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Abstract

In this paper we extend and improve a previous result
for computing an alignment (or string editing) between two
strings � and � , with � ���	��
 and � ������ , which re-
quires ������� communication rounds and �������� � local com-
puting time, on a distributed memory parallel computer of �
processors each with ������
�� ��� memory. The algorithm is
based on a compromise between the workload of each pro-
cessor and the number of communication rounds required,
expressed by a new parameter called ! . The proposed al-
gorithm is expressed in terms of this parameter. We imple-
mented this algorithm to determine the best values for ! ,
tuned to obtain the smallest overall parallel time. We show
very promising experimental results obtained on a 64-node
Beowulf machine.

1 Introduction

In Molecular Biology, the search for tools that identify,
store, compare and analyze very long biosequences is be-

"
Research partially supported by CNPq, FINEP-PRONEX-SAI Proc.

No. 76.97.1022.00 and FAPESP Proc. No. 1997/10982-0.#
Research partially supported by the Natural Sciences and Engineering

Research Council of Canada.$
Research partially supported by FAPESP Proc. No. 99/07390-0,

CNPq Proc. No. 52.3778/96-1, 46.1230/00-3, and 521097/01-0 and
CNPq/NSF Proc. No. 68.0037/99-3.

coming a major research area in Computational Biology. In
particular, sequence comparison is a fundamental problem
that appears in more complex problems [13], such as the
search of similarities between biosequences [11, 12, 14], as
well as in the solution of several other problems [10, 9, 16].

One way to identify similarities between sequences is
to align them, with the insertion of spaces in the two se-
quences, in such way that the two sequences became of the
same size. In the similarity approach, we are interested in
the best alignment between two strings, and the score of
such an alignment gives a measure of how much the strings
are alike.

In the distance approach, we want to find the minimum
number of insertions, deletions and substitutions needed to
transform one sequence into the other. In other words, we
want to edit one of the strings and make it equal to the other.
We assign costs to elementary edit operations and seek the
less expensive composition of these operations.

The notions of similarity and distance are, in most of
the time, interchangeable and both can be used to infer the
functionality or the aspects related with the evolutive history
of the involved sequences. In either case we are looking
for a numeric value that measures the degree by which the
sequences are alike.

In this paper we extend and improve a previous result
for computing an alignment (or string editing) between two
strings � and � , with � �%���
 and � ���	�&� , which re-
quires ������� communication rounds and ��� ���� � local com-
puting time, on a distributed memory parallel computer of



� processors each with ������
�� � � memory. The proposed
algorithm is based on a compromise between the workload
of each processor and the number of communication rounds
required, expressed by a new parameter called ! . The algo-
rithm is expressed in terms of this parameter. We imple-
mented this algorithm to determine the best values for ! ,
tuned to obtain the smallest overall parallel time. We show
very promising experimental results obtained on a 64-node
Beowulf machine. Thus in addition to showing theoretic
complexity we confirm the efficiency of the proposed algo-
rithm through implementation.

Let � � ���������	�
���
� and � �� � � ���	�	� � � be two strings

over some alphabet
�
. An alignment between � and � is a

matching of the symbols ��� � and � � � in such way that
if we draw lines between the matched symbols, these lines
cannot cross each other. The alignment shows the similar-
ities between the two strings. Given an alignment between
two strings, we can assign a score to it as follows. Each col-
umn of the alignment receives a certain value depending on
its contents and the total score for the alignment is the sum
of the values assigned to its columns. If a column has two
identical characters � ��� , it will receive a value � ������� �����
(a match). Different characters ������ will give the column
value � ������� �! �� (a mismatch). Finally, a space in a column
receives a value "$# , where # �&% . We look for the value
of the best alignment (optimal alignment) which gives the
maximum score. This maximum score is called the similar-
ity between the two strings to be denoted by �
' 
 � �(� � � for
strings � and � . There may be more than one alignment
with maximum score [13].

A sequential algorithm to compute the similarity between
two strings uses a technique called dynamic programming.
The complexity of this algorithm is ��� ��
 � . The construc-
tion of the optimal alignment can be done in sequential time
����
*) � � [13].

Consider � �%� � 
 and � ��� � � . We can obtain the
solution by computing all the similarities between arbitrary
prefixes of the two strings starting with the shorter prefixes
and use previously computed results to solve the problem
for larger prefixes. There are 
+)�, possible prefixes of �
and ��)-, prefixes of � . Thus, we can arrange our calcula-
tions in an ��
.)-, ��/ � �0),�� matrix 1 where each 1 ������� �
represents the similarity between �324, �	�
� �65 and �728, �
�	� �	5 .

