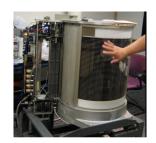
#### Memória externa

MAC0344 - Arquitetura de Computadores Prof. Siang Wun Song

Slides usados: https://www.ime.usp.br/~song/mac344/slides06-disks.pdf

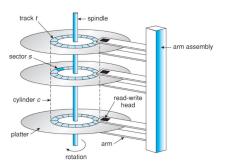
Baseado parcialmente em W. Stallings Computer Organization and Architecture

#### Memória externa: disco, RAID, SSD versus HD


- Veremos memória externa.
- Ao final dessas aulas, vocês saberão
  - O funcionamento de disco magnético.
  - O acesso a dados de disco é substancialmente mais demorado que o acesso à memória.
  - O que vem a ser RAID (Redundant Array of Independent Disks).
  - SSD (Solid State Drive) versus HD. Vantagem e desvantagem de cada um.

#### Disco da IBM em 1956

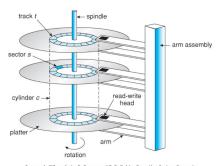
Em 1956, IBM 305 inventou primeiro disco magnético de cabaça móvel RAMAC - Random Access Method of Access and Control (Fonte: *Newsweek*, Aug 14, 2006, p. 8.)


- Pesava uma tonelada
- Era alugado por US\$ 250.000,00 por ano (Era comum locação de computadores de grande porte e discos.)
- Tinha capacidade de 5 Megabytes

Source: Computer History Museum



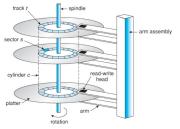
## Disco magnético


- O disco magnético consiste de fatias circulares de substrato formado de alumínio ou de vidro coberto por uma camada magnética.
- O disco é dividido em trilhas que, por sua vez, é organizada em setores. Cada setor contém tipicamente 512 bytes da dado mais alguns de controle.



Source: A. Silberschatz, G. Gagne, and P. B. Galvin. Operating System Concepts.

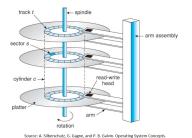
## Disco magnético


- As cabeças de leitura/gravação podem ser do tipo móvel (ver figura): primeiro a cabeça é posicionada em cima da trilha desejada antes de proceder o acesso.
- Discos mais modernos possuem cabeças fixas: uma cabeça em cima de cada trilha, dispensando a movimentação das mesmas.



Source: A. Silberschatz, G. Gagne, and P. B. Galvin. Operating System Concepts.

## Parâmetros de desempenho do disco magnético


- Para acessar dados em um disco de cabeça móvel, primeiro posicionamos a cabeça na trilha desejada.
- Esse tempo é denominado seek time. O valor típico do seek time é de 3 a 12 ms.
- Posicionada a cabeça na trilha desejada, é necessário ainda esperar que o setor desejado chegue em baixo da cabeça.
- Esse tempo é denominado latência rotacional. O valor típico é de 4 a 8 ms.



Source: A. Silberschatz, G. Gagne, and P. B. Galvin. Operating System Concepts.

## Parâmetros de desempenho do disco magnético

- O melhor caso para a latência rotacional é o setor desejado já está junto à cabeça. O pior caso é ter que esperar uma volta inteira. O caso médio é esperar meia rotação.
- A soma de seek time mais latência rotacional é denominada. tempo de acesso: a cabeça está pronta para acessar o setor.
- Tempo médio de acesso = seek time +  $\frac{1}{2r}$  onde r é a velocidade em rotações por segundo.
- O tempo de transferência depende de quantos bytes a acessar.



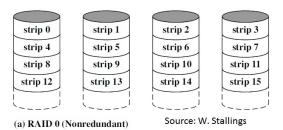
- O acesso a disco magnético leva tipicamente de 10 ms ou mais.
- Assim, projeto de estruturas de dados que residem em disco deve levar isso em consideração. Exemplo: B-árvore.
- Melhorias no desempenho do disco magnético é substancialmente menor que melhorias no desempenho do processador e memória interna.
- Isso levou a projetos de arranjos de múltiplos discos (RAID) que operam independentemente e em paralelo.
- Com os blocos de um arquivo distribuídos em vários discos, podemos ler (ou escrever) os blocos do arquivo em paralelo.

 RAID (Redundant Array of Independent Disks) é um conjunto de discos físicos visto pelo sistema operacional como uma unidade lógica.



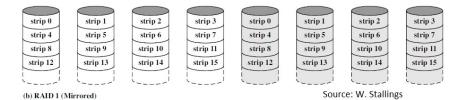
- Dados são distribuídos nos múltiplos discos para viabilizar acesso simultâneo a dados de múltiplos discos.
- O uso de múltiplas cabeças de leitura/gravação aumenta a vazão de transferência, mas também aumenta a probabilidade de falhas.
- Com redundância de dados e técnicas de detecção ou correção de erros, RAID permite a recuperação de dados em falhas.
- Um artigo em 1988 define as configurações RAID em sete níveis.




