
A Parallel Wavefront Algorithm for

Efficient Biological Sequence Comparison

C. E. R. Alves, E. N. Cáceres, F. Dehne, S. W. Song

ICCSA 2003 - Technical Session on Coarse Grained Parallel

Algorithms For Scientific Applications

May 19, 2003

String Editing or Similarity Problem

Find the edit distance between two strings A

and C.

Operations: insertion, deletion, substitution.

Edit Distance = Sum of the costs of each edit

operation.

Applications in search for similarities in biose-

quences.

1

CGM/BSP Model

CGM (Coarse Grained Multicomputer) model:

a small number p of processors, each with its

own local memory, communicating through a

network.

The algorithm alternates between

• Computation rounds: each processor com-

putes independently.

• Communication rounds: each processor sends/receives

data to/from other processors.

Goals:

• Obtain a speed-up linear on p (for a range

of values of p).

• Minimize the number of rounds.

2

A Simple String Alignment Example

Alignment (a):

A a c t t c a – t
C a t t c – a c g

Score 1 0 1 0 0 1 0 0 3

Alignment (b):

A a c t t c a – t
C a – t t c a c g

Score 1 0 1 1 1 1 0 0 5

Consider strings A and C.

Insert spaces such that they become equal in

length.

Assign score 1 when symbols match; 0 other-

wise.

Total score of case (a): 3

Total score of case (a): 5

3

A More General Score Assignment

Consider strings A and C: |A| = n and |C| = m.

In the alignment, consider a column consisting

of symbols r of A and s of C. The score S(r, s)

is defined as:

• If r = s: score S(r, s)= f(r, s)(> 0) (match)

• If r 6= s: score S(r, s)= f(r, s)(< 0) (mis-

match)

• If we insert a space: S(r, s)= −k

4

Dynamic Programming Approach

We can compute S(r, s) by using S(r − 1, s),

S(r − 1, s − 1) and S(r, s − 1) because there

are only three ways of computing an alignment

between A[1 . . . r] and C[1 . . . s]: We can

• align A[1..r] with C[1..s − 1] and match a

space with C[s], or

• align A[1..r − 1] with C[1..s] and match a

space with A[r], or

• align A[1..r −1] with C[1..s−1] and match

(or mismatch) A[r] with B[s]. Thus:

S(r, s) = max











S[r, s − 1] − k
S[r − 1, s − 1] + f(r, s)
S[r − 1, s] − k

5

Grid Directed Acyclic Graph (GDAG)

S(r, s) = max











S[r, s − 1] − k
S[r − 1, s − 1] + f(r, s)
S[r − 1, s] − k

This can be illustrated by a grid directed acyclic

graph (GDAG):

a

c

b

c

b

a

a

b

(0, 0) b a a b c a b c a b

(8, 10)

G(i, j − 1)

G(i − 1, j − 1)

G(i, j)

G(i − 1, j)

Highest scoring path from (0,0) to (8,10)=

best alignment.

Sequential algorithm: O(mn) time.

6

Previous Parallel Algorithms for this Prob-

lem

Apostolico et al. 1990:

• CREW: O(logm logn) time
with O(mn/ logm) processors (n ≥ m)

• CRCW: O(logn(log logm)2) time
with O(mn/ log logm) processors

• in both case: O(mn) space

Galil and Park 1992:

• CREW: O(
√

n logn) time

Alves, Cáceres, Denhe, Song 2002

• CGM algorithm O(log p) communication rounds

Here we present an O(p) communication rounds

CGM algorithm that requires communication

with few neighbor processors and is very sim-

ple to implement.

7

An O(p) Commun. Rounds Algorithm

A = {a1 . . . am}, C = {c1 . . . cn} with |A| = m

and |C| = n.

C is divided into p pieces of size n
p.

Each processor Pi receives A and the i-th piece

of C.

Each Pi computes Si(r, s) of the submatrix Si

based on Si(r−1, s), Si(r−1, s−1) and Si(r, s−
1).

Processor Pi can only start to compute Si(r, s)

after Pi−1 has computed Si−1(r, s).

8

Idea of the Algorithm

P p−1

1
P p

2
P 2p−2

p

P p
p

P p−1
p

P k
i

P 0
1

P 1
1

P 1
2

P 2
1

P 2
2

P 2
3

m

n

m p

n
p

Rk
i

P k
i denotes execu-

tion of processor i

at round k.

Rk
i , 1 ≤ i, k ≤ p, elements of the right boundary

(rightmost column) of the k-th part of subma-

trix Si.

Rk
i = {Si(r, i

n
p), (k − 1)m

p + 1 ≤ r ≤ km
p }.

