. W. Song3

1 Universidade São Judas Tadeu, São Paulo, SP - Brazil,
prof.carlos r alves@usjt.br

2 Universidade Federal de Mato Grosso do Sul, Campo Grande, MS - Brazil,
edson@dct.ufms.br

3 Universidade de São Paulo, São Paulo, SP - Brazil,
song@ime.usp.br

Abstract. The maximum subsequence problem finds the contiguous
subsequence of n real numbers with the highest sum. This is an impor-
tant problem that arises in several contexts in Computational Biology in
the analysis of DNA or protein sequences. The maximum subsequence
problem of n given scores can be solved sequentially in O(n) time. In this
paper we present an efficient BSP/CGM parallel algorithm that requires
a constant number of communication rounds. In the proposed algorithm,
the input is partitioned equally among the processors and the sequence
stored on each processor is reduced to only five numbers. This reduction
is crucial as it allows all the resulting values to be concentrated on a
single processor which runs an adaptation of the sequential algorithm to
obtain the result. The amount of data transmitted is 5p where p is the
number of processors, thus independent of the input size n. The good
performance of the parallel algorithm is confirmed by experimental re-
sults run on a 64-node Beowulf parallel computer, giving almost linear
speedup.

Topic of interest: Algorithms and Software Tools for Computational Molecular
Biology

1 Introduction

Given a sequence of real numbers, the problem of identifying the (contiguous)
subsequence with the highest sum is called the maximum subsequence problem

[2]. If the numbers are all positive, the answer is obviously the entire sequence.
It becomes interesting when there are also negative numbers in the sequence.

The maximum subsequence problem arises in several contexts in Computa-
tional Biology in the analysis of DNA or protein sequences. Many such appli-
cations are presented in [6], for example, to identify transmembrane domains
in proteins expressed as a sequence of amino acids. Karlin and Brendel [4] de-
fine scores ranging from -5 to 3 to each of the 20 amino acids. For the human

? Partially supported by FINEP-PRONEX-SAI Proc. No. 76.97.1022.00, FAPESP
Proc. No. 1997/10982-0, CNPq Proc. No. 52.3778/96-1, 55.2028/02-9, 30.5218/03-4.



β2-adrenergic receptor sequence, disjoint subsequences with the highest scores
are obtained and these subsequences correspond to the known transmembrane
domains of the receptor.

The maximum subsequence problem of n given scores can be solved sequen-
tially in O(n) [1, 2]. A variation of the maximum subsequence problem is to
obtain all maximal subsequences of a sequence of n given scores. Given n scores,
we can obtain the subsequence with the greatest score sum. Having obtained the
kth highest score subsequence, we obtain the next (k +1)th highest score subse-
quence, disjoint from the previous k subsequences. The all maximal subsequence
problem can be solved elegantly with O(n) time complexity [6].

Another variation is the 2-D maximum subsequence problem, where we wish
to obtain the maximum sum over all rectangular subregions of a given n × n
matrix. Parallel algorithms for the 1-D and 2-D versions are presented by Wen
[9] for the EREW PRAM. Both the 1-D version and 2-D version algorithms
take O(log n) time using, respectively, O(n/ log n) and O(n3/ logn) processors.
On the other hand, Qiu and Akl [5] developed parallel algorithms for the 1-D
and 2-D versions of the problem on several interconnection networks such as
the hypercube, star and pancake interconnection networks of size p. The 1-D
algorithm takes O(n/p + log p) time with p processors and the 2-D algorithm
takes O(log n) time with O(n3/ logn) processors.

In this paper we propose an efficient parallel algorithm on the BSP/CGM
computing model for the basic maximum subsequence problem. The proposed
algorithm takes O(n/p) parallel time with p processors and a constant number
of communication rounds in which O(p) numbers are transmitted. Experimental
results are obtained by running the algorithm on a 64-node Beowulf parallel
machine. Very promising results are presented at the end of this paper showing
that the algorithm is efficient not only in theory but also in practice. To our
knowledge, there are no BSP/CGM algorithms for this problem in the literature.

