A Parallel Approximation Hitting Set Algorithm for Gene Expression Analysis

D. P. RuchkysUniversidade de São Paulo

S. W. Song Universidade de São Paulo

Gene Expression Analysis

- Given an experiment where expression levels of thousands of genes are measures.
- We consider the problem of determining which genes affect the expression level of a given gene.

Our Problem

- Given an experiment with n genes of a set
 E = {a₀, a₁, ..., a_{n-1}} whose expression levels are measured in a time series of m measures (typically n >> m). We have a total of nm values of 0's or 1's.
- Our algorithm (based on Ideker *et al.* [ITK00]) receives an $m \times n$ matrix of such values and determine, for a given gene a_{n-1} , which other genes are responsible for the expression level of a_{n-1} .
- Example.

$$M = \begin{vmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 1 & 1 & 0 & p_0 \\ - & 1 & 0 & 1 & p_1 \\ 1 & - & 0 & 0 & p_2 \\ 1 & 1 & - & 1 & p_3 \\ 1 & 1 & 1 & + & p_4 \end{vmatrix}$$

Example of Execution of the Algorithm

Infer the truth table for a_3 of the matrix E shown.

$$M = \begin{vmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 1 & 1 & 0 & p_0 \\ - & 1 & 0 & 1 & p_1 \\ 1 & - & 0 & 0 & p_2 \\ 1 & 1 & - & 1 & p_3 \\ 1 & 1 & 1 & + & p_4 \end{vmatrix}$$

- (1) In step (1), the expression levels of a_3 differ in the row pairs (0,1), (0,3), (1,2) and (2,3). We find:
 - for (0,1), S₀₁ = {a₀, a₂}, containing all the other genes whose expression levels also differ in the row pairs p₀ and p₁.
 - the same is done for (0,3), $S_{03} = \{a_2\}$.
 - for (1,2), $S_{12} = \{a_0, a_1\}.$

• for (2,3),
$$S_{23} = \{a_1\}.$$

Result of Step 1

Result of Step 1: $S_{01} = \{a_0, a_2\}, S_{03} = \{a_2\}, S_{12} = \{a_0, a_1\}, S_{23} = \{a_1\}.$

(2) In Step (2), find $S_{min} = \{a_1, a_2\}$, the smallest set such that each element in S_{min} is also present in each one of the sets S_{ij} of the previous step.

• Given a finite set E, a finite collection $S = \{S_1, ..., S_w\}$ of subsets of E, find a subset $A \subseteq E$ of the smallest size, such that $A \cap S_i \neq \emptyset$ for all i = 1, ..., w.

Primal-Dual Approximation Algorithm [FMCF01]

- Due to Bar-Yehuda and Even [BYE81] and was originally conceived for the minimum set cover problem.
- It is an α -approximation algorithm, where $\alpha = max_{i=1}^{w} |S_i|.$

•
$$\alpha = max_{i=1}^w |S_i| = O(n).$$

Greedy Approximation Algorithm [J74]

- Strategy of constructing the set A by choosing the elements that occurs the most times in the subsets of S.
- The approximation ratio is $\ln |\mathcal{S}| + 1$.

•
$$\ln |\mathcal{S}| + 1 = O(\log m^2)$$

Greedy Approximation Algorithm

Greedy Approximation Algorithm

 $Greedy\ Approximation\ Algorithm$

The Sequential Algorithm

gene vector

set vector

	i1	j1	covered	list	
0	0	1	false		(2)
1					
2					
3					

$$M = \begin{vmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 1 & 1 & 0 & p_0 \\ - & 1 & 0 & 1 & p_1 \\ 1 & - & 0 & 0 & p_2 \\ 1 & 1 & - & 1 & p_3 \\ 1 & 1 & 1 & + & p_4 \end{vmatrix}$$

The Sequential Algorithm

gene vector

set vector

	i1	j1	covered	list	
0	0	1	false		2
1	0	3	false		2
2	1	2	false		
3	2	3	false		1

$$M = \begin{vmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 1 & 1 & 0 & p_0 \\ - & 1 & 0 & 1 & p_1 \\ 1 & - & 0 & 0 & p_2 \\ 1 & 1 & - & 1 & p_3 \\ 1 & 1 & 1 & + & p_4 \end{vmatrix}$$

The Sequential Algorithm *Time and Space Complexities*

- To construct the data structures: $O(m^2n)$.
- Let k the size of the hitting set. We have to find k times the element with the largest number of occurrences. Therefore we have the time complexity of O(kn).
- For each such element, we have to update the data structures: O(m²n) time. Since we have k elements, the total time complexity to update data structures is O(km²n).

The Sequential Algorithm

Time and Space Complexities

- The total time complexity is therefore $O(m^2n) + O(kn) + O(km^2n) = O(km^2n) \ .$
- The size k of the hitting set is $O(m^2)$. Therefore, the time complexity of the algorithm can be expressed as $O(m^4n)$.
- The space complexity is $O(m^2 n)$.

- The input matrix M is partitioned vertically to be stored in each processor.
- Example of the partitioning:

 a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 $x_{0,1}$ $x_{0,2}$ $x_{0,3}$ $x_{0,4}$ $x_{0,5}$ $x_{0,6}$ $x_{0,7}$ $x_{0,\xi}$ $x_{0,0}$ $x_{1,8}$ $x_{1,1}$ $x_{1,2}$ $x_{1,3}$ $x_{1,0}$ $x_{1,4}$ $x_{1,5}$ $x_{1,6}$ $x_{1,7}$ M = $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $x_{2,4}$ $x_{2,5}$ $x_{2,0}$ $x_{2,6}$ $x_{2,7}$ $x_{2,8}$ $x_{3,1}$ $x_{3,2}$ $x_{3,3}$ $x_{3,4}$ $x_{3,5}$ $x_{3,6}$ $x_{3,7}$ $x_{3,0}$ $x_{3,8}$ processor 2 processor 1 processor 0

- Each processor reads a piece of the input of size $m \times \frac{n-1}{p}$.
- All the processors store a vector v, corresponding to the expression levels of the gene under study a_{n-1} .
- Each processor p_i also stores a gene vector, with information about genes it is responsible for. The gene vector stores information of the genes for which processor p_i is responsible. The gene vector in each processor has size $O(\frac{m^2n}{p})$.
- Each processor also has a set vector, such that only elements of set S_{ij} of its responsibility will only be in the list.

• Example:

	x_0	x_1	x_2	x_3	x_4	
	1	1	1	0	0	p_0
	-	1	0	0	1	p_1
E =	1	-	0	0	0	p_2
	1	1	-	0	1	p_3
	1	1	1	0	+	p_4

Time and Space Complexities

- Time complexity: $O(\frac{m^4n}{p})$.
- Requires O(k) communication rounds, where k is the size of the hitting set. It can be expressed in terms of m, O(m²).

• Requires
$$O(\frac{m^2n}{p})$$
 space.

Bibliographical References

[**BYE81**] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover problem. *Journal of Algorithms*, 2:198-203, 1981.

[FMCF01] C. G. Fernandes, F. K. Miyazawa, M. Cerioli,P. Feofiloff. Uma introdução sucinta a algoritmos de aproximação. 23 Colóquio Brasileiro de Matemática, 2001.

[ITK00] T. E. Ideker, V. Thorsson, R. Karp. Discovery of regulatory interactions through perturbation: inference and experimental design. *Pacific Symposium on Biocomputing*, 5:302-313, 2000.

[J74] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256-278, 1974.