BSP/CGM Parallel Similarity
Algorithms*T

C. E. R. Alves?
Universidade Sao Judas Tadeu

E. N. Caceres?

Universidade Federal do Mato Grosso do Sul

F. Dehne
Carleton University

S. W. Song

Universidade de Sao Paulo

*k FAPESP, CNPqgq, PRONEX and NSERC

T Proceedings of the 14th ACM Symposium on Parallel Al-
gorithms and Architectures - SPAA '02. Winnipeg, Canada,
August 11-13, 2002, pp. 275-281. and Proceedings I Brazilian
Workshop on Bioinformatics. Gramado, RS, Brazil, October
18, 2002, pp. 1-8.

i Doctorate student at Universidade de S3ao Paulo

§ Visiting Professor at Universidade de Sao Paulo

String Editing Problem

Finding the edit distance between two strings
A and C

Operations: insertion, deletion, substitu-
tion.

Edit Distance = Sum of the costs of each
edit operation.

Applications in search for similarities in biose-
quences.

BSP/CGM Model

CGM (Coarse Grained Multicomputer) model:
a “small” number of p of processors, each
with its own local memory, communicating
through a network.

The algorithm alternates between

e Computation rounds: each processor
computes independently.

e Communication rounds: each proces-
sor sends/receives data to/from other

Processors.

BSP/CGM Model (cont.)

Computation-round Communication-round
4> >
Pp,1 1]
]]
]]
]]
Py [eee
— .
P - % Global-Communication
‘ Sincronization-Barrier
P, —
‘ Local-computation

BSP/CGM Model (cont.)

Goals:

e Obtain a speed-up linear on p (for a
range of values of p).

e Minimize the number of rounds.

Additional restrictions:

e T he local memory of each processor is
O(N/p) (N is the space requirement for
a sequential algorithm).

e Each processor send/receive at most
O(N/p) data in each round.

Dynamic Programming Approach

Illustrated by a grid directed acyclic graph.
Let |A| =m and |B| = n.

C1 C2 C3 C4 Cs Ceé
®

(0,0)

ai

a2

as

a4

as

(n,m)

If (r,s) has r = s: score p(r,s) > 0 (match)
If (r,s) has r # s: score p(r,s) < 0 (mismatch)
If we insert a space we subtract k£ from the score

Slr,s — 1] — k
S(r,s) = maxg S[r—1,s— 1] + p(r,s)
S[lr—1,s] — k

Dynamic Programming (cont.)

So we can compute the values of S(r,s) by
using S(r—1,s), S(r—1,s—1) and S(r,s—1)
because there are only three ways of com-
puting an alignment between A[l1...r] and
C[1...s]:

. We can align A[l..r] with C[1..s — 1] and
match a space with C|s],

. or align A[1..r—1] with CJ[1..s] and match
a space with A[r].

or align A[l..r — 1] with C[1..s — 1] and
match (or mismatch) A[r] with Bls],

Highest scoring path = best alignment.

Sequential algorithm: O(mn) time.

Previous Parallel Algorithims

PRAM algorithms are known for the string
editing problem.

Apostolico et al. 1990:

e CREW: O(logmlogn) time
with O(mn/logm) processors (n > m)
e CRCW: O(logn(loglogm)?) time
with O(mn/loglogm) processors
e in both case: O(mn) space

Galil and Park 1992:

e CREW: O(y/nlogn) time
with O(n*) operations

e CREW: O(log2n) time
with more processors

An O(p) Commun. Rounds Algorithm

A={ay1...am}, C = {c1...cn} with |A| =
m and |C| =n

C is divided into p pieces of size %.

rlaln B
PG Py)
P
P}
. Pk . k
% > g|a Ri
] Py Py

Each processor P; receives A and the :-th
piece of C.

Each P, computes S;(r,s) of the subma-
trix S; using the 3 previously computed ele-
ments S;(r—1,s), S;(r—1,s—1) and S;(r, s—
1).

Processor P; can only start to compute S;(r, s)
after P,_q1 has computed S;_1(r,s).

Idea of the Algorithm

Pl | P Py

S Py \
P
Pf
E Pk k
gl R
prt| PP ppr=?

RF, 1 < i,k < p, elements of the right
boundary (rightmost column) of the k-th
part of submatrix ;.

Rf = {S;(r,i%), (k = 1) + 1 <7 < K™}

After computing the k-th part of the sub-
matrix §;, processor P; sends the elements
RF to processor Py ;.

Using Rf, processor P, Can compute the
k-th part of the submatrix S;4 ;.

10

Idea of the Algorithm (cont)

n

Pl | Py | P} Pyt
Pl | P} Py .
P
PP
. Pk g k
i > gl & Ri
Pt Py por?

After p — 1 rounds, processor P, receives
R;_l and computes the first part of the
submatrix Sp.

In 2p—2 rounds, processor P, receives Rg_l

and computes the p-th part of the subma-
trix Sp and the computation terminates.