Observe that we can compute the values of 1 �9���:� � by
using the three previous elements 1 ���;"<,=��� � , 1 ���$">,=���!",�� and 1 �������?"�, � , because there are only three ways of
computing an alignment between �@28, �	�	� �
5 and �724, �
�	� �	5 .
We can align �324, �A� �65 with �728, �4� �("B,	5 and match a space
with �72 �	5 , or align �@28, �4� �C"-,�5 with �728, �4� �$"-,�5 and match
�32 �65 with D�2 �	5 , or align �@28, �4� �;">,	5 with �728, �4� �	5 and match
a space with �32 �
5 .

The similarity of the alignment between strings � and �
can be computed as follows:

1 ������� � �E7FHG
IJ K 1;2 ���:�L"�,�5M"N#1;2 �O"&,=����"�,�5P) � �9����� �1;2 �O"&,=���	5�"N#

An Q � /;Q � grid DAG (Figure 1) is a directed acyclic graph
whose vertices are the Q � Q � points of an Q � /NQ � grid, with
edges from grid point ��'��SR � to the grid points ��'��SR�)T, � ,
��'U),V�SR � and �9'U)-,=�WRX),�� .

Y

Z

Figure 1. Grid DAG [
We associate an ��
\)*,��@/ � �])., � grid dag [ with

the similarity problem in the natural way: the � 
T)-, � � �7), � vertices of [ are in one-to-one correspondence with the
� 
+)^, � ���_)�, � entries of the 1 -matrix, and the cost of an
edge from vertex �9`a��Q � to vertex �9':�WR � is equal to # if ` �b'
and Q ��R0"^, or if ` �.'c"^, and Q �dR ; and to � �9':�SR � if` �-'e"&, and Q �<R("&, .

It is easy to see that the similarity problem can be viewed
as computing the minimum source-sink path in a grid DAG.

One way to explore the use of parallel computation can
be through the use of clusters of workstations or Fast/Gigabit
Ethernet connected Unix-based Beowulf machines, with Par-
allel Virtual Machine - PVM or Message Passing Interface -
MPI libraries. The latency in such clusters or Beowulf ma-
chines of 1Gb/s is currently less than 10 fg� and program-
ming using these resources is today a major trend in parallel
and distributed computing.

Efficient parallel PRAM (Parallel Random Access Ma-
chine) algorithms for the dynamic programming problem
have been obtained by Galil and Park [6, 7]. PRAM algo-
rithms for the string editing problem have been proposed by
Apostolico et al. [3]. A more general study of parallel algo-
rithms for dynamic programming can be seen in [8]. PRAM
algorithms, however, do not take into account communica-
tion and assume the number of available processors to be
the same order of the problem size (fine granularity). When
such theoretically efficient algorithms are implemented on
real existing machines, the speedups obtained are often dis-
appointing.

To deal with this problem, Valiant [15] introduced a sim-
ple coarse granularity model, called Bulk Synchronous Par-
allel Model - BSP. It gives reasonable predictions on the
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Figure 2. An ����� � communication rounds scheduling with ! �B,
performance of the algorithms when implemented on exist-
ing, mainly distributed memory, parallel machines. A BSP
algorithm consists of a sequence of supersteps separated by
synchronization barriers. In a superstep, each processor ex-
ecutes a set of independent operations using local data avail-
able in each processor at the start of the superstep, as well
as communication consisting of send and receive of mes-
sages. An h-relation in a superstep corresponds to sending
or receiving at most h messages in each processor.

A similar model is the Coarse Grained Multicomputers
- CGM, proposed by Dehne et al. [4]. In this model, � pro-
cessors are connected through any interconnection network.
The term coarse granularity comes from the fact that the
problem size in each processor � � � is considerably larger
than the number of processors. A CGM algorithm consists
of a sequence of rounds, alternating well defined local com-
puting and global communication. Normally, during a com-
puting round we use the best sequential algorithm for the
processing of data available locally. A CGM algorithm is a
special case of a BSP algorithm where all the communica-
tion operations of one superstep are done in the � -relation.
The CGM algorithms implemented on currently available
multiprocessors present speedups similar to the speedups
predicted in theory [5]. The CGM algorithm design goal
is to minimize the number of supersteps and the amount of
local computation.

We are interested in obtaining parallel algorithms that
can be implemented on available parallel machines and ob-
tain compatible execution times as predicted in the CGM
model, independent of the particular type of interconnec-
tion network used. Sequence comparison is one of the basic
and most used operations in computational Biology. Our
work extend the results of [2], improving the time and the
bounds of the string size in the implementation. We have
implemented the algorithms on a Beowulf with 64 nodes
with very promising results.

