A Parallel Wavefront Algorithm for Efficient Biological Sequence Comparison

C. E. R. Alves, E. N. Cáceres, F. Dehne, S. W. Song

ICCSA 2003 - Technical Session on Coarse Grained Parallel Algorithms For Scientific Applications

May 19, 2003

String Editing or Similarity Problem

Find the edit distance between two strings A and C.

Operations: insertion, deletion, substitution.

Edit Distance = Sum of the costs of each edit operation.

Applications in search for similarities in biosequences.

CGM/BSP Model

CGM (Coarse Grained Multicomputer) model: a small number p of processors, each with its own local memory, communicating through a network.

The algorithm alternates between

- Computation rounds: each processor computes independently.
- Communication rounds: each processor sends/rece data to/from other processors.

Goals:

- Obtain a speed-up linear on p (for a range of values of p).
- Minimize the number of rounds.

A Simple String Alignment Example

 A
 a
 c
 t
 t
 c
 a
 t

 C a
 t
 t
 c
 a
 c
 g

 C a
 t
 t
 c
 a
 c
 g

 Score
 1
 0
 1
 0
 0
 1
 0
 0
 3

 A
 a
 c
 t
 t
 c
 a
 t

 A
 a
 c
 t
 t
 c
 a
 t

 A
 a
 c
 t
 t
 c
 a
 t

 A
 a
 c
 t
 t
 c
 a
 t

 C
 a
 t
 t
 c
 a
 c
 g

 Score
 1
 0
 1
 1
 1
 0
 0
 5

Consider strings A and C.

Insert spaces such that they become equal in length.

Assign score 1 when symbols match; 0 otherwise.

Total score of case (a): 3

Total score of case (a): 5

A More General Score Assignment

Consider strings A and C: |A| = n and |C| = m.

In the alignment, consider a column consisting of symbols r of A and s of C. The score S(r, s)is defined as:

- If r = s: score S(r, s) = f(r, s)(> 0) (match)
- If $r \neq s$: score S(r,s) = f(r,s)(< 0) (mismatch)
- If we insert a space: S(r,s) = -k

Dynamic Programming Approach

We can compute S(r,s) by using S(r-1,s), S(r-1,s-1) and S(r,s-1) because there are only three ways of computing an alignment between A[1...r] and C[1...s]: We can

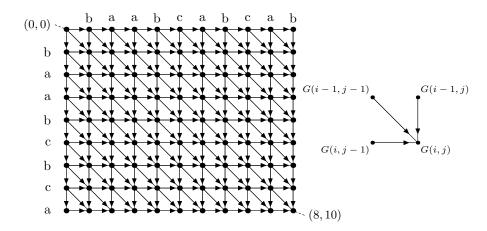
- align A[1..r] with C[1..s 1] and match a space with C[s], or
- align A[1..r-1] with C[1..s] and match a space with A[r], or
- align A[1..r−1] with C[1..s−1] and match (or mismatch) A[r] with B[s]. Thus:

$$S(r,s) = \max \begin{cases} S[r,s-1] - k \\ S[r-1,s-1] + f(r,s) \\ S[r-1,s] - k \end{cases}$$

Grid Directed Acyclic Graph (GDAG)

$$S(r,s) = \max \begin{cases} S[r,s-1] - k \\ S[r-1,s-1] + f(r,s) \\ S[r-1,s] - k \end{cases}$$

This can be illustrated by a grid directed acyclic graph (GDAG):



Highest scoring path from (0,0) to (8,10)= best alignment.

Sequential algorithm: O(mn) time.

Previous Parallel Algorithms for this Problem

Apostolico et al. 1990:

- CREW: $O(\log m \log n)$ time with $O(mn/\log m)$ processors $(n \ge m)$
- CRCW: O(log n(log log m)²) time with O(mn/log log m) processors
- in both case: O(mn) space

Galil and Park 1992:

• CREW: $O(\sqrt{n} \log n)$ time

Alves, Cáceres, Denhe, Song 2002

• CGM algorithm $O(\log p)$ communication rounds

Here we present an O(p) communication rounds CGM algorithm that requires communication with few neighbor processors and is very simple to implement.

An O(p) Commun. Rounds Algorithm

 $A = \{a_1 \dots a_m\}, C = \{c_1 \dots c_n\}$ with |A| = mand |C| = n.

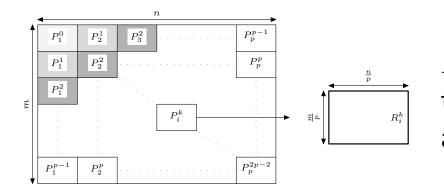
C is divided into p pieces of size $\frac{n}{p}$.

Each processor P_i receives A and the *i*-th piece of C.

Each P_i computes $S_i(r,s)$ of the submatrix S_i based on $S_i(r-1,s)$, $S_i(r-1,s-1)$ and $S_i(r,s-1)$.

Processor P_i can only start to compute $S_i(r,s)$ after P_{i-1} has computed $S_{i-1}(r,s)$.

Idea of the Algorithm



 P_i^k denotes execution of processor *i* at round *k*.

