BSP/CGM Parallel Similarity Algorithms*†

C. E. R. Alves[‡] Universidade São Judas Tadeu

E. N. Cáceres§

Universidade Federal do Mato Grosso do Sul

F. Dehne Carleton University

S. W. Song

Universidade de São Paulo

† Proceedings of the 14th ACM Symposium on Parallel Algorithms and Architectures - SPAA '02. Winnipeg, Canada, August 11-13, 2002, pp. 275-281. and Proceedings I Brazilian Workshop on Bioinformatics. Gramado, RS, Brazil, October 18, 2002, pp. 1-8.

- Doctorate student at Universidade de São Paulo
- \S Visiting Professor at Universidade de São Paulo

^{*} FAPESP, CNPq, PRONEX and NSERC

String Editing Problem

Finding the edit distance between two strings $\cal A$ and $\cal C$

Operations: insertion, deletion, substitution.

Edit Distance = Sum of the costs of each edit operation.

Applications in search for similarities in biosequences.

BSP/CGM Model

CGM (Coarse Grained Multicomputer) model: a "small" number of p of processors, each with its own local memory, communicating through a network.

The algorithm alternates between

- Computation rounds: each processor computes independently.
- Communication rounds: each processor sends/receives data to/from other processors.

BSP/CGM Model (cont.)

BSP/CGM Model (cont.)

Goals:

- Obtain a speed-up linear on p (for a range of values of p).
- Minimize the number of rounds.

Additional restrictions:

- The local memory of each processor is O(N/p) (N is the space requirement for a sequential algorithm).
- Each processor send/receive at most O(N/p) data in each round.

Dynamic Programming Approach

Illustrated by a grid directed acyclic graph. Let |A| = m and |B| = n.

If (r,s) has r=s: score p(r,s)>0 (match) If (r,s) has $r\neq s$: score p(r,s)<0 (mismatch) If we insert a space we subtract k from the score

$$S(r,s) = \max \begin{cases} S[r,s-1] - k \\ S[r-1,s-1] + p(r,s) \\ S[r-1,s] - k \end{cases}$$

Dynamic Programming (cont.)

So we can compute the values of S(r,s) by using S(r-1,s), S(r-1,s-1) and S(r,s-1) because there are only three ways of computing an alignment between A[1...r] and C[1...s]:

- . We can align $A[\mathbf{1}..r]$ with $C[\mathbf{1}..s-\mathbf{1}]$ and match a space with C[s],
- . or align $A[\mathbf{1}..r-\mathbf{1}]$ with $C[\mathbf{1}..s]$ and match a space with A[r].
- . or align A[1..r-1] with C[1..s-1] and match (or mismatch) A[r] with B[s],

Highest scoring path = best alignment.

Sequential algorithm: O(mn) time.

Previous Parallel Algorithms

PRAM algorithms are known for the string editing problem.

Apostolico et al. 1990:

- CREW: $O(\log m \log n)$ time with $O(mn/\log m)$ processors $(n \ge m)$
- CRCW: $O(\log n(\log \log m)^2)$ time with $O(mn/\log \log m)$ processors
- in both case: O(mn) space

Galil and Park 1992:

- CREW: $O(\sqrt{n} \log n)$ time with $O(n^4)$ operations
- CREW: $O(\log^2 n)$ time with more processors

An O(p) Commun. Rounds Algorithm

$$A = \{a_1 \dots a_m\}, \ C = \{c_1 \dots c_n\}$$
 with $|A| = m$ and $|C| = n$

C is divided into p pieces of size $\frac{n}{p}$.

Each processor P_i receives A and the i-th piece of C.

Each P_i computes $S_i(r,s)$ of the submatrix S_i using the 3 previously computed elements $S_i(r-1,s)$, $S_i(r-1,s-1)$ and $S_i(r,s-1)$.

Processor P_i can only start to compute $S_i(r, s)$ after P_{i-1} has computed $S_{i-1}(r, s)$.

Idea of the Algorithm

 R_i^k , $1 \le i, k \le p$, elements of the right boundary (rightmost column) of the k-th part of submatrix S_i .

$$R_i^k = \{S_i(r, i\frac{n}{p}), (k-1)\frac{m}{p} + 1 \le r \le k\frac{m}{p}\}.$$

After computing the k-th part of the submatrix S_i , processor P_i sends the elements R_i^k to processor P_{i+1} .

Using R_i^k , processor P_{i+1} can compute the k-th part of the submatrix S_{i+1} .

Idea of the Algorithm (cont)

After p-1 rounds, processor P_p receives R_{p-1}^1 and computes the first part of the submatrix S_p .

In 2p-2 rounds, processor P_p receives R_{p-1}^p and computes the p-th part of the submatrix S_p and the computation terminates.

