
dct ufms

1/34

JJ
II
J
I

Back

End

WEA 2004

Efficient Implementation of the BSP/CGM
Parallel Vertex Cover FPT Algorithm

E. J. Hanashiro DCT - Univ. Fed. Mato Grosso do Sul

H. Mongelli DCT - Univ. Fed. Mato Grosso do Sul

S. W. Song IME - Univ. São Paulo

dct ufms

2/34

JJ
II
J
I

Back

End

Summary

1 Parameterized Complexity and
Fixed Parameter Tractability 3

2 CGM Parallel Model 8

3 FPT Algorithms for the k-Vertex Cover Problem 10

4 Implementation Details 19

5 Experimental Results 21

6 Conclusions 29

dct ufms

3/34

JJ
II
J
I

Back

End

Parameterized Complexity and
Fixed Parameter Tractability

• Parameterized Complexity

• FPT - Fixed Parameter Tractability

• Techniques in FPT Algorithm Design

dct ufms

4/34

JJ
II
J
I

Back

End

Parameterized Complexity

• The input problem is divided into two parts:

– the main part containing the data set

– a parameter

• A problem whose input can be divided like this is said to be para-

meterized.

dct ufms

5/34

JJ
II
J
I

Back

End

FPT - Fixed Parameter Tractability
• A parameterized problem is said to be fixed-parameter tractable if

there is an algorithm that solves the problem in O(f (k)nα) time,

where α is a constant and f is an arbitrary function.

• The definition of FPT problems remains unchanged if we consider

O(f (k) + nα) time.

• The main part of the input contributes polynomially on the total

complexity of the problem.

• The parameter is responsible for the combinatorial explosion.

• This approach is feasible if the constant α is small and the parameter

k is within a tight, but useful, interval.

• The fixed parameter tractable problems form a class of problems

called FPT.

dct ufms

6/34

JJ
II
J
I

Back

End

Techniques in FPT Algorithm Design

• Two techniques are usually applied:

– the reduction to problem kernel

The goal is to reduce, in polynomial time, an instance I of the pa-

rameterizable problem into another equivalent instance I ′, whose

size is limited by a function of the parameter k.

– the bounded search tree

This technique attempts to solve the problem through an exhaus-

tive tree search, whose size is to be bounded by a function of the

parameter k.

dct ufms

7/34

JJ
II
J
I

Back

End

• These techniques can be combined to solve problems.

• The application of these methods, in this order, as an algorithm of

two phases, is the basis of several FPT algorithms.

• FPT algorithms have been implemented and they constitute a pro-

mising approach to solve problems to get the exact solution.

• The exponential complexity on the parameter can still result in a

prohibitive cost.

dct ufms

8/34

JJ
II
J
I

Back

End

CGM Parallel Model

n/p n/p n/p n/pn/p

. . .

Interconnection Network

Processor

Local Memory

dct ufms

9/34

JJ
II
J
I

Back

End

����
��

���	

�

P0

P1

P2

Pp−1

� ������ ��

Communication RoundComputation Round

Barrier Synchronization

Local Computation

Global Communication

dct ufms

10/34

JJ
II
J
I

Back

End

FPT Algorithms for the k-Vertex Cover
Problem

• k-Vertex Cover Problem

• Algorithm of Buss

• Algorithms of Balasubramanian et al.

• BSP/CGM Algorithm of Cheetham et al.

dct ufms

11/34

JJ
II
J
I

Back

End

k-Vertex Cover Problem

• We have a graph G = (V, E) (the instance) and a non-negative

integer k (the parameter).

• We want to answer the following question: “Is there a set V ′ ⊆ V of

vertices, whose maximum size is k, so that for every edge (u, v) ∈ E,

u ∈ V ′ or v ∈ V ′?”.

• An application of the vertex cover problem is the analysis of multiple

sequences alignment.

• A trivial exact algorithm for this problem is to use brute force, and

it is usually not feasible in practice.

dct ufms

12/34

JJ
II
J
I

Back

End

Algorithm of Buss

• The algorithm of Buss is based on the idea that all the vertices of

degree greater than k belong to any vertex cover for graph G of size

smaller or equal to k.

• Such vertices must be added to the partial cover and removed from

the graph.

• If there are more than k vertices in this situation, there is no vertex

cover of size smaller or equal to k for the graph G.

• Complexity time: O(kn + 2kk2k+2).

dct ufms

13/34

JJ
II
J
I

Back

End

v3

1v

v4

v6

v2

v5 v3

1v

v4

v6

v2

H={v }5

5v

k=3

v3

1v

v4

v2

k’=3−1=2

1
2
3
4
1 2

31
1 4
2

42
4

3

{ } is not a V.C.

{v ,v } is not a V.C.

{v ,v } is a V.C.
{v ,v }

{v } is not a V.C.
{v } is not a V.C.

{v } is not a V.C.