2 Problem Definition and the Sequential Algorithm

Consider a sequence of n real numbers or scores (x1, x2, . . . , xn). A contiguous

subsequence is any contiguous interval (xi, . . . , xj) of the given sequence, with
1 ≤ i ≤ j ≤ n. For simplicity, we use the term subsequence to mean contiguous

subsequence throughout this paper. In the maximum subsequence problem we
wish to determine the subsequence M = (xi, . . . , xj) that has the greatest total

score TM =
∑j

k=i xk. Without loss of generality, we assume at least one of the
xi is positive. With this, we have always a positive total score for the maximum
subsequence problem.

Obviously if all the numbers in the sequence are positive, then the maximum
subsequence is the entire original sequence. We allow the scores to be negative
numbers. For instance, given the sequence (3, 5, 10,−5,−30, 5, 7, 2,−3, 10,−7, 5),
the maximum sequence is M = (5, 7, 2,−3, 10) with total score TM = 21.

There is a simple and elegant sequential algorithm of O(n) for the maxi-
mum subsequence problem [1, 2]. It is based on the idea that if we have already



determined the maximum subsequence M of total score TM of the sequence
(x1, x2, . . . , xk), then we can easily extend this result to determine the maximum
subsequence of the sequence (x1, x2, . . . , xk, xk+1). This is shown in Algorithm 1.

In this algorithm, we consider two cases. In the first case, xk is the last
number of the maximum subsequence M . Then if xk+1 > 0, just append xk+1

to M and add the value of xk+1 to TM . Otherwise, M and TM remain the same.

In the second case, xk is not in the maximum subsequence M . Define the
maximum suffix of the sequence (x1, x2, . . . , xk) to be the suffix S = (xs, . . . , xk)
with the maximum score TS . In this case, steps 6 to 14 of Algorithm 1 show how
to extend the result of M and the corresponding total score TM .

Algorithm 1 Sequential Algorithm to Extend the Maximum Subsequence

Input: The maximum subsequence M of the sequence (x1, x2, . . . , xk) with of total
score TM ; the maximum suffix S = (xs, . . . , xk) with total score TS .
Output: The updated maximum subsequence and its score for the sequence
(x1, x2, . . . , xk, xk+1).

1: if xk is the last number of M then

2: if xk+1 > 0 then

3: append xk+1 to M and set TM := TM + xk+1

4: end if

5: else

6: if TS + xk+1 > TM then

7: append xk+1 to S, set TS := TS + xk+1, M := S and TM = TS

8: else

9: if TS + xk+1 > 0 then

10: append xk+1 to S and set TS := TS + xk+1

11: else

12: set S to be empty
13: end if

14: end if

15: end if

For example, if the sequence (x1, x2, . . . , xk) = (3, 5, 10, -5, -30, 5, 7, 2, -3,
10, -7, 5), then M is (5, 7, 2,−3, 10) with score TM = 21 and S is (5, 7, 2, -3,
10, -7, 5) with score TS = 19. Now suppose that we want to extend the result
by appending a new element to the original sequence, say xk+1 = 40. Then, by
steps 6 and 7 of the algorithm, S becomes (5, 7, 2, -3, 10, -7, 5, 40) with new
score TS = 59, and M will be equal to S with the new score TM = 59.

The sequential algorithm takes O(n) time, since Algorithm 1 to extend the
result when one more element is added takes constant time.



3 The Parallel Algorithm

We propose a parallel algorithm for the maximum subsequence problem for a
given sequence of n scores. We use the BSP/CGM (coarse-grained multicom-
puter) model [3, 8], with p processors, where each processor has O(n/p) local
memory. This algorithm requires a constant number of communication rounds.
The implementation results are shown at the end of this paper.

Consider a given sequence of n scores (x1, x2, . . . , xn). Without loss of gen-
erality, we assume that n is divisible by p. They are partitioned equally into p
intervals, such that each of the p processors stores one interval. Thus the interval
(x1, . . ., xn/p) is stored in processor 1, the interval (xn/p+1, . . ., x2n/p) is stored
in processor 2, and so on.

We now show that each interval of n/p numbers can be reduced to only five
numbers.

Each processor stores n/p consecutive numbers of the input. Without loss of
generality, denote the interval of n/p numbers stored in it by

I = (y1, y2, . . . , yn/p).

We show that it is possible to partition I into five subsequences, denoted by

P, N1, M, N2, S

where

1. M = (ya, . . . , yb) is the maximum subsequence of I , with score TM ≥ 0.
2. P = (y1, . . . , yr) is the maximum prefix of I , with score TP ≥ 0.
3. S = (ys, . . . , yn/p) is the maximum suffix of I , with score TS ≥ 0.
4. N1 is the interval between P and M , with score TN1

≤ 0.
5. N2 is the interval between M and S, with score TN2

≤ 0.