2 A Parameterized CGM/BSP ������� Commu-
nication Rounds Alignment Algorithm

In this section we present a parameterized ��� ��� commu-
nication rounds parallel algorithm for computing the sim-
ilarity between two strings � and D , over some alphabet�

, with � �%� � 
 and � ��� � � . We use the CGM/BSP
model with � processors, where each processor has ��� � �� �
local memory. This algorithm extends the result presented
by Alves et al [2].

Let us first give the main idea to compute the similarity
matrix 1 by � processors.

The string � is broadcasted to all processors, and the
string � is divided into � pieces, of size �� , and each proces-
sor ��� , ,��&' � � , receives the ' -th piece of � ( ��! ��" �$#&%')(e� �	�
��&� % ' ).

The scheduling scheme of our previous work [2] can be
illustrated in Figure 2. The notation �+*� denotes the work
of Processor � � at round # . Thus initially � � starts comput-
ing at round 0. Then � � and � � can work at round 1, and
so on. In other words, after computing the # -th part of the
submatrix 1 � (denoted 1 *� ), the processor � � sends to pro-
cessor � � (e� the elements of the right boundary (rightmost
column) of 1 *� . These elements are denoted by ,-*� . Using,�*� , processor ��� ( � can compute the # -th part of the sub-
matrix 1�� (e� . After ��"�, rounds, the processor � � receives, �� " � and computes the first part of the submatrix 1 � . In the. �L" . round, the processor � � receives , �� " � and computes
the � -th part of the submatrix 1 � and finishes the computa-
tion.

It is easy to see that with this scheduling, the processor� � only initiates its work when the processor � � is finishing
its computation, at round ��" , . Therefore, we have a very
poor load balancing.

Our new approach intends to attribute work to the pro-
cessors as soon as possible. This can be done by decreasing
the size of the messages that processor � � sends to proces-
sors ��� (e� . Instead of message size 
 � � we consider sizes
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Figure 3. An ����� � rounds scheduling with ! � , � .
! � � and explore several sizes of ! . In our work, we make
the assumption that the sizes of the messages ! � � divides

 .

Therefore, 1 *� (the similarity submatrix computed by pro-
cessor ��� at round # ) represents # ! � � ) , to � # )0, � ! � � rows
of 1 � that are computed at the round # .

Algorithm 1 Similarity
Input: (1) The number � of processors; (2) The number '
of the processor, where , �+' � � ; and (3) The string �
and the substring � � of size 
 and � � , respectively; (4) The
constant ! .
Output: 1 ������� � �E7FHG � 1L2 ������"&,�5�"N# ��1L2 �$"&,V�:��"<,	5 )
� ������� �a�:1L2 �O" ,=���	5M">#�� , where ��'e" ,�� �� � ),-�-� � ' �� �
and �4R("&, � � � ), � �
� R � � .

(1) for , �-# � ��
(1.1) if ' � , then

(1.1.1) for !	�W# "b, � � � )d, � � � ! # � � and, �-��� ��
compute 1 �9���:� � ;

(1.1.2) send( ,�*� , ��� (e� );
(1.2) if '$�� , then

(1.2.1) receive � ,
*� " � � � � " � � ;
(1.2.2) for !	�W# "b, ��� � )d, � � � ! # � � and, �-��� ��

compute 1 �9���:� � ;
(1.2.3) if '$�� � then

send( , *� , � � (e� );
— End of Algorithm —

Algorithm 1 works as follow: After computing 1 *� , the
processor ��� sends ,
*� to processor ��� (e� . The processor��� (e� receives ,�*� from ��� and computes 1 * (e�� ( � . After � "

.
rounds, the processor � � receives , � " �� " � and computes1 � " �� . If we use !> b, all the processors will work simulta-

neously after the ���_" . � -th round. We explore several val-
ues for ! trying to find a balance between the workload of
the processors and the number of rounds of the algorithms.
Figure 3 shows how the algorithm works when ! � , � . .
In this case, processor � � receives ,	� � " �� " � , computes 1 � � " ��
and finishes the computation.

Using the schedule of Figure 3, we can see that in the
first round, only processor � � works. In the second round,
processors � � and � � work. It is easy to see that in round# , all processors � � work, where ,
��' �-# . Since the total
number of rounds is increased with smaller values of ! the
processors start working earlier.

Theorem 1 Algorithm 1 uses � , ), � ! ���0" . communica-
tion rounds with ��� � �� � sequential computing time in each
processor.