{v ,v } is not a V.C.
{v ,v } is not a V.C.

{v } is not a V.C.

3{v ,v }

1v

v4

v6

v2

3v 5v

dct ufms

14/34

JJ
II
J
I

Back

End

Algorithms of Balasubramanian et al.
• The algorithms of Balasubramanian et al. execute initially the phase

of reduction to problem kernel based on the algorithm of Buss.

• In the second phase, a bounded search tree is generated.

• Balasubramanian et al. developed two algorithms to generate the

bounded search tree:

– Algorithm B1 (Complexity time: O(kn + (
√

3)kk2))

– Algorithm B2 (Complexity time: O(kn + 1.324718kk2))

• In both cases, we search the tree nodes exhaustively for a solution

of the vertex cover problem, by depth first tree traversal.

• The difference between the two algorithms is the form we choose

the vertices to be added to the partial cover and, consequently, the

format of such a tree.

dct ufms

15/34

JJ
II
J
I

Back

End

3 sons in B1...<G’’, k’’>
V’’

<G’, k’>
V’

<G’’, k’’>
V’’ 1 to 4 sons in B2

• Each node of the search tree stores a partial vertex cover and a

reduced instance of the graph.

• The root of the search tree, for example, represents the graph situ-

ation after the method of reduction to problem kernel.

dct ufms

16/34

JJ
II
J
I

Back

End

3 sons in B1...<G’’, k’’>
V’’

<G’, k’>
V’

<G’’, k’’>
V’’ 1 to 4 sons in B2

• The edges of the search tree represents the several possibilities of

adding vertices to the existing partial cover.

• We actually do not generate all the nodes before the depth first tree

traversal. We only generate a node of the bounded search tree when

this node is visited.

• The growth of the search tree is interrupted when the node has a

partial vertex cover of size smaller or equal to k or a resulting empty

graph (case in which we find a valid vertex cover for graph G).

dct ufms

17/34

JJ
II
J
I

Back

End

BSP/CGM Algorithm of Cheetham et
al.

• This BSP/CGM algorithm parallelizes both phases of an FPT algo-

rithm, reduction to problem kernel and bounded search tree.

• This algorithm solves even larger instances of the k-Vertex Cover

problem than those solved by sequential FPT algorithms.

• The phase of reduction to problem kernel is parallelized through a

parallel integer sorting.

dct ufms

18/34

JJ
II
J
I

Back

End

log p
3

10 p−1

<G´,k´>

k´

i

Algorithm B1

Algorithm B2

dct ufms

19/34

JJ
II
J
I

Back

End

Implementation Details

• We used C/C++ and the MPI communication library.

• The input was a text file describing a graph G by its adjacency list

and an integer k that determines the maximum size for the vertex

cover desired.

• Let n be the number of vertices, m the number of edges of graph

G and p the number of processors to run the program.

• At the beginning of the reduction to problem kernel phase, the input

adjacency list of graph G is transformed into a list of corresponding

edges and distributed among the p processors.

• Each processor Pi, 0 ≤ i < p, receives m/p edges and is responsible

for controlling the degrees of n/p vertices.

dct ufms

20/34

JJ
II
J
I

Back

End

• The p processors transform the list of edges corresponding to graph

G′ again into an adjacency list, that will be used in the bounded

search tree phase.

• The resulting adjacency list from the reduction to problem kernel is

implemented as a doubly linked list of vertices.

• Our program uses the backtracking technique.

• We need to store some information in a stack of pointers to removed

vertices and edges, that enables us to go up the tree and recover a

previous instance of the graph.

• The partial vertex cover is also a stack of pointers to vertices known

to be part of the cover.

dct ufms

21/34

JJ
II
J
I

Back

End

Experimental Results

• The parallel implementation is called Par-Impl.

• The sequential implementation of Algorithm B2 is called Seq-Impl.

• The sequential and parallel times were measured as wall clock times

in seconds, including reading input data, data structures deallocation

and writing output data.

• The parallel times were measured between the start of the first pro-

cessor and termination of the last process.

dct ufms

22/34

JJ
II
J
I

Back

End

• In our experiments we used conflict graphs that represent sequences

of amino acid collected from the NCBI database:

Graph |V | |E| k k’
Kinase 647 113122 495 391
PHD 670 147054 601 600
SH2 730 95463 461 397
Somatostatin 559 33652 272 254
WW 425 40182 322 318

dct ufms

23/34

JJ
II
J
I

Back

End

• The times were obtained by executing:

– Seq-Impl in a single processor;

– Par-Impl in a single processor (3 virtual processors); and

– Par-Impl in 3, 9 and 27 processors.

