A Parallel Approximation Hitting Set Algorithm for Gene Expression Analysis

D. P. Ruchkys

Universidade de São Paulo
S. W. Song

Universidade de São Paulo

Gene Expression Analysis

- Given an experiment where expression levels of thousands of genes are measures.
- We consider the problem of determining which genes affect the expression level of a given gene.

Our Problem

- Given an experiment with n genes of a set $E=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ whose expression levels are measured in a time series of m measures (typically $n \gg m$). We have a total of $n m$ values of 0 's or 1's.
- Our algorithm (based on Ideker et al. [ITK00]) receives an $m \times n$ matrix of such values and determine, for a given gene a_{n-1}, which other genes are responsible for the expression level of a_{n-1}.
- Example.

$$
M=\left\lvert\, \begin{array}{rrrr|r}
x_{0} & x_{1} & x_{2} & x_{3} & \\
1 & 1 & 1 & 0 & p_{0} \\
- & 1 & 0 & 1 & p_{1} \\
1 & - & 0 & 0 & p_{2} \\
1 & 1 & - & 1 & p_{3} \\
1 & 1 & 1 & + & p_{4}
\end{array}\right.
$$

Example of Execution of the Algorithm

Infer the truth table for a_{3} of the matrix E shown.

$$
M=\left\lvert\, \begin{array}{rrrr|r}
x_{0} & x_{1} & x_{2} & x_{3} & \\
1 & 1 & 1 & 0 & p_{0} \\
- & 1 & 0 & 1 & p_{1} \\
1 & - & 0 & 0 & p_{2} \\
1 & 1 & - & 1 & p_{3} \\
1 & 1 & 1 & + & p_{4}
\end{array}\right.
$$

(1) In step (1), the expression levels of a_{3} differ in the row pairs $(0,1),(0,3),(1,2)$ and $(2,3)$. We find:

- for $(0,1), S_{01}=\left\{a_{0}, a_{2}\right\}$, containing all the other genes whose expression levels also differ in the row pairs p_{0} and p_{1}.
- the same is done for $(0,3), S_{03}=\left\{a_{2}\right\}$.
- for $(1,2), S_{12}=\left\{a_{0}, a_{1}\right\}$.
- for $(2,3), S_{23}=\left\{a_{1}\right\}$.

Result of Step 1

Result of Step 1: $S_{01}=\left\{a_{0}, a_{2}\right\}, S_{03}=\left\{a_{2}\right\}$, $S_{12}=\left\{a_{0}, a_{1}\right\}, S_{23}=\left\{a_{1}\right\}$.
(2) In Step (2), find $S_{\text {min }}=\left\{a_{1}, a_{2}\right\}$, the smallest set such that each element in $S_{\text {min }}$ is also present in each one of the sets $S_{i j}$ of the previous step.

The Hitting Set Problem

- Given a finite set E, a finite collection $\mathcal{S}=\left\{S_{1}, \ldots, S_{w}\right\}$ of subsets of E, find a subset $A \subseteq E$ of the smallest size, such that $A \cap S_{i} \neq \emptyset$ for all $i=1, \ldots, w$.

The Hitting Set Problem

A

The Hitting Set Problem

Primal-Dual Approximation Algorithm [FMCF01]

- Due to Bar-Yehuda and Even [BYE81] and was originally conceived for the minimum set cover problem.
- It is an α-approximation algorithm, where $\alpha=\max _{i=1}^{w}\left|S_{i}\right|$.
- $\alpha=\max _{i=1}^{w}\left|S_{i}\right|=O(n)$.

The Hitting Set Problem

Greedy Approximation Algorithm [J74]

- Strategy of constructing the set A by choosing the elements that occurs the most times in the subsets of \mathcal{S}.
- The approximation ratio is $\ln |\mathcal{S}|+1$.
- $\ln |\mathcal{S}|+1=O\left(\log m^{2}\right)$

