
1/22

�

�

�

�

�

�

	

Euro PVM/MPI 2003
Venezia, Italia

Efficient Parallel Implementation of
Transitive Closure of Digraphs

C. E. R. Alves
Univsidade São Judas Tadeu

E. N. Cáceres
Universidade Federal de Mato Grosso do Sul

A. A. Castro Jr.
Universidade Católica Dom Bosco

S. W. Song
Universidade de São Paulo

J. L. Szwarcfiter
Universidade Federal do Rio de Janeiro

2/22

�

�

�

�

�

�

	

The Transitive Closure Problem
• Used in many areas such as

– Network Planning

– Distributed Systems Design

• Used in problems such as

– All Shortest Paths in a Directed Graph

– Breadth-First Spanning Trees

• Directed graph D(V, E) with |V | = n, |E| = m

• We present a parallel algorithm to compute its transi-

tive closure using

– p processors

– each with O(n2

p) local memory

3/22

�

�

�

�

�

�

	

Example

5

3 2 4

6

1

A directed graph.

4/22

�

�

�

�

�

�

	

Example

5

3 2 4

6

1

Its transitive closure: green edges joining i to j if j can

be reached from i.

5/22

�

�

�

�

�

�

	

BSP/CGM Model

CGM (Coarse Grained Multicomputer) model: p of pro-

cessors, each with its own local memory, communicating

through a network.

The algorithm alternates between

• Computation round: each processor computes inde-

pendently.

• Communication round: each processor sends/receives

data to/from other processors.

Goals:

• Obtain a linear speed-up on p.

• Minimize the number of rounds.

6/22

�

�

�

�

�

�

	

The CGM Model

Local computation

Synchronization Barrier

Global Communication

Computation round Communication round

P0

P1

P2

Pp−1

7/22

�

�

�

�

�

�

	

Previous Parallel Algorithms

1. PRAM:

• Karp et al.: CREW: O(log2 n) time with O(M(n))1

processors.

• JáJá: CRCW: O(log n) time with O(n3) processors.

2. Cáceres et al.: Acyclic digraph with linear extension

labeling O(logp) rounds with O(n3/p) local time

3. Dependency Graph Approach:

• Pagourtzis et al.: O(p) rounds with O(n3/p) local

time

1M(n) is the best known sequential bound for multiplying two n× n matrices over a ring

8/22

�

�

�

�

�

�

	

Warshall’s Algorithm

Algorithm 1: Warshall’s Algorithm
Input: Adjacency matrix Mn×n of graph G
Output: Transitive closure of graph G

1: for k ← 1 until n do
2: for i← 1 until n do
3: for j ← 1 until n do
4: M [i, j]←M [i, j] or (M [i, k] and M [k, j])
5: end for
6: end for
7: end for

9/22

�

�

�

�

�

�

	

Partitioning the Adjacency Matrix

1

1

2

2

3

3

4

4

t
t
ti

k

k

j

10/22

�

�

�

�

�

�

	

The Parallel Algorithm

Algorithm 2: Parallel Warshall
Input: Adjacency matrix M stored in the p processors: each
processor q (1 ≤ q ≤ p) stores submatrices M [(q − 1)n

p
+ 1..qn

p
][1..n]

and M [1..n][(q − 1)n
p

+ 1..qn
p
].

Output: Transitive closure of graph G represented by the trans-
formed matrix M .

11/22

�

�

�

�

�

�

	

Algorithm 3: Parallel Warshall
Each processor q (1 ≤ q ≤ p) does the following.

1: repeat
2: for k = (q − 1)n

p
+ 1 until qn

p
do

3: for i = 0 until n− 1 do
4: for j = 0 until n− 1 do
5: if M [i][k] = 1 and M [k][j] = 1 then
6: M [i][j] = 1 (if M [i][j] belongs to processor different

from q then store it for subsequent transmission to the
corresponding processor.)

7: end if
8: Send stored data to the corresponding processors.
9: Receive data that belong to processor q from other pro-

cessors.
10: end for
11: end for
12: end for
13: until no new matrix entry updates are done

12/22

�

�

�

�

�

�

	

The Main Idea

• Make a partition of V (D).

• In each partition, using the edges of D construct a

digraph formed by the edges of D that have at least

one of its extremes in the partition.

• Compute the Transitive Closure in each partition.

• Send the computed transitive edges to the proper par-

tition.

13/22

�

�

�

�

�

�

	

Example

1 5

3 2 8

4 6

7

14/22

�

�

�

�

�

�

	

Example

1 5

3 2

4 6

7

Processor 0

5

3 2 8

6

7

Processor 1

15/22

�

�

�

�

�

�

	

Example

1 5

3 2

4 6

7

Processor 0

5

3 2 8

6

7

Processor 1

16/22

�

�

�

�

�

�

	

Example

1 5

3 2 8

4 6

7

Processor 0

1 5

3 2 8

4 6

7

Processor 1

17/22

�

�

�

�

�

�

	

Implementation

• 64-node Beowulf cluster - low cost microcomputers

with 256MB RAM, 256MB swap memory, CPU In-

tel Pentium III 448.956 MHz, 512KB cache.

• 100 Mb fast-Ethernet switch.

• Code in standard ANSI C and LAM-MPI Version 6.5.6.

• Tests on randomly generated digraphs with 20 % prob-

ability of an edge between two vertices.

• In all the tests, the number of communication rounds

required are less than log p.

18/22

�

�

�

�

�

�

	

Implementation Results

◦
◦

◦

◦
◦ ◦

◦ 480x480

•

••

•
• •

•

• 512x512

10 20 30 40 50 60
0

5

10

15

20

25

No. Processors

Se
co

nd
s

19/22

�

�

�

�

�

�

	

Implementation Results

◦
◦◦ ◦ ◦ ◦ ◦

◦ 960x960

••• • • • •

• 1024x1024

�

�

�
� � � �

� 1920x1920

10 20 30 40 50 60
0

500

1000

1500

No. Processors

Se
co

nd
s

20/22

�

�

�

�

�

�

	

Implementation Results

◦◦
◦

◦

◦ ◦

◦ 480x480

•

••

•

•

•

•

• 512x512

10 20 30 40 50 60
0

5

10

15

No. Processors

Sp
ee

du
p

21/22

�

�

�

�

�

�

	

Implementation Results

◦
◦
◦

◦

◦ ◦ ◦

◦ 960x960
•••

•

• •
•

• 1024x1024

�
�
�

� �

�

�

� 1920x1920

10 20 30 40 50 60
0

10

20

30

No. Processors

Sp
ee

du
p

22/22

�

�

�

�

�

�

	

Conclusion

A BSP/CGM algorithm for the Transitive Closure

problem.

• Digraph with n vertices and m edges.

• The number of communication rounds measured: O(log p).

• Local computation time: O(mn/p).

	The Transitive Closure Problem
	Example
	Example
	BSP/CGM Model
	The CGM Model
	Previous Parallel Algorithms
	Warshall's Algorithm
	Partitioning the Adjacency Matrix
	The Parallel Algorithm
	The Main Idea
	Example
	Example
	Example
	Example
	Implementation
	Implementation Results
	Implementation Results
	Implementation Results
	Implementation Results
	Conclusion