Each processor finds the maximum subsequence M of I , the maximum prefix
P of I and the maximum suffix S of I .

We have several cases to consider.
If all the yi are negative numbers, then we assume M , P and S empty with

TM = TP = TS = 0, N1 is the entire I and N2 empty with TN2
= 0.

We now show that

Lemma 1. If M is not empty, then one of the following cases must hold.

1. P is to the left of M , with r < a, and with N1 in between.

2. M is equal to P , with a = 1 and b = r. We have no N1.

3. M is a proper subsequence of P , with a > 1 and b = r. We have no N1.

Proof. If r < a, case 1 holds.
Let us suppose that r ≥ a. We have to prove that r = b, showing that 2 or 3

holds.



With r ≥ a, if r < b then the score of (ya, . . . , yr) is smaller than TM , so the
score of (yr+1, . . . , yb) is positive. Then the prefix (y1, . . . , yb) would have a score
greater than TP , a contradiction.

Similarly, with r ≥ a and b < r, (yb+1, . . . , yr) would have a positive score
and (ya, . . . , yr) would have a score greater than TM , again a contradiction. So
r ≥ a leads to r = b.

We have also the following lemma regarding the maximum suffix S with a
similar proof.

Lemma 2. If M is not empty, then one of the following cases must hold.

1. S is to the right of M , with s > b, and with N2 in between.

2. M is equal to S, with a = s and b = n/p. We have no N2.

3. M is a proper subset of S, with a = s and b < n/p. We have no N2.

The five values TP , TN1
, TM , TN2

and TS for each interval are used in the
parallel algorithm. When M and P are not disjoint, that is, M is a subsequence
of P , whether proper or not, we redefine TP to be 0 and TN1

to be the non-
positive score of the prefix that immediately precedes M . A similar adaptation
in done with S and TN2

when M and S are not disjoint. It is easy to see that
after this redefinition,

TP + TN1
+ TM + TN2

+ TS =

n/p∑

i=1

yi,

score of P = max{TP , TP + TN1
+ TM}, and

score of S = max{TM + TN2
+ TS, TS}.

Thus, in this way, we build a sequence of five numbers with the same scores
as in the original interval, regarding the total score (entire sequence), maximum
subsequence, maximum prefix and maximum suffix. The seemingly useless zeros
are kept to simplify the bookkeeping in the last step of the parallel algorithm.

Having computed the five numbers mentioned above, each processor sends
them to processor 1. Processor 1 solves the maximum subsequence problem of
the 5p numbers sequentially, in O(p) time and reports the solution.

We now present the complete parallel algorithm.

Theorem 1. Algorithm 2 correctly computes the maximum subsequence of (x1,
x2, . . ., xn) in a constant number of communication rounds involving the trans-

mission of O(p) numbers and O(n/p) local computation time.

Proof. The correctness of the parallel algorithm is based on Lemma 1 and
Lemma 2. Also, it is easy to see that the maximum subsequence considering the
5p values corresponds to the maximum subsequence of the original sequence. If
the latter is entirely contained in one of the p intervals, the correspondence is



Algorithm 2 Parallel Maximum Subsequence

Input: The input sequence of n numbers (x1, x2, . . . , xn) equally partitioned among
the p processors.
Output: The maximum subsequence of the input sequence.

1: Let the sequence stored in each processor be I = (y1, y2, . . . , yn/p). Each processor
obtains the maximum subsequence M of I with score TM .

2: Each processor obtains the maximum prefix P with score TP , and obtains the
maximum suffix S with score TS . The interval between P and M is N1 with score
TN1

; the interval between M and S is N2 with score TN2
.

3: Consider Lemma 2 and redefine the appropriate values of TP , TN1
, TM , TN2

, TS if
necessary.