The Hitting Set Problem Greedy Approximation Algorithm

A

The Hitting Set Problem Greedy Approximation Algorithm

A

The Hitting Set Problem

 Greedy Approximation Algorithm

The Sequential Algorithm

gene vector

set vector

$$
M \xlongequal{ } \left\lvert\, \begin{array}{rrrl|l}
x_{0} & x_{1} & x_{2} & x_{3} & \\
1 & 1 & 1 & 0 & p_{0} \\
- & 1 & 0 & 1 & p_{1} \\
1 & - & 0 & 0 & p_{2} \\
1 & 1 & - & 1 & p_{3} \\
1 & 1 & 1 & + & p_{4}
\end{array}\right.
$$

The Sequential Algorithm

gene vector

set vector

$$
M=\left\lvert\, \begin{array}{rrrr|r}
x_{0} & x_{1} & x_{2} & x_{3} & \\
1 & 1 & 1 & 0 & p_{0} \\
- & 1 & 0 & 1 & p_{1} \\
1 & - & 0 & 0 & p_{2} \\
1 & 1 & - & 1 & p_{3} \\
1 & 1 & 1 & + & p_{4}
\end{array}\right.
$$

The Sequential Algorithm

HS: $\{0\}$
set vector

The Sequential Algorithm Time and Space Complexities

- To construct the data structures: $O\left(m^{2} n\right)$.
- Let k the size of the hitting set. We have to find k times the element with the largest number of occurrences. Therefore we have the time complexity of $O(k n)$.
- For each such element, we have to update the data structures: $O\left(m^{2} n\right)$ time. Since we have k elements, the total time complexity to update data structures is $O\left(\mathrm{~km}^{2} n\right)$.

The Sequential Algorithm Time and Space Complexities

- The total time complexity is therefore

$$
O\left(m^{2} n\right)+O(k n)+O\left(k m^{2} n\right)=O\left(k m^{2} n\right) .
$$

- The size k of the hitting set is $O\left(m^{2}\right)$. Therefore, the time complexity of the algorithm can be expressed as $O\left(m^{4} n\right)$.
- The space complexity is $O\left(m^{2} n\right)$.

The Parallel Algorithm

- The input matrix M is partitioned vertically to be stored in each processor.
- Example of the partitioning:

The Parallel Algorithm

- Each processor reads a piece of the input of size $m \times \frac{n-1}{p}$.
- All the processors store a vector v, corresponding to the expression levels of the gene under study a_{n-1}.
- Each processor p_{i} also stores a gene vector, with information about genes it is responsible for. The gene vector stores information of the genes for which processor p_{i} is responsible. The gene vector in each processor has size $O\left(\frac{m^{2} n}{p}\right)$.
- Each processor also has a set vector, such that only elements of set $S_{i j}$ of its responsibility will only be in the list.

The Parallel Algorithm

- Example:

$$
E=\begin{array}{|rrrrr|r}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & \\
1 & 1 & 1 & 0 & 0 & p_{0} \\
- & 1 & 0 & 0 & 1 & p_{1} \\
1 & - & 0 & 0 & 0 & p_{2} \\
1 & 1 & - & 0 & 1 & p_{3} \\
1 & 1 & 1 & 0 & + & p_{4}
\end{array}
$$

gene vector

set vector

	i 1	j 1	covered	list	
0					
	0	1	false	-	
1	0	3	false		
2	1	2	false		
3	2	3	false		

Processor 0
gene vector

set vector

	i 1	j 1	covered	list	
0	0	1	false	-	
1	0	3	false		
2	1	2	false		
	2				
3	2	3	false		

Processor 1

The Parallel Algorithm
 Time and Space Complexities

- Time complexity: $O\left(\frac{m^{4} n}{p}\right)$.
- Requires $O(k)$ communication rounds, where k is the size of the hitting set. It can be expressed in terms of $m, O\left(m^{2}\right)$.
- Requires $O\left(\frac{m^{2} n}{p}\right)$ space.

Bibliographical References

[BYE81] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms, 2:198-203, 1981.
[FMCF01] C. G. Fernandes, F. K. Miyazawa, M. Cerioli, P. Feofiloff. Uma introdução sucinta a algoritmos de aproximação. 23 Colóquio Brasileiro de Matemática, 2001.
[ITK00] T. E. Ideker, V. Thorsson, R. Karp. Discovery of regulatory interactions through perturbation: inference and experimental design. Pacific Symposium on Biocomputing, 5:302-313, 2000.
[J74] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256-278, 1974.

