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Comparison of Entire Genomes

• Comparison of genomes is useful to investigate com-

mon functionalities of the corresp. organisms

• Our purpose is twofold

– Use parallel computing so that more expensive align-

ment methods (dynamice programming) can be used.

– Locate and compare not only homologous genes, but

also compare the regions between corresponding ho-

mologous genes.

• As example, we compare

– Xanthomonas axonopodis pv. citri with 5,175,554 base

pairs and 4,313 protein-coding genes

– Xanthomonas campestris pv. campestris with 5,076,187

base pairs and 4,182 protein-coding genes.
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Motivations and Previous Works

• Homology: two genes share a common evolutionary

past.

• Often similarity between two DNA or amino-acid se-

quences may infer homology.

• Homology in turn may determine function.

Thus: Similarity → homology → function

Rasera, Setubal, Almeida et al. [2002] compare the whole

genomes of Xanthomonas axonopodis pv. citri and Xanthomonas

campestris pv. campestris and conclude both share more

than 80% of the genes.
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Comparison Strategy - Main Ideas

Given two genomes G and H and their gene locations:

1. Find and label pairs of homologous genes.
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2. Find the non-crossing pairs of homologous genes.
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Comparison Strategy (continued)
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3. Align each pair of homologous genes.

4. Align each pair of intergenic regions (e.g.[g, g′] and [h, h′]).

5. Join all alignments.
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Comparison Strategy - Details

1: Find pairs of the homologous genes:

For all g of G, obtain h of H such that

DP-score(g, h) = max { DP-score(g, w) for all w of H

}
2: Label the homologous genes of G:

Label the homologous genes of G as 1, 2, . . . ,m in the

same order as their positions in the genome G.

Let LabelG denote the sequence of labels obtained in

this step.

3: Label the corresponding homologous genes of H:

For all pairs of homologous genes (g, h), g of G, h of

H, label gene h with the same label of g.

Let LabelH denote the sequence of labels obtained in

this step.
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4: Find the non-crossing pairs of homologous genes:

Obtain the LCS(LabelG, LabelH). the LCS obtained con-

tains only the non-crossing pairs

5: Align each pair of homologous genes:

For each non crossing homologous pair (g, h) do DP-

align(g, h).

6: Align each pair of intergenic regions:

For each intergenic region [g, g′], where [g, g′] of G are

two consecutive genes of the LCS, obtain the corre-

sponding intergenic region [h, h′] in H and do

DP-align([g, g′], [h, h′]).

7: Join all the alignments:

Concatenate the alignments of the homologous genes

and the intergenic regions, in the same order they

appear in the genomes.
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Computing Similarity of Two Strings

A simple example of string alignment:

A a c t t c a – t
C a t t c – a c g

Score 1 0 1 0 0 1 0 0 3

A a c t t c a – t
C a – t t c a c g

Score 1 0 1 1 1 1 0 0 5

Using dynamic programming (gives better quality align-

ments):

a
c
b
c
b
a
a
b

(0, 0) b a a b c a b c a b

(8, 10)

(i, j − 1)

(i − 1, j − 1)

(i, j)

(i − 1, j)
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The Parallel Solution

• Finding homologus pairs (the most time consuming

phase): compare all the genes of one genome with all

the genes of another: more than 18 million alignments

by dynamic programming.

Two types of parallelisms are used:

– Master distributes the alignment tasks to slave pro-

cessors.

– When the lengths of the sequences to be aligned

exceed 5,000 base pairs, parallel dynamic program-

ming is used.

• Finding the non-crossing homologous gene pairs: We

used a parallel LCS (longest common subsequence) al-

gorithm. (Could have used LIS - longest increasing

subsequence algorithm.)
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The Parallel Platform Used

• 64-node Beowulf cluster - low cost microcom-

puters with 256MB RAM, 256MB swap mem-

ory, CPU Intel Pentium III 448.956 MHz, 512KB

cache.

• 100 Mb fast-Ethernet switch.

• Code in standard ANSI C and LAM-MPI Ver-

sion 6.5.6.
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Preliminary Implementation Results

• Finding homologus pairs (most time consuming):

Sequential solution using Blast and EGG: 3 hours.

Parallel solution using dynamic programming: 1 hour

15 minutes.

• Finding non-crossing pairs (surely not the dominant

step):

Sequential solution using Blast and EGG: not avail-

able.

Parallel solution using dynamic programming: 20 sec-

onds.
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Conclusion
We compared the whole genomes of two organisms:

• Exploited parallelism in two ways:

Standard master-slave approach to distribute compar-

ison tasks (sequential dynamice programming) to slave

processors.

To compute the similarity between two sequences, when-

ever the sequences are longer than 5,000 base pairs, we

used parallel dynamic programming.

• The gain does not seem to be so significant, however

we used a dynamic programming approach that gives

better quality results.

• Our comparison strategy also compares the intergenic

regions between two consecutive homologous genes in

each genome. The relevance of this in a biological

viewpoint is yet to be investigated.