Proof. Processor � � sends , *� to processor � � after com-
puting the # -th block of ! � � lines of the � �� submatrix 1 � .
After � � !3"_, communication rounds, processor � � finishes
its work. Similarly, processor � � finishes its work after � � !
communication rounds. Then, after ��� ! " . )>' communi-
cation rounds, processor � � finishes its work. Since we have
� processors, after � ,!), � ! ��� " . communication rounds,
all the � processors have finished their work.

Each processor uses a sequential algorithm to compute
the similarity submatrix 1 � . Thus this algorithm takes ������� �
computing time. 


Theorem 2 At the end of Algorithm 1, 1 � 
�� � � will store
the score of the similarity between the strings � and � .
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Figure 4. Results of a 8Kx16K matrix for several values of !

Proof. Theorem 1 proves that after � ,M) , � ! � ��" . commu-
nication rounds, processor � � finishes its work. Since we
are essentially computing the similarity sequentially in each
processor and sending the boundaries to the right processor,
the correctness of the algorithm comes naturally from the
correctness of the sequential algorithm. Then, after � ,C), � ! ��� " . communication rounds, 1 � 
�� � � will store the
similarity between the strings � and � . 


3 Implementation

(*),+�-�) .
= 4

.
= 8

.
= 16

.
= 32

.
= 64/1032 3.9790 2.2244 1.2223 0.7007 0.4281/1054 2.9637 1.6294 0.8986 0.5373 0.3426/10547682 2.5599 1.3295 0.7320 0.4353 0.3112/105476 ( 2.1977 1.1891 0.6680 0.4199 0.2938/105476 - 2.0660 1.1224 0.6452 0.4067 0.3367/105476�4:9 2.0197 1.0857 0.6310 0.4298 0.3637/105476�;82 1.9956 1.0841 0.6493 0.4632 0.4852/105476�9 ( 1.9840 1.0964 0.6996 0.5668

-8),+ 479 ) . 0 ( . 0 - . 0<479 . 0=;82 . 0>9 (
/?0=2 16.000 8.6738 4.7117 2.5494 1.4172/?0<4 11.622 6.2732 3.3209 1.8213 1.0718/?0<4@6�2 9.5802 5.0730 2.6848 1.4811 0.9023/?0<4@6 ( 8.5727 4.4721 2.3604 1.3726 0.8306/?0<4@6 - 8.0455 4.1770 2.2151 1.3349 0.8107/?0<4@6�479 7.7996 4.0530 2.1522 1.2794 0.8681/?0<4@6A;*2 7.7079 3.9948 2.1469 1.3295 0.9656/?0<4@6A9 ( 7.6800 3.9857 2.1891 1.4127 1.1525

We have implemented the ��� ��� rounds similarity algo-
rithm on a Beowulf with 64 nodes. Each node has 256 MB

of RAM memory in addition to 256 MB for swap. The
nodes are connected through a 100 MB interconnection net-
work.

The above tables show running times for string sizes 
 �BDC
, � �FE C and 
 �GE C , � � ,8H C where

C � ,
� . B .
They show that with very small ! , the communication time
is significant when compared to the computation time. We
have analyzed the behavior of ! to estimate the optimal
block size. The observed times show that when ! � � de-
creases from 16 to 8 (the number of lines of the submatrix1 *� ), we have an increase on the total time.

The Figure 4 depicts the obtained results of the ��� ���
communication rounds algorithm applied to strings � ( � �����B ��I�H ) and � ( � ��� �JEM,�I . ), with ! � � ,=�	, � . �
, � B � �
�	� �, �KH B � .

In general, the implementation of the CGM/BSP algo-
rithm shows that the theoretical results are confirmed in the
implementation.

4 Conclusion

We have presented a parameterized CGM/BSP parallel
algorithm with ��� ��� communication rounds to compute the
score of the similarity between two strings. In this paper
we have worked with a variable block size of ! � � / �� . We
have studied the behavior of the block size. Once we have
studied how the algorithm works with different block sizes,
we intend to explore this result and try an adaptative choice
of the optimal block size.

The alignment between the two strings can be obtained
with ����� � communication rounds backtracking from the
lower right corner of the grid graph in ��� 
�) � � time [13].
For this, 1 �9���:��� for all points of the grid graph must be
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stored during the computation (requiring ����
 � � space). A
slightly different algorithm which uses only ���9E����

� 
 � � � �
space is also being implemented on the CGM/BSP model.

Using the Monge properties [3] of the grid DAG, Alves
et al. [1] have proposed an �������	� ��� communication rounds
CGM/BSP dynamic programming algorithm for solving the
string editing problem between a string � and all substrings
of a string � . We are working with the implementation de-
tails on this problem. Furthermore, we intend to explore the
above ideas to solve the multiple alignment problem.
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