 R_i^k , $1 \le i, k \le p$, elements of the right boundary (rightmost column) of the k-th part of submatrix S_i .

$$R_i^k = \{S_i(r, i\frac{n}{p}), (k-1)\frac{m}{p} + 1 \le r \le k\frac{m}{p}\}.$$

After computing the k-th part of the submatrix S_i , processor P_i sends the elements R_i^k to processor P_{i+1} .

Using R_i^k , processor P_{i+1} can compute the k-th part of the submatrix S_{i+1} .

An Improvement using Parameterized Algorithm

Observation: The last processor P_p only starts its work at round p-1 when processor P_1 is finishing its computation.

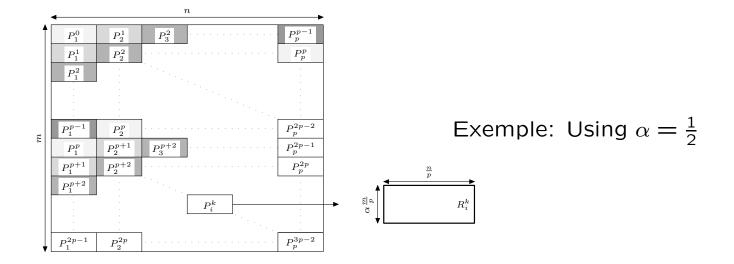
Therefore we have a very bad load balancing.

We can improve the load balancing by assigning work to the processors sooner.

We can decrease the size of the messages that processor P_i sends to processors P_{i+1} .

Instead of message size $\frac{m}{p}$ consider sizes $\alpha \frac{m}{p}$ ($\alpha \leq 1$) and explore several sizes of the parameter α .

Choosing Parameter α



Parameter $\alpha \leq 1$ expresses the trade-off between the workload of each processor and the number of communication rounds required.

Small α means smaller workload and more communication rounds.

Case when $\alpha = 1/2$: Processors start to work earlier but requires 3p-2 communication rounds.

The $(1 + \frac{1}{\alpha})p - 2$ Rounds Similarity Algorithm: **Input:** Value *i* of the processor P_i ; entire string A and the substring C_i (size $\frac{n}{n}$); the parameter α . **Output:** Score S(r,s), $(i-1)\frac{m}{\sqrt{p}} + 1 \le r \le i\frac{m}{\sqrt{p}}$ and $(j-1)\frac{m}{\sqrt{p}} + 1 \le r \le i\frac{m}{\sqrt{p}}$ $1)\frac{n}{p} + 1 \le s \le j\frac{n}{p}.$ 1: for $1 \le k \le \frac{p}{\alpha}$ do 2: if i = 1 then for $\alpha(k-1)\frac{m}{p}+1 \leq r \leq \alpha k\frac{m}{p}$ and $1 \leq s \leq \frac{n}{p}$ 3: do compute S(r,s); 4: 5: end for $\operatorname{send}(R_i^k, P_{i+1});$ 6: 7: end if 8: if $i \neq 1$ then receive (R_{i-1}^k, P_{i-1}) ; for $\alpha(k-1)\frac{m}{p} + 1 \leq r \leq \alpha k \frac{m}{p}$ and $1 \leq s \leq \frac{n}{p}$ 9: 10: do compute S(r,s); 11:12: end for 13: if $i \neq p$ then $send(R_i^k, P_{i+1})$ 14: end if 15: 16: end if

17: end for

Main Theoretical Result

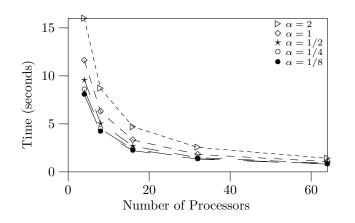
Theorem 1 The proposed algorithm with parameter α solves the string editing problem in $(1 + \frac{1}{\alpha})p - 2$ communication rounds with local computation time of $O(\frac{mn}{p})$ in each processor.

Implementation Results

64-node Beowulf: each with 256MB RAM, 256MB swap memory, CPU Intel Pentium III 448.956 MHz, 512KB cache, connected with a 100 Mb fast-Ethernet switch. Code is written in standard ANSI C using the LAM-MPI library.

- . Parameter Tuning (see curves)
- . Execution Times (see curves)

Parameter Tuning

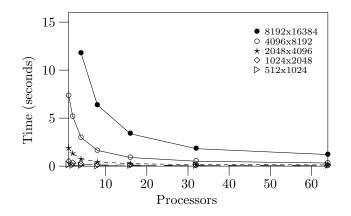


Using input strings: m=8000 and n=16000

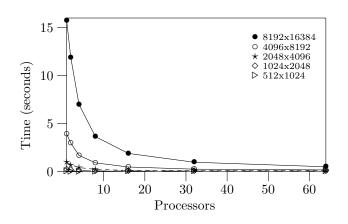
Best value for α between 1/4 and 1/8.

Execution Times ($\alpha = 1$)

We tried two different implementations.



Each processor stores the entire submatrix it computes: quadratic space.



Each processor stores one row at a time of the submatrix it computes: linear space.

Conclusion

- *O*(*p*)-communication-round CGM algorithm.
- Each processor communicates with two neighbors.
- Apropriate for implementation in *grid computing*.
- Parameter α expresses the trade-off between the workload of each processor and the number of communication rounds required; can be tuned empirically in a given computing platform.