
1/12

�

�

�

�

�

�

	

15th Symposium on Computer Architecture and
High Performance Computing
November 10 to 12 - São Paulo, SP

Comparison of Genomes using
High-Performance Parallel
Computing

N. F. Almeida Jr
Universidade Federal de Mato Grosso do Sul

C. E. R. Alves
Univsidade São Judas Tadeu

E. N. Cáceres
Universidade Federal de Mato Grosso do Sul

S. W. Song
Universidade de São Paulo



2/12

�

�

�

�

�

�

	

Comparison of Entire Genomes

• Comparison of genomes is useful to investigate com-

mon functionalities of the corresp. organisms

• Our purpose is twofold

– Use parallel computing so that more expensive align-

ment methods (dynamice programming) can be used.

– Locate and compare not only homologous genes, but

also compare the regions between corresponding ho-

mologous genes.

• As example, we compare

– Xanthomonas axonopodis pv. citri with 5,175,554 base

pairs and 4,313 protein-coding genes

– Xanthomonas campestris pv. campestris with 5,076,187

base pairs and 4,182 protein-coding genes.



3/12

�

�

�

�

�

�

	

Motivations and Previous Works

• Homology: two genes share a common evolutionary

past.

• Often similarity between two DNA or amino-acid se-

quences may infer homology.

• Homology in turn may determine function.

Thus: Similarity → homology → function

Rasera, Setubal, Almeida et al. [2002] compare the whole

genomes of Xanthomonas axonopodis pv. citri and Xanthomonas

campestris pv. campestris and conclude both share more

than 80% of the genes.



4/12

�

�

�

�

�

�

	

Comparison Strategy - Main Ideas

Given two genomes G and H and their gene locations:

1. Find and label pairs of homologous genes.

q q q q q q

q q q q q q

B
B

B
B

B
BB

B
B

B
B

B
BB

















�
�
�
�
�
��

1 2 4 3 5 6

1 2 3 4 5 6
g

h

2. Find the non-crossing pairs of homologous genes.

q q q q q

q q q q q

B
B

B
B

B
BB

B
B

B
B

B
BB

�
�
�
�
�
��

1 2 3 5 6

1 2 3 5 6
g g′

h h′



5/12

�

�

�

�

�

�

	

Comparison Strategy (continued)

q q q q q

q q q q q

B
B

B
B

B
BB

B
B

B
B

B
BB

�
�
�
�
�
��

1 2 3 5 6

1 2 3 5 6
g g′

h h′

3. Align each pair of homologous genes.

4. Align each pair of intergenic regions (e.g.[g, g′] and [h, h′]).

5. Join all alignments.



6/12

�

�

�

�

�

�

	

Comparison Strategy - Details

1: Find pairs of the homologous genes:

For all g of G, obtain h of H such that

DP-score(g, h) = max { DP-score(g, w) for all w of H

}
2: Label the homologous genes of G:

Label the homologous genes of G as 1, 2, . . . ,m in the

same order as their positions in the genome G.

Let LabelG denote the sequence of labels obtained in

this step.

3: Label the corresponding homologous genes of H:

For all pairs of homologous genes (g, h), g of G, h of

H, label gene h with the same label of g.

Let LabelH denote the sequence of labels obtained in

this step.



7/12

�

�

�

�

�

�

	

4: Find the non-crossing pairs of homologous genes:

Obtain the LCS(LabelG, LabelH). the LCS obtained con-

tains only the non-crossing pairs

5: Align each pair of homologous genes:

For each non crossing homologous pair (g, h) do DP-

align(g, h).

6: Align each pair of intergenic regions:

For each intergenic region [g, g′], where [g, g′] of G are

two consecutive genes of the LCS, obtain the corre-

sponding intergenic region [h, h′] in H and do

DP-align([g, g′], [h, h′]).

7: Join all the alignments:

Concatenate the alignments of the homologous genes

and the intergenic regions, in the same order they

appear in the genomes.



8/12

�

�

�

�

�

�

	

Computing Similarity of Two Strings

A simple example of string alignment:

A a c t t c a – t
C a t t c – a c g

Score 1 0 1 0 0 1 0 0 3

A a c t t c a – t
C a – t t c a c g

Score 1 0 1 1 1 1 0 0 5

Using dynamic programming (gives better quality align-

ments):

a
c
b
c
b
a
a
b

(0, 0) b a a b c a b c a b

(8, 10)

(i, j − 1)

(i − 1, j − 1)

(i, j)

(i − 1, j)



9/12

�

�

�

�

�

�

	

The Parallel Solution

• Finding homologus pairs (the most time consuming

phase): compare all the genes of one genome with all

the genes of another: more than 18 million alignments

by dynamic programming.

Two types of parallelisms are used:

– Master distributes the alignment tasks to slave pro-

cessors.

– When the lengths of the sequences to be aligned

exceed 5,000 base pairs, parallel dynamic program-

ming is used.

• Finding the non-crossing homologous gene pairs: We

used a parallel LCS (longest common subsequence) al-

gorithm. (Could have used LIS - longest increasing

subsequence algorithm.)



10/12

�

�

�

�

�

�

	

The Parallel Platform Used

• 64-node Beowulf cluster - low cost microcom-

puters with 256MB RAM, 256MB swap mem-

ory, CPU Intel Pentium III 448.956 MHz, 512KB

cache.

• 100 Mb fast-Ethernet switch.

• Code in standard ANSI C and LAM-MPI Ver-

sion 6.5.6.



11/12

�

�

�

�

�

�

	

Preliminary Implementation Results

• Finding homologus pairs (most time consuming):

Sequential solution using Blast and EGG: 3 hours.

Parallel solution using dynamic programming: 1 hour

15 minutes.

• Finding non-crossing pairs (surely not the dominant

step):

Sequential solution using Blast and EGG: not avail-

able.

Parallel solution using dynamic programming: 20 sec-

onds.



12/12

�

�

�

�

�

�

	

Conclusion
We compared the whole genomes of two organisms:

• Exploited parallelism in two ways:

Standard master-slave approach to distribute compar-

ison tasks (sequential dynamice programming) to slave

processors.

To compute the similarity between two sequences, when-

ever the sequences are longer than 5,000 base pairs, we

used parallel dynamic programming.

• The gain does not seem to be so significant, however

we used a dynamic programming approach that gives

better quality results.

• Our comparison strategy also compares the intergenic

regions between two consecutive homologous genes in

each genome. The relevance of this in a biological

viewpoint is yet to be investigated.


