A Parallel Wavefront Algorithm for

Efficient Biological Sequence Comparison

C. E. R. Alves, E. N. Caceres, F. Dehne, S. W. Song

ICCSA 2003 - Technical Session on Coarse Grained Parallel

Algorithms For Scientific Applications

May 19, 2003



String Editing or Similarity Problem

Find the edit distance between two strings A
and C.

Operations: insertion, deletion, substitution.

Edit Distance = Sum of the costs of each edit
operation.

Applications in search for similarities in biose-
quences.



CGM/BSP Model

CGM (Coarse Grained Multicomputer) model:
a small number p of processors, each with its
own local memory, communicating through a
network.

The algorithm alternates between

e Computation rounds: each processor com-
putes independently.

e Communication rounds: each processor sends/rece
data to/from other processors.

Goals:

e Obtain a speed-up linear on p (for a range
of values of p).

e Minimize the number of rounds.



A Simple String Alignment Example

Alignment (a):

A a ¢c t t c a — t
C a t t ¢ — a c g
Score|l1 O 1 O O 1 O 0|3
Alignment (b):

A a ¢c t t c a — t
C a — t t c a c g
Score|1 O 1 1 1 1 O 0O0]|5

Consider strings A and C.

Insert spaces such that they become equal in
length.

Assign score 1 when symbols match; O other-
wise.

Total score of case (a): 3

Total score of case (a): 5



A More General Score Assignment
Consider strings A and C: |A| =n and |C| = m.
In the alignment, consider a column consisting

of symbols r of A and s of C. The score S(r, s)
is defined as:

o If r = s: score S(r,s)= f(r,s)(> 0) (match)

o If r = s: score S(r,s)= f(r,s)(< 0) (mis-
match)

e If we insert a space: S(r,s)= —k



Dynamic Programming Approach

We can compute S(r,s) by using S(r — 1,s),
S(r—1,s — 1) and S(r,s — 1) because there
are only three ways of computing an alignment
between A[1...r] and C[1...s]: We can

e align A[l..r] with C[1..s — 1] and match a
space with C|s], or

e align A[l..r — 1] with CJ[1..s] and match a
space with Alr], or

e align A[l1..r — 1] with C[1..s — 1] and match
(or mismatch) A[r] with B[s]. Thus:

Slr,s — 1] — k
S(r,s) = max{ S[r—1,s—1] 4+ f(r,s)
S[r—1,s] — k



Grid Directed Acyclic Graph (GDAG)

Slr,s — 1] — k
S(r,s) = max] S[r—1,s—1] 4+ f(r,s)
Slr—1,s] — k

This can beillustrated by a grid directed acyclic
graph (GDAG):

b a a b ¢ a b ¢ a b

—~
=
(=]

=

® o T o T » o T

G(i—1,7—-1) G(i—1,7)

G(i,5—1) G(i,5)

- (8,10)

Highest scoring path from (0,0) to (8,10)=
pbest alignment.

Sequential algorithm: O(mn) time.



Previous Parallel Algorithms for this Prob-
lem

Apostolico et al. 1990:

e CREW: O(logmlogn) time
with O(mn/logm) processors (n > m)
e CRCW: O(logn(loglogm)?) time
with O(mn/loglogm) processors
e in both case: O(mn) space

Galil and Park 1992:

e CREW: O(y/nlogn) time

Alves, Caceres, Denhe, Song 2002

e CGM algorithm O(logp) communication rounds
Here we present an O(p) communication rounds
CGM algorithm that requires communication

with few neighbor processors and is very sim-
ple to implement.



An O(p) Commun. Rounds Algorithm

A=A{ay...am}, C = {c1...cn} with |A] = m
and |C| = n.

C is divided into p pieces of size %.

Each processor P; receives A and the :-th piece
of C.

Each P, computes S;(r,s) of the submatrix S;
based on S;(r—1,s), S;(r—1,s—1) and S;(r,s—
1).

Processor P; can only start to compute S;(r, s)
after P,_1 has computed S;_1(r,s).