11

The Complete Algorithm

Algorithm 1 Similarity

Input: (1) The number p of processors; (2) The
number ¢ of the processor, where 1 < i < p; and (3)
The string A and the substring C; of size m and g,

respectively.
Output: S(r,s) = max{S[r,s—1]—k, S[r—1,s—1]+
p(r,s), S[r — 1,s] — k}, where (i—1)7% +1 < r < i}

n
and (j - 1)2+1<s < g2,

(Dfor 1 <k<p
(1.1)if 7 = 1 then
(1.1.1)for (k—1)2+1<r<k%and1<s<

n

b
compute S(r,s);
(1.1.2) send(R¥,P;y1);
(1.2)if i # 1 then
(1.2.1) receive(R" ,, P,_1);
(1.2.2)for (k—1)2+1<r<kZand 1<s<

n

P
compute S(r,s);
(1.2.3)if i # p then
Send(Rf,PH_l);

— End of Algorithm —

12

Implementation Results

o 512x512

e 1024x1024
© 1024x2048
> 2048x2048

Processors

o 2048x4096
¢ 4096x8192
© 8192x8192
> 8192x16384

Processors

13

Improving this approach: a
Parametrized Algorithm

T he previous algorithm has a very bad load
balancing.

Introduce a parameter a < 1 to express the
trade-off between the workload of each pro-
cessor and the number of communication
rounds required.

Small a means smaller workload and more
communication rounds.

Case when a = 1/2: (3p—2 communication
rounds)

P A R P
Pl P} PP
P}
prt PP n P2
E Pf) P2p+1 P§)+2 :| ng—l
Plerl P21)+2 P;; n
pPt? ’ -
[P > gs R}
2p—1 2 3p—2
v Plp ‘ P2p ‘ ppp

14

The Parametrized Algorithm

Algorithm 2 Similarity

Input: (1) The number p of processors; (2) The number 7 of
the processor, where 1 < i < p; and (3) The string A and the
substring C; of size m and %, respectively; (4) The constant

a.
Output: S(r,s) = max{S[r,s—1]—k, S[r—1,s—1]4+p(r,s), S[r—
1,5] =k}, where (i—1)Z+1 <r <iZ and (j—1)2+1<s<

-n f
Jp-
(1)for 1 <k <P

(1.1)if i = 1 then
(1.1.1)for a(k—1)2+1<r<okZand 1<s<

3

compute S(7,s);
(1.1.2) send(RF,Pi11);
(1.2)if i 1 then
(1.2.1) receive(R* ,, P_1);
(1.22)for a(k— 1) +1<r<ok®and 1 <s <™
compute S(r,s);
(1.2.3)if i # p then
send(Rf,PHl);

— End of Algorithm —

15

Execution times for several values of o

Input strings: m=8000 and n=16000

12 ~
_o 4 proc.
7 e - > 8 proc.
- ¢ 16 proc.
o
8%009/0/ 432proc-
g e 64 proc.
T 6 oo
3 R
7 - — =
D g > — 7
——————————— 4
______ Q._-_-____.__.__
9 |00 0--o---"" o~ |
S < .
0 { { { |
0 0.2 0.4 0.6 o8 !
o

16

Complexities

Theorem 1 Algorithm 1 solves the string
editing problem in the BSP/CGM model
using 2p — 2 communication rounds with
local computation time of O(%) in each
pProcessor.

Theorem 2 Algorithm 2 with parameter «
solves the string editing problem in (1 +
1/a)p—2 communication rounds with local
computation time ofO(%) in each proces-
Sor.

17

Partial Conclusion

An efficient CGM algorithm for the string
editing problem.

e Time and space requirements for the
CGM model were met.

e T he number of communication rounds
is O(p).

e Local computation time of O(mn/p).

Can we decrease the number of communi-
cation rounds to O(logp)?77?

18

Idea

1 proc./DAG 2 procs./DAG

4 procs./DAG 8 procs./DAG

16 procs./DAG

19

String Editing Problem - extension

Finding the edit distance between A and all
substrings of C.

Applications of this problem:

e alignment of a string with several oth-
ers that have a common substring.

e Finding tandem repeats in strings.

e Cyclic string comparison.

20

A common sequential approach: Dynamic
Programming, best illustrated by a grid di-
rected acyclic graph (grid DAG).

C1 C2 C3 Cq Cs Cg

(0,0)

as

a4

as

(n,m)

Highest scoring path = best alignment.

Our case: For all pairs of vertices in the
borders, find the score of the best path.

Sequential algorithms exist with time
O(]Al|C]log min{|A],|C|})

21

Structure of the DIST Matrix

n+1

m-+1
T
R GDAG ¢
B
n+m-+1
B R

n+m-+1

Matrix DISTg

22

Main Strategy of the CGM Algorithm
The grid DAG is divided in p smaller DAGS,
aligned in ,/p rows of ,/p DAGs. Each pro-

cessor solves the problem sequentially.