After computing the k-th part of the subma-

trix Si, processor Pi sends the elements Rk
i to

processor Pi+1.

Using Rk
i , processor Pi+1 can compute the k-th

part of the submatrix Si+1.

9

An Improvement using Parameterized

Algorithm

Observation: The last processor Pp only starts

its work at round p − 1 when processor P1 is

finishing its computation.

Therefore we have a very bad load balancing.

We can improve the load balancing by assign-

ing work to the processors sooner.

We can decrease the size of the messages that

processor Pi sends to processors Pi+1.

Instead of message size m
p consider sizes αm

p
(α ≤ 1) and explore several sizes of the param-

eter α.

10

Choosing Parameter α

P 2p−1

1
P 2p

2
P 3p−2

p

P 2p−2
p

P 2p
p

P 2p−1
p

P k
i

P p

1

P 0
1

P p
p

P p

2

P p+1

1

P 1
1

P p+1

2

P 1
2

P p+2

1

P p+2

2

P p+2

3

P 2
3

P 2
1

P 2
2

P p−1

1

P p−1
p

m

n

α
m p

n
p

Rk
i

Exemple: Using α = 1
2

Parameter α ≤ 1 expresses the trade-off be-

tween the workload of each processor and the

number of communication rounds required.

Small α means smaller workload and more com-

munication rounds.

Case when α = 1/2: Processors start to work

earlier but requires 3p−2 communication rounds.

11

The (1 + 1
α
)p − 2 Rounds Similarity Algorithm:

Input: Value i of the processor Pi; entire string A and

the substring Ci (size n
p
); the parameter α.

Output: Score S(r, s), (i − 1) m√
p
+ 1 ≤ r ≤ i m√

p
and (j −

1)n
p
+1 ≤ s ≤ jn

p
.

1: for 1 ≤ k ≤ p
α

do
2: if i = 1 then
3: for α(k − 1)m

p
+ 1 ≤ r ≤ αkm

p
and 1 ≤ s ≤ n

p

do
4: compute S(r, s);
5: end for
6: send(Rk

i ,Pi+1);

7: end if
8: if i 6= 1 then
9: receive(Rk

i−1, Pi−1);
10: for α(k − 1)m

p
+ 1 ≤ r ≤ αkm

p
and 1 ≤ s ≤ n

p

do
11: compute S(r, s);
12: end for
13: if i 6= p then
14: send(Rk

i ,Pi+1)
15: end if
16: end if

17: end for

12

Main Theoretical Result

Theorem 1 The proposed algorithm with pa-

rameter α solves the string editing problem in

(1 + 1
α)p − 2 communication rounds with local

computation time of O(mn
p) in each processor.

Implementation Results

64-node Beowulf: each with 256MB RAM,

256MB swap memory, CPU Intel Pentium III

448.956 MHz, 512KB cache, connected with a

100 Mb fast-Ethernet switch. Code is written

in standard ANSI C using the LAM-MPI library.

. Parameter Tuning (see curves)

. Execution Times (see curves)

13

Parameter Tuning

.

.

.

.

.

. α = 2

�

�

�

�
�

� α = 1

?

?

?

?
?

? α = 1/2

◦

◦

◦

◦
◦

◦ α = 1/4

•

•

•

•
•

• α = 1/8

0 20 40 60

0

5

10

15

Number of Processors

T
im

e
(s

ec
o
n
d
s)

Using input strings:
m=8000 and
n=16000

Best value for α between 1/4 and 1/8.

14

Execution Times (α = 1)

We tried two different implementations.

...

. 512x1024

��� � � � �

� 1024x2048

?
?
? ? ? ? ?

? 2048x4096

◦

◦

◦

◦
◦

◦ ◦

◦ 4096x8192

•

•

•

•
•

• 8192x16384

10 20 30 40 50 60

0

5

10

15

Processors

T
im

e
(s

ec
o
n
d
s)

Each processor stores the entire submatrix it

computes: quadratic space.

...

. 512x1024

��� � � � �

� 1024x2048

??? ? ? ? ?

? 2048x4096

◦

◦

◦
◦

◦ ◦ ◦

◦ 4096x8192

•

•

•

•

•

•
•

• 8192x16384

10 20 30 40 50 60

0

5

10

15

Processors

T
im

e
(s

ec
o
n
d
s)

Each processor stores one row at a time of the

submatrix it computes: linear space.

15

Conclusion

• O(p)-communication-round CGM algorithm.

• Each processor communicates with two neigh-

bors.

• Apropriate for implementation in grid com-

puting.

• Parameter α expresses the trade-off be-

tween the workload of each processor and

the number of communication rounds re-

quired; can be tuned empirically in a given

computing platform.

16