Idea of the Algorithm

v

p
>

Rk

PF denotes execu-
tion of processor 1
at round k.

RF, 1 <4,k < p, elements of the right boundary
(rightmost column) of the k-th part of subma-

trix S;.

R} = {S;(r,i%), (k = 1) + 1 <r < kT}.

After computing the k-th part of the subma-
trix S;, processor P; sends the elements Rf to

processor P,y 1.

Using Rf, processor P;4 1 can compute the k-th
part of the submatrix 5;4 1.



An Improvement using Parameterized
Algorithm

Observation: The last processor P, only starts
its work at round p — 1 when processor Pq is
finishing its computation.

Therefore we have a very bad load balancing.

We can improve the load balancing by assign-
ing work to the processors sooner.

We can decrease the size of the messages that
processor P; sends to processors Py 1.

Instead of message size % consider sizes oz%
(a < 1) and explore several sizes of the param-
eter «.

10



Choosing Parameter «

| r [ el P!
P
P

N Py Exemple: Using a« =
rp | et el Py

p+1 p+2 2p
Py Py P

1
2

p+2
Pl

3
Ea

v
o)
%

2p—1 2p 3p—2
Pl P2 PP

Parameter a < 1 expresses the trade-off be-
tween the workload of each processor and the
number of communication rounds required.

Small o« means smaller workload and more com-
munication rounds.

Case when o = 1/2: Processors start to work
earlier but requires 3p—2 communication rounds.

11



The (1 + é)p — 2 Rounds Similarity Algorithm:
Input: Value ¢ of the processor P;; entire string A and
the substring C; (size %); the parameter o.

Output: Score S(r,s), (i — 1)% +1<r< i% and (j —
1)%4—1 <s< g

1. for1<k<?’do
2. if =1 then

3: fora(k—l)%—l—lgrgak%and1§s§%
do
4: compute S(r,s);
5: end for
6: send(RF, Pi+1);
7. end if
8: if - %= 1 then
9: receive(RF |, P,_1);
10: fora(k—l)%—l—lgrgak%and1§s§%
do
11: compute S(r,s);
12: end for
13: if : = p then
14: send(Rf,PZ-+1)
15: end if
16: end if
17: end for

12



Main Theoretical Result

Theorem 1 The proposed algorithm with pa-
rameter o solves the string editing problem in
(1 + 2)p — 2 communication rounds with local
computation time of O(%) in each processor.

Implementation Results

64-node Beowulf: each with 256MB RAM,
256MB swap memory, CPU Intel Pentium III
448.956 MHz, 512KB cache, connected with a
100 Mb fast-Ethernet switch. Code is written
in standard ANSI C using the LAM-MPI library.

. Parameter Tuning (see curves)

. Execution Times (see curves)

13



Parameter Tuning

15 ca-1
\ * a=1/2
\ Oa=1/4
o ?‘\ ® a=1/8
< 10 - ' . . .
§ \\‘&\\ Using input strings:
2 i o m=8000 and
| -
E N n=16000
\\le___‘_“_:;—_——___
0 I I I
0 20 40 60

Number of Processors

Best value for a between 1/4 and 1/8.

14



Execution Times (o= 1)

We tried two different implementations.

15—
® 8192x16384
O 4096x8192
* 2048x4096
< 1024x2048
> 512x1024

10 20 30 40 50 60
Processors

Each processor stores the entire submatrix it
computes: quadratic space.

15—

® 8192x16384
0 4096x8192
* 2048x4096

= <& 1024x2048

—g 10 > 512x1024

Qo

Q

]

wn

S~—

]

g

H

10 20 30 40 50 60
Processors

Each processor stores one row at a time of the
submatrix it computes: linear space.
15



Conclusion

O(p)-communication-round CGM algorithm.

Each processor communicates with two neigh-
bors.

Apropriate for implementation in grid com-
puting.

Parameter o expresses the trade-off be-
tween the workload of each processor and
the number of communication rounds re-
quired; can be tuned empirically in a given
computing platform.

16