Example with p = 16:

N arcs -
P1 D2 p3 P4
& D5 Pe P Ps
=
|l | po | Pio | P11 | P12
P13 | P14 | P15 | Pie
n>m > p?

. nm
Time spent = O <— log m>
p

23

T he partial solutions are joined together in
log p steps, creating bigger DAGS.

1 proc./DAG 2 procs./DAG

4 procs./DAG 8 procs./DAG

16 procs./DAG

n2
Each step takes O (—)
p

24

Joining Grids

Matrix DIST,,;

25

An easier way to visualize the joining oper-
ation: DIST, and DIST; are displayed in a
way that resembles the DAGs disposition.

m1 mi
St DIST,
source vertices
= 81...5¢
51 dest. vertices
dy =dy...d;
middle vertices
=mi...Mmg
DIST, dq

26

Best path from s; to
d; through mg:
DIST,(i,7) +
DIST(r,j)

27

m(i, j)

S; ®
m(i,5) = m, that
maximizes the
previous sum.
@ dj

Naive search to find all best paths: time =
O(t2k).

28

Properties:
11 < 1o =

m(iq,5) < m(io,j)
1 <j2=

m(1,j1) < m(4,52)

dj,

dj,

This properties lead to an O(¢2 + tk) time
sequential algorithm.

29

Joining Grids in Parallel

A subproblem in the joining operation:

Si, Only sources be-
tween s;; and s,
and destinations

between djl and dj2
are of interest.

30

A subproblem in the joining operation:

All the necessary
data are contained
in the shaded areas.
The shapes are ir-
regular.

31

Dividing the sources and the destinations
in w intervals we have w? subproblems.

The data from DIST, (DIST;) that is nec-
essary to a subproblem is contained in a
certain “area” of DIST, (DIST)).

The "areas” of two distinct subproblems
can overlap only in the borders.

Given the borders of the areas of a sub-
problem, the time and space requirements
can be calculated in time O(t/q).

32

Overview of the joining algorithm

2q processors are used:

o Pul,PUQ,...,Puq hOld DISTU

) Pl17Pl27"'7qu hold DIST’Z

The sources and destinations are divided in
2q intervals, giving 4¢? subproblems.

33

Steps:

e Determine the areas of each subprob-
lem.

e Estimate the cost to solve each sub-
problem.

e Distribute the subproblems among the
2q processors.

e Solve the subproblems and redistribute
the results.

34

Data Distribution

Pul Pu2 Pu3 Puq

DIST, distributed
by columns, DIST;
by rows.

P Pp P Py

35

Stepl: determine the areas of each sub-
problem.

2q
P,; finds the best
; paths from the
selected sources
: to all destinations
! using some middle

vertices.
Comm. = O(k)
Time

0 (kios (1)

36

Stepl: determine the areas of each sub-
problem.

P,; choose the best
paths from the se-
lected sources to
some destinations
considering all mid-
dle vertices.

Comm. = O(qt)
Time = O(t)

37

Step2: estimate the time/space require-
ments.

Each of the 2qg processors has (half) the
information about the areas of 4qg of the
4q? subproblems.

Each processor:

e performs calculations for the time/space
requirements,

e sends the results to P,1,

e sends informations about the borders of
the subproblems to the processors that
actually have the data.

Comm. = O(g? + qt) = O(qt). Time =
O(qt).

38

Step3: distribute the subproblems among
the processors.

P,,1 totalizes the costs and performs a list
scheduling.

e Biggest subproblem takes 1/2q of the
total space and time requirements.

e Best possible solution has O(t2/q) local
cost.

e List Scheduling finds a solution with lo-
cal cost at most 4/3 of the cost of the
best solution.

P,1 broadcast the results to all processors.

Comm. = O(¢3). Time = 0(¢?1ogq).

39

Step4: compute subproblems.

Each processor

e sends/receives data for the subproblems,

e compute the results for his subprob-
lems,

e distribute/receives results so the next
Jjoining step can take place.

P,1 broadcast the results to all processors.

Comm. = O(kt/q) in two rounds. Time
= O(t?/q).

40

Overview of the joining operation:

e 6 communication rounds, the one in
Step 2 has size O(gt) and limits the
processor count to 4/m in the overall
algorithm anaysis.

e Time and space requirements are O(t2/q).

e In the overall analysis, the time and
space requirements are O(n?/p).

41

conclusion

An efficient CGM algorithm for the pro-
posed problem was presented.

e Time and space requirements for the
CGM model were met.

e [he speed-up is linear on the number
of processors p.

e T he number of communication rounds
is O(logp).

42

References

e Alves, C. E. R., Caceres, E. N., Dehne, F. and Song, S. W.
A Parameterized Parallel Algorithm for Efficient Biolog-
ical Sequence Comparison. Technical Report RT-MAC-
2002-06, Department of Computer Science, Institute of
Mathematics and Statistics, University of So Paulo, Au-
gust, 2002.

43

