
1/22

�

�

�

�

�

�

	

Euro PVM/MPI 2003
Venezia, Italia

Efficient Parallel Implementation of
Transitive Closure of Digraphs

C. E. R. Alves
Univsidade São Judas Tadeu

E. N. Cáceres
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The Transitive Closure Problem
• Used in many areas such as

– Network Planning

– Distributed Systems Design

• Used in problems such as

– All Shortest Paths in a Directed Graph

– Breadth-First Spanning Trees

• Directed graph D(V, E) with |V | = n, |E| = m

• We present a parallel algorithm to compute its transi-

tive closure using

– p processors

– each with O(n2

p ) local memory
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Example
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A directed graph.
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Example
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Its transitive closure: green edges joining i to j if j can

be reached from i.
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BSP/CGM Model

CGM (Coarse Grained Multicomputer) model: p of pro-

cessors, each with its own local memory, communicating

through a network.

The algorithm alternates between

• Computation round: each processor computes inde-

pendently.

• Communication round: each processor sends/receives

data to/from other processors.

Goals:

• Obtain a linear speed-up on p.

• Minimize the number of rounds.
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The CGM Model

Local computation

Synchronization Barrier

Global Communication

Computation round Communication round
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Previous Parallel Algorithms

1. PRAM:

• Karp et al.: CREW: O(log2 n) time with O(M(n))1

processors.

• JáJá: CRCW: O(log n) time with O(n3) processors.

2. Cáceres et al.: Acyclic digraph with linear extension

labeling O(logp) rounds with O(n3/p) local time

3. Dependency Graph Approach:

• Pagourtzis et al.: O(p) rounds with O(n3/p) local

time

1M(n) is the best known sequential bound for multiplying two n× n matrices over a ring
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Warshall’s Algorithm

Algorithm 1: Warshall’s Algorithm
Input: Adjacency matrix Mn×n of graph G
Output: Transitive closure of graph G

1: for k ← 1 until n do
2: for i← 1 until n do
3: for j ← 1 until n do
4: M [i, j]←M [i, j] or (M [i, k] and M [k, j])
5: end for
6: end for
7: end for
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Partitioning the Adjacency Matrix
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The Parallel Algorithm

Algorithm 2: Parallel Warshall
Input: Adjacency matrix M stored in the p processors: each
processor q (1 ≤ q ≤ p) stores submatrices M [(q − 1)n

p
+ 1..qn

p
][1..n]

and M [1..n][(q − 1)n
p

+ 1..qn
p
].

Output: Transitive closure of graph G represented by the trans-
formed matrix M .
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Algorithm 3: Parallel Warshall
Each processor q (1 ≤ q ≤ p) does the following.

1: repeat
2: for k = (q − 1)n

p
+ 1 until qn

p
do

3: for i = 0 until n− 1 do
4: for j = 0 until n− 1 do
5: if M [i][k] = 1 and M [k][j] = 1 then
6: M [i][j] = 1 (if M [i][j] belongs to processor different

from q then store it for subsequent transmission to the
corresponding processor.)

7: end if
8: Send stored data to the corresponding processors.
9: Receive data that belong to processor q from other pro-

cessors.
10: end for
11: end for
12: end for
13: until no new matrix entry updates are done
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The Main Idea

• Make a partition of V (D).

• In each partition, using the edges of D construct a

digraph formed by the edges of D that have at least

one of its extremes in the partition.

• Compute the Transitive Closure in each partition.

• Send the computed transitive edges to the proper par-

tition.
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Implementation

• 64-node Beowulf cluster - low cost microcomputers

with 256MB RAM, 256MB swap memory, CPU In-

tel Pentium III 448.956 MHz, 512KB cache.

• 100 Mb fast-Ethernet switch.

• Code in standard ANSI C and LAM-MPI Version 6.5.6.

• Tests on randomly generated digraphs with 20 % prob-

ability of an edge between two vertices.

• In all the tests, the number of communication rounds

required are less than log p.
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Implementation Results
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Implementation Results
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Implementation Results
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Implementation Results
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Conclusion

A BSP/CGM algorithm for the Transitive Closure

problem.

• Digraph with n vertices and m edges.

• The number of communication rounds measured: O(log p).

• Local computation time: O(mn/p).
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