The Complete Algorithm

Algorithm 1 Similarity

Input: (1) The number p of processors; (2) The number i of the processor, where $1 \le i \le p$; and (3) The string A and the substring C_i of size m and $\frac{n}{p}$, respectively.

Output: $S(r,s) = \max\{S[r,s-1]-k, S[r-1,s-1]+p(r,s), S[r-1,s]-k\}$, where $(i-1)\frac{m}{\sqrt{p}}+1 \le r \le i\frac{m}{\sqrt{p}}$ and $(j-1)\frac{n}{p}+1 \le s \le j\frac{n}{p}$.

(1) for $1 \leq k \leq p$

(1.1) if i = 1 then

$$(1.1.1)$$
 for $(k-1)rac{m}{p}+1\leq r\leq krac{m}{p}$ and $1\leq s\leq rac{n}{p}$

compute S(r,s);

(1.1.2) send (R_i^k, P_{i+1}) ;

(1.2) if $i \neq 1$ then

(1.2.1) receive (R_{i-1}^k, P_{i-1}) ;

(1.2.2) for
$$(k-1)\frac{m}{p}+1 \le r \le k\frac{m}{p}$$
 and $1 \le s \le \frac{n}{p}$

compute S(r,s);

(1.2.3) if
$$i \neq p$$
 then send (R_i^k, P_{i+1}) ;

— End of Algorithm —

Implementation Results

Improving this approach: a Parametrized Algorithm

The previous algorithm has a very bad load balancing.

Introduce a parameter $\alpha \leq 1$ to express the trade-off between the workload of each processor and the number of communication rounds required.

Small α means smaller workload and more communication rounds.

Case when $\alpha = 1/2$: (3p-2 communication rounds)

The Parametrized Algorithm

Algorithm 2 Similarity

Input: (1) The number p of processors; (2) The number i of the processor, where $1 \le i \le p$; and (3) The string A and the substring C_i of size m and $\frac{n}{p}$, respectively; (4) The constant α .

Output: $S(r,s) = \max\{S[r,s-1]-k,S[r-1,s-1]+p(r,s),S[r-1,s]-k\}$, where $(i-1)\frac{m}{\sqrt{p}}+1 \le r \le i\frac{m}{\sqrt{p}}$ and $(j-1)\frac{n}{p}+1 \le s \le j\frac{n}{p}$.

$$\begin{array}{l} \text{(1) for } 1 \leq k \leq \frac{p}{\alpha} \\ \text{(1.1) if } i = 1 \text{ then} \\ \text{(1.1.1) for } \alpha(k-1)\frac{m}{p} + 1 \leq r \leq \alpha k\frac{m}{p} \text{ and } 1 \leq s \leq \frac{n}{p} \\ \text{compute } S(r,s); \\ \text{(1.1.2) send}(R_i^k,P_{i+1}); \\ \text{(1.2) if } i \neq 1 \text{ then} \\ \text{(1.2.1) receive}(R_{i-1}^k,P_{i-1}); \\ \text{(1.2.2) for } \alpha(k-1)\frac{m}{p} + 1 \leq r \leq \alpha k\frac{m}{p} \text{ and } 1 \leq s \leq \frac{n}{p} \\ \text{compute } S(r,s); \\ \text{(1.2.3) if } i \neq p \text{ then} \\ \text{send}(R_i^k,P_{i+1}); \end{array}$$

— End of Algorithm —

Execution times for several values of $\boldsymbol{\alpha}$

Input strings: m=8000 and n=16000

Complexities

Theorem 1 Algorithm 1 solves the string editing problem in the BSP/CGM model using 2p-2 communication rounds with local computation time of $O(\frac{mn}{p})$ in each processor.

Theorem 2 Algorithm 2 with parameter α solves the string editing problem in $(1 + 1/\alpha)p-2$ communication rounds with local computation time of $O(\frac{mn}{p})$ in each processor.

Partial Conclusion

An efficient CGM algorithm for the string editing problem.

- Time and space requirements for the CGM model were met.
- The number of communication rounds is O(p).
- Local computation time of O(mn/p).

Can we decrease the number of communication rounds to $O(\log p)$??

Idea

1 p	roc	./D	AG	6 4	2 pr	cocs	./L	AG
4 pı	cocs	\cdot / Γ	AG	8	3 pr	cocs	\cdot/Γ	AG
$16~\mathrm{procs./DAG}$								

String Editing Problem - extension

Finding the edit distance between A and all substrings of C.

Applications of this problem:

- alignment of a string with several others that have a common substring.
- Finding tandem repeats in strings.
- Cyclic string comparison.

A common sequential approach: Dynamic Programming, best illustrated by a grid directed acyclic graph (grid DAG).

Highest scoring path = best alignment.

Our case: For all pairs of vertices in the borders, find the score of the best path.