4: Each processor sends the five values TP , TN1
, TM , TN2

, TS to Processor 1.
5: Processor 1 receives the 5p values and computes the maximum subsequence of the

received values.
6: Let the maximum subsequence obtained be m1, . . . , mk. The processor that stores

m1 can easily compute the start index of the maximum subsequence correponding
to the original input, while the processor that stores mk can compute the end index
of the anwer.

direct. Otherwise, it starts within an interval (being its maximum suffix), spans
zero or more entire intervals, and ends within another interval (being its max-
imum prefix). The 5p values contain all the necessary information to find this
subsequence. In step 2, we need one communication round in which each pro-
cessor sends five values. In step 6, processor 1 needs some information from the
processor to compute the start and finish indices of the maximum sequence. So
we need another communication round. In step 2, to obtain P , N1, M , N2 and
S, each processor runs an algorithm carefully adapted from the well-known se-
quential algorithm of [1, 2], in such a way that all the five values can be obtained
by scanning the n/p numbers only once. In step 5, processor 1 runs an O(p)
algorithm. Thus, the local computation time is O(n/p), given that n/p > p, a
common assumption of the BSP/CGM model.

4 Experimental Results

We have run the parallel algorithm on a 64-node Beowulf machine consisting
of low cost microcomputers with 256MB RAM, 256MB swap memory, CPU
Intel Pentium III 448.956 MHz, 512KB cache. The cluster is divided into two
blocks of 32 nodes each. The nodes of each block are connected through a 100
Mb fast-Ethernet switch. Our code is written in standard ANSI C using the
LAM-MPI library. We assumed an input size of n = 1, 830, 000 4 and used ran-
domly generated data. Figure 1 shows the total running times (computation plus
communication), Figure 2 the communication times, and Figure 3 the speedups
obtained.

4 This size corresponds to the number of nucleotide pairs of the bacterium Haemophilus

influenzae, the first free-living organism to have its entire genome sequenced [7].



◦

◦

◦

◦
◦ ◦ ◦

10 20 30 40 50 60

0

0.1

0.2

0.3

No. Processors

S
ec

o
n
d
s

Fig. 1. Total times (computation + communication) for input size n=1,830,000.

◦

◦◦

◦
◦

◦

◦

10 20 30 40 50 60

0

5×10−4

0.001

0.0015

No. Processors

S
ec

o
n
d
s

Fig. 2. Communication times for input size n=1,830,000.

5 Conclusion

We propose an efficient parallel solution to the maximum subsequence problem
that finds the contiguous subsequence of n real numbers with the greatest total
score, an important problem in the analysis of DNA or protein sequences to
identify subsequences with desired properties. In the proposed algorithm, the
input is partitioned equally among the processors and the sequence stored on
each processor is reduced to only five numbers. This reduction is crucial as it
allows all the resulting values to be concentrated on a single processor which
runs an adaptation of the sequential algorithm to obtain the result. The amount
of data transmitted is 5p where p is the number of processors, thus independent
of the input size n. Our algorithm not only finds the maximum score of the
subsequence, but also the subsequence proper. The good performance of the
parallel algorithm is confirmed by experimental results run on a 64-node Beowulf
parallel computer, giving almost linear speedup. Finally we must say that the



◦◦
◦

◦

◦

◦

◦

10 20 30 40 50 60

0

10

20

30

40

No. Processors

S
p
ee

d
u
p

Fig. 3. Speedups for input size n=1,830,000.

sequential algorithm is very efficient. The parallel version is only justified for
large sequences.

Acknowledgments

We would like to thank the anonymous referees for their review and helpful
comments.

References

1. J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on Pro-

gramming Languages and Systems, 7(1):113–136, January 1985.
2. J. Bentley. Programming Pearls. Addison-Wesley, 1986.
3. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for

coarse grained multicomputers. In Proc. ACM 9th Annual Computational Geometry,
pages 298–307, 1993.

4. S. Karlin and V. Brendel. Chance and significance in protein and dna sequence
analysis. Science, 257:39–49, 1992.

5. K. Qiu and S. G. Akl. Parallel maximum sum algorithms on interconnection net-
works. Technical report, Queen’s Unversity, Department of Computer and Informa-
tion Science, 1999. No. 99-431.

6. W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring
subsequences. In Proceedings of the Seventh International Conference on Intelligent

Systems for Molecular Biology, pages 234–241. AAAI Press, August 1999.
7. D. P. Snustad and M. J. Simmons. Principles of Genetics. John Wiley and Sons,

2000.
8. L. Valiant. A bridging model for parallel computation. Communication of the ACM,

33(8):103–111, 1990.
9. Zhaofang Wen. Fast parallel algorithm for the maximum sum problem. Parallel

Computing, 21:461–466, 1995.