#### Sete níveis de RAID:

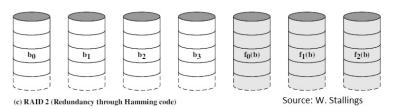
| Level • | Description +                                             | Minimum number of drives[b] | Space efficiency                          | Fault tolerance                  | Read performance +            | Write performance *              |
|---------|-----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------|-------------------------------|----------------------------------|
| RAID 0  | Block-level striping without parity or<br>mirroring       | 2                           | 1                                         | None                             | n×                            | n×                               |
| RAID 1  | Mirroring without parity or striping                      | 2                           | $\frac{1}{n}$                             | n - 1 drive<br>failures          | n×[a][15]                     | ]×[:][15]                        |
| RAID 2  | Bit-level striping with Hamming code for error correction | 3                           | $1 - \frac{1}{n}\log_2\left(n - 1\right)$ | One drive failure <sup>[d]</sup> | Depends                       | Depends                          |
| RAID 3  | Byte-level striping with dedicated parity                 | 3                           | $1-\frac{1}{n}$                           | One drive failure                | (n-1)×                        | (n-1)×[e]                        |
| RAID 4  | Block-level striping with dedicated<br>parity             | 3                           | $1-\frac{1}{n}$                           | One drive<br>failure             | $1 - (1-r)^n - mr(1-r)^{n-1}$ | (n-1)×                           |
| RAID 5  | Block-level striping with distributed parity              | 3                           | $1-\frac{1}{n}$                           | One drive<br>failure             | 71×[c]                        | (n 1)×[e]<br>[citation needed]   |
| RAID 6  | Block-level striping with double<br>distributed parity    | 4                           | $1 - \frac{2}{n}$                         | Two drive failures               | n×[0]                         | (n - 2)×[e]<br>[citation needed] |

Source: Wikipedia


## RAID 0 - Sem redundância, com strips round robin

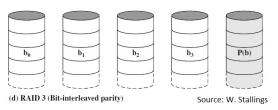
- Sem redundância. Distribuição de strips ou blocos de dados logicamente contíguos em diferentes discos, em forma de round robin ou rodízio: i.e. para n discos, strip i é armazenado no disco i mod n.
- Essa distribuição permite acesso paralelo de strips logicamente contíguos, pois residem em discos diferentes.




## RAID 1 - Redundância por duplicação de dados

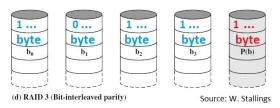
- A redundância consiste em duplicar cada strip de dado em dois discos. Apesar da simplicidade, a desvantagem é o custo.
- Recuperação de erro é simples: quando um disco falha, pega-se o dado no disco que o espelha. Escrita deve ser feita em ambos os discos replicados.




## RAID 2 - Redundância usando Hamming code

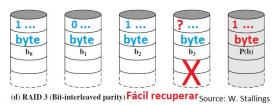
- Todos os discos posicionam a sua cabeça na mesma posição. Os strips são pequenos (um byte ou uma palavra). Hamming code estendido é usado para correção de erro de 1 bit e detecção de erros de 2 bits.
- RAID 2 requer menos disco que RAID 1. Mas ainda é custoso: o número de discos redundantes é proporcional ao logaritmo do número de discos de dados. É usado quando erros são frequentes. Caso contrário não justifica.




## RAID 3 - Redundância usando bit de paridade

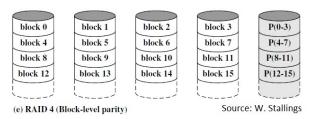
- Todos os discos posicionam a sua cabeça na mesma posição. O strip é pequeno, no nível de byte. Usa apenas um disco redundante, contendo o bit paridade dos bits correspondentes dos discos de dados.
- Se um disco da dado falhar, ele pode ser substituído por um novo disco cujo conteúdo é facilmente calculado como o *ou-exclusivo* de todos os bits dos discos de dados e o disco redundante. (Vale para RAID 3 até 6.)




## RAID 3 - Redundância usando bit de paridade

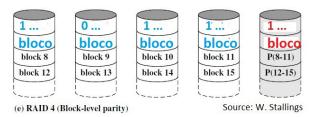
- Todos os discos posicionam a sua cabeça na mesma posição. O strip é pequeno, no nível de byte. Usa apenas um disco redundante, contendo o bit paridade dos bits correspondentes dos discos de dados.
- Se um disco da dado falhar, ele pode ser substituído por um novo disco cujo conteúdo é facilmente calculado como o *ou-exclusivo* de todos os bits dos discos de dados e o disco redundante. (Vale para RAID 3 até 6.)