Sequential algorithms exist with time $O(|A||C|\log\min\{|A|,|C|\})$

Structure of the DIST Matrix

Matrix $DIST_G$

Main Strategy of the CGM Algorithm

The grid DAG is divided in p smaller DAGs, aligned in \sqrt{p} rows of \sqrt{p} DAGs. Each processor solves the problem sequentially.

Example with p = 16:

	$n \operatorname{arcs}$						
m arcs	p_1	p_2	p_3	p_4			
	p_5	p_6	p_7	p_8			
	p_9	p_{10}	p_{11}	p_{12}			
	p_{13}	p_{14}	p_{15}	p_{16}			

$$n \ge m \ge p^2$$

$$\mathsf{Time\ spent} = O\left(\frac{nm}{p}\log m\right)$$

The partial solutions are joined together in log p steps, creating bigger DAGs.

Each step takes $O\left(\frac{n^2}{p}\right)$.

Joining Grids

An easier way to visualize the joining operation: $DIST_u$ and $DIST_l$ are displayed in a way that resembles the DAGs disposition.

Best path from s_i to d_j through m_r : $DIST_u(i,r) + DIST_l(r,j)$

 $m(i,j) = m_r$ that maximizes the previous sum.

Naïve search to find all best paths: time = $O(t^2k)$.

This properties lead to an $O(t^2+tk)$ time sequential algorithm.

Joining Grids in Parallel

A subproblem in the joining operation:

Only sources between s_{i_1} and s_{i_2} and destinations between d_{j_1} and d_{j_2} are of interest.

A subproblem in the joining operation:

All the necessary data are contained in the shaded areas. The shapes are irregular.

Dividing the sources and the destinations in w intervals we have w^2 subproblems.

The data from $DIST_u$ ($DIST_l$) that is necessary to a subproblem is contained in a certain "area" of $DIST_u$ ($DIST_l$).

The "areas" of two distinct subproblems can overlap only in the borders.

Given the borders of the areas of a subproblem, the time and space requirements can be calculated in time O(t/q).

Overview of the joining algorithm

2q processors are used:

- $P_{u1}, P_{u2}, \dots, P_{uq}$ hold $DIST_u$.
- $P_{l1}, P_{l2}, \dots, P_{lq}$ hold $DIST_l$.

The sources and destinations are divided in 2q intervals, giving $4q^2$ subproblems.

Steps:

- Determine the areas of each subproblem.
- Estimate the cost to solve each subproblem.
- ullet Distribute the subproblems among the 2q processors.
- Solve the subproblems and redistribute the results.

Data Distribution

 $DIST_u$ distributed by columns, $DIST_l$ by rows.

Step1: determine the areas of each subproblem.

 P_{li} finds the best paths from the selected sources to all destinations using some middle vertices.

Comm.
$$= O(k)$$

Time $= O\left(k\log\left(\frac{t}{q}\right)\right)$

Step1: determine the areas of each subproblem.

 P_{li} choose the best paths from the selected sources to some destinations considering all middle vertices.

Comm. = O(qt)

Time = O(t)

Step2: estimate the time/space requirements.

Each of the 2q processors has (half) the information about the areas of 4q of the $4q^2$ subproblems.

Each processor:

- performs calculations for the time/space requirements,
- sends the results to P_{u1} ,
- sends informations about the borders of the subproblems to the processors that actually have the data.

Comm. = $O(q^2 + qt) = O(qt)$. Time = O(qt).

Step3: distribute the subproblems among the processors.

 P_{u1} totalizes the costs and performs a list scheduling.

- Biggest subproblem takes 1/2q of the total space and time requirements.
- Best possible solution has $O(t^2/q)$ local cost.
- List Scheduling finds a solution with local cost at most 4/3 of the cost of the best solution.

 P_{u1} broadcast the results to all processors.

Comm. = $O(q^3)$. Time = $O(q^2 \log q)$.

Step4: compute subproblems.

Each processor

- sends/receives data for the subproblems,
- compute the results for his subproblems,
- distribute/receives results so the next joining step can take place.

 P_{u1} broadcast the results to all processors.

Comm. = O(kt/q) in two rounds. Time = $O(t^2/q)$.

Overview of the joining operation:

- 6 communication rounds, the one in Step 2 has size O(qt) and limits the processor count to \sqrt{m} in the overall algorithm analysis.
- Time and space requirements are $O(t^2/q)$.
- In the overall analysis, the time and space requirements are $O(n^2/p)$.

Conclusion

An efficient CGM algorithm for the proposed problem was presented.

- Time and space requirements for the CGM model were met.
- The speed-up is linear on the number of processors p.
- The number of communication rounds is $O(\log p)$.

References

 Alves, C. E. R., Cáceres, E. N., Dehne, F. and Song, S. W. A Parameterized Parallel Algorithm for Efficient Biological Sequence Comparison. Technical Report RT-MAC-2002-06, Department of Computer Science, Institute of Mathematics and Statistics, University of So Paulo, August, 2002.