• The time obtained by Par-Impl in a single processor is the sum of

the wall clock times of the individual processes plus the overhead

created by their communication.

dct ufms

24/34

JJ
II
J
I

Back

End

 0

 2000

 4000

 6000

 8000

 10000

 12000

PHD Somatostatin WW

Ti
m

e
in

 s
ec

on
ds

average time on one processor (Impl-s)
average time on one processor - 3 virtual processors (Impl-p)

dct ufms

25/34

JJ
II
J
I

Back

End

 1

 4

 16

 64

 256

 1024

 4096

 16384

PHD Somatostatin WW

Ti
m

e
in

 s
ec

on
ds

 (l
og

 2
 s

ca
le

d)

average time on one processor (Impl-s)
average time on one processor (Impl-p)
average time on 27 processors (Impl-p)

Figura 1: Average wall clock times on 3, 9 and 27 processors for PHD,
Somatostatin and WW.

dct ufms

26/34

JJ
II
J
I

Back

End

• Notice the increase in the number of processors does not necessarily

imply a greater improvement on the average time, in spite of the

always observed time reduction.

• Nevertheless, the use of more processors increases the chance of

determining the cover more quickly, since we start the tree search in

more points.

• It seems that the number of tree nodes with a solution also has some

influence on the running times.

• As we do the depth first traversal in the bounded search tree, a

wrong choice of a son to visit means that we have to traverse all the

subtree of the son before choosing another son to visit.

dct ufms

27/34

JJ
II
J
I

Back

End

 0

 20

 40

 60

 80

 100

 120

 140

 160

Kinase PHD SH2 Somatostatin WW

Ti
m

e
in

 s
ec

on
ds

average parallel time on 27 processors

Figura 2: Average wall clock times for the data sets on 27 real proces-
sors.

dct ufms

28/34

JJ
II
J
I

Back

End

• For the graphs PHD, SH2, Somatostatin and WW we could guaran-

tee the non existence of covers smaller than that determined by the

parallel algorithm, confirming the minimality of the values obtained.

Graph Time
PHD 1.162,11 seg
SH2 4.374,14 seg
Somatostatin 272,102 seg
WW 664,25 seg

dct ufms

29/34

JJ
II
J
I

Back

End

Conclusions

• Our experiments are very relevant, since we used a computational

platform that is much inferior than that used in Cheetham et al..

Our Cheetham’s
Item Environment Environment
Number of processors 64 32
Processor Pentium III Xeon
Clock Speed 500 Mhz 1.8 GHz
Memory 256 Mb 512 Mb
Switch Fast Ethernet Gigabit Ethernet
C Language g++ 2.96 g++ 2.95.3
MPI Version MPI-LAM 6.5.6 MPI-LAM 6.5.6
OS Version Linux Red Hat 7.3 Linux Red Hat 7.2

dct ufms

30/34

JJ
II
J
I

Back

End

• The parallel times obtained in our experiments were better.

Our Improve
Graph Cheetham* Implementation Rate
Kinase 1550 seg 13,3273 seg 119,23
PHD 600 seg 36,0201 seg 16,65
SH2 4400 seg 37,7083 seg 116,68
Somatostatin 150 seg 149,2843 seg 1
WW 10 seg 4,7455 seg 2,1
* approximated values

• We considered that the choice of good data structures and use of the

backtracking technique were essential to obtain our relevant results.

dct ufms

31/34

JJ
II
J
I

Back

End

• Furthermore, the size of the covers obtained were smaller for the

following graphs:

– Kinase (from 497 to 495)

– PHD (from 603 to 601)

– Somatostatin (from 273 to 272).

• The reduction in the size of the cover implies the reduction on the

universe of existing solutions in the bounded search tree, which in

turn gives rise to an increase in the running time.

dct ufms

32/34

JJ
II
J
I

Back

End

• FPT algorithms constitute an alternative approach to solve NP-

complete problems for which it is possible to fix a parameter that is

responsible for the combinatorial explosion.

• The use of parallelism improve significantly the running time of the

FPT algorithms, as in the case of the k-Vertex Cover problem.

• During the program design, we utilized several alternative data struc-

tures and their results were compared with those of Cheetham et al..

• We chose the design that obtained the best performance.

dct ufms

33/34

JJ
II
J
I

Back

End

Future Works

• Changing the algorithm used in the second phase of the parallel

algorithm by a better one.

• Making practical tests with other real amino acid sequences, provi-

ding a parallel tool.

• Exploring parallelism for other FPT problems.

dct ufms

34/34

JJ
II
J
I

Back

End

Acknowledgments

• Prof. Frank Dehne (Carleton University) and Peter J. Taillon who

kindly provided us the conflict graphs.

• Prof. Edson N. Cáceres (UFMS) for his assistance.

• the Institute of Computing/UNICAMP for giving the permission to

use the machines.

• CNPq.

• CAPES.

	Parameterized Complexity and Fixed Parameter Tractability
	CGM Parallel Model
	FPT Algorithms for the k-Vertex Cover Problem
	Implementation Details
	Experimental Results
	Conclusions