## RAID 3 - Redundância usando bit de paridade

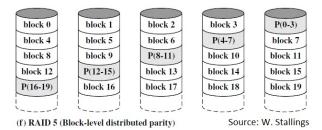
- Todos os discos posicionam a sua cabeça na mesma posição. O strip é pequeno, no nível de byte. Usa apenas um disco redundante, contendo o bit paridade dos bits correspondentes dos discos de dados.
- Se um disco da dado falhar, ele pode ser substituído por um novo disco cujo conteúdo é facilmente calculado como o *ou-exclusivo* de todos os bits dos discos de dados e o disco redundante. (Vale para RAID 3 até 6.)




#### RAID 4 - Paridade em nível de bloco

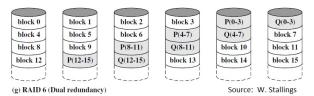
- Em RAID 4, 5 e 6 os discos operam de modo independente. Pedidos de acessos a dados podem ser atendidos em paralelo. Strips são blocos, grandes. Um disco redundante contém bits paridades dos bits de blocos correspondentes.
- Ao escrever um bit em um dos discos de dados, o bit paridade precisa ser atualizado. Isso não precisa envolver dados de todos os discos. O novo bit de paridade é igual ao anterior caso o bit escrito é igual ao bit antigo. Caso contrário, é o complemento da paridade antiga.




#### RAID 4 - Paridade em nível de bloco

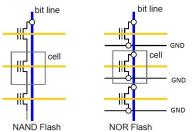
- Em RAID 4, 5 e 6 os discos operam de modo independente.
   Pedidos de acessos a dados podem ser atendidos em paralelo.
   Strips são blocos. grandes. Um disco redundante contém bits paridades dos bits de blocos correspondentes.
- Ao escrever um bit em um dos discos de dados, o bit paridade precisa ser atualizado. Isso não precisa envolver dados de todos os discos. O novo bit de paridade é igual ao anterior caso o bit escrito é igual ao bit antigo. Caso contrário, é o complemento da paridade antiga.




#### RAID 5 - Paridade em nível de bloco distribuído

- Em RAID 4, toda escrita envolve o disco redundante de paridade. Esse disco pode se tornar gargalo.
- Em RAID 5, os blocos paridade não estão concentrados em um único disco, mas distribuídos entre os discos de dados, e.g. em forma de round robin ou rodízio.
- Segundo PCMag: RAID Levels Explained RAID 5 é o mais comumente usado.




#### RAID 6 - Redundância dual

- Usando paridade, se um disco falhar, já vimos como solucionar. O problema é quando dois discos falharem.
   RAID 6 usa redundância dual com dois cálculos diferentes para verificação. Um é o tradicional bit paridade calculado por ou-exclusivo. O outro usa outro cálculo independente (e.g. Reed-Solomon).
- Em RAID 6, a falha de dois discos pode ser recuperado.
   Só com a falha de três discos ou mais é que dados são perdidos.



## Memória flash ou flash memory - SSD

- Recebe o nome flash devido à velocidade com que pode ser alterada: uma memória flash por ser apagada em poucos segundos.
- É possível apagar blocos de memória, mas não no nível de byte.
- Dois tipos: NOR e NAND.
- Flash memory usa um transistor por bit, portanto é bastante densa.
- Solid State Drive ou SSD ("Disco de Estado Sólido") usa a tecnologia de memória flash.



## Memória flash ou flash memory - SSD

- Há um limite no número de ciclos de escrita de uma memória flash.
- Esse limite é entre 10.000 a 100.000 para memória flash do tipo NOR e de 100.000 a 1.000.000 para o tipo NAND.

https://focus.ti.com/pdfs/omap/diskonchipvsnor.pdf

 Em 2012, usando uma técnica de auto-cura, Macronix relata a invenção de uma memória flash que sobrevive 100 milhões de ciclos de escrita.

https://spectrum.ieee.org/semiconductors/memory/flash-memory-survives-100-million-cycles

 Memória flash é usada como armazenamento externo (SSD Solid State Drive).

## Disco rígido versus Solid State Drive - HD × SSD

 Em setembro de 2005, ao lançar a 16 GBytes NAND flash memory, o dono da Samsung prevê o fim do disco rígido.

```
https://www.arnnet.com.au/article/139456/samsung_ceo_
predicts_death_hard_drives/
Samsung boss predicts death of hard drives.
```

Veremos perigos de fazer previsões erradas.

- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



- Perigo de fazer previsões erradas:
  - "I think there is a world market for maybe five computers."
     (Thomas Watson, Presidente da IBM, 1943.)
  - "Remote shopping, while entirely feasible, will flop ..." (Time Magazine, 1966.)
  - "There is no reason anyone would want a computer in their home." (Ken Olsen, fundador da DEC, 1977.)
  - "No one will need more than 637KB for a personal computer. 640KB ought to be enough for anybody." (Bill Gates, fundador da Microsoft, 1981.)
  - "Apple is already dead." (Nathan Myhrvold, CTO Microsoft, 1997.)
  - "Two years from now, spam will be solved." (Bill Gates, fundador da Microsoft, 2004.)



## Avanço do SSD

- Em 2009, Kingston lançou um flash drive (Kingston DataTraveler 300) de 256GB.
- Em 2013, Kingston anunciou o lançamento de DataTraveler HyperX Predator (USB 3.0) de 1 TB.
- (Em 2015 voce pode comprar esse drive pela Amazon por US\$ 772,74 :-)

Dimensão:  $2,8 \times 1,1 \times 0,8$  polegadas.



### Avanço do SSD

Em agosto de 2015, na Flash Memory Summit, Samsung anunciou o SSD (Solid State Drive) de 16 Tbytes, chamado PM1633a.

Samsung mostrou um servidor com 48 desses drives, totalizando 758 Tbytes.

```
http://www.dpreview.com/articles/5938341907/
samsung-introduces-pm1633a-world-first-2-5-16tb-ssd
```

Em agosto de 2016, na Flash Memory Summit, Seagate anunciou o lançamento de um SSD de 60 Tbytes.

Source: Seagate, Flash Memory Summit



```
https://arstechnica.com/gadgets/2016/08/
seagate-unveils-60tb-ssd-the-worlds-largest-hard-drive/
```

## Avanço do SSD

Em março de 2018, foi anunciado um SSD de 100 TB da Nimbus Data: ExaDrive DC 100, com garantia de cinco anos.

https://www.theverge.com/circuitbreaker/2018/3/19/17140332/worlds-largest-ssd-nimbus-data-exadrive-dc100-100tb



Source: Nimbus Data

Preço (pesquisado em março de 2021): US\$ 40.000,00

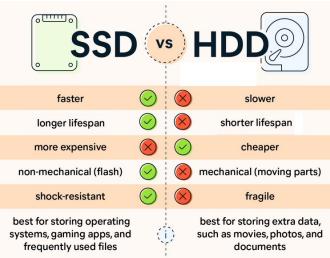
https://www.techradar.com/best/large-hard-drives-and-ssds



## Disco rígido versus Solid State Drive - HD × SSD

- SSD é mais rápido e ainda mais caro que HD (Hard Drive).
- HD funciona melhor quando arquivos grandes ocupam blocos contíguos do disco. Com o tempo de uso, pode ser necessário alocar arquivos grandes em blocos não contíguos espalhados ao longo do disco e fica fragmentado. SSD não apresenta esse problema.
- SSD não apresenta partes móveis e não está vulnerável a vibrações como o HD.
- Com preços mais acessíveis e capacidades cada vez maiores, SSD está se tornando um competidor sério do HD. Resta ver como será o futuro do HD.
- Para complicar a equação, não podemos também deixar de considerar também armazenamento na nuvem.

## Comparação SSD x HD


Para uma comparação entre SSD e HD, pode-se montar uma tabelinha comparativa.

|                      | HD          | SSD         |
|----------------------|-------------|-------------|
| Velocidade de acesso | mais lenta  | mais rápida |
| Capacidade           | maior       | menor       |
| Preço por TB         | mais barato | mais caro   |
| Fragmentação         | sim         | não         |
| Problema de vibração | sim         | não         |
| Durabilidade         | ?           | ?           |
| Que mais?            | ?           | ?           |

## Comparação SSD x HD

O seguinte artigo apresenta uma comparação SSD x HD.

What Is a Solid-State Drive (SSD)?



## Disco rígido versus Solid State Drive - HD × SSD





- SSD vem evoluindo: aumento da capacidade e diminuição do preço.
- Uma pergunta cuja resposta saberemos no futuro:
  - Se SSD vai derrubar completamente HD.
  - Caso positivo, quando isso irá ocorrer.



# Próximo assunto: Arquitetura CISC - Microprogramação

- Próximo assunto: Arquitetura CISC Microprogramação
- CISC (Complex Instruction Set Computer): Conjunto grande e complexo de instruções de máquina.
- A execução de cada instrução de máquina envolve dezenas ou centenas de microinstruções contidas no microprograma.
- Possibilita um hardware simples que no entanto pode executar instruções complexas.
- Contrapondo a CISC veremos RISC (Reduced Instruction Set Computer)
- Não percam!

