
A Parallel Wavefront Algorithm for Efficient

Biological Sequence Comparison?
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Abstract. In this paper we present a parallel wavefront algorithm for
computing an alignment between two strings A and C, with |A| = m
and |C| = n. On a distributed memory parallel computer of p processors
each with O((m + n)/p) memory, the proposed algorithm requires O(p)
communication rounds and O(mn/p) local computing time. The novelty
of this algorithm is based on a compromise between the workload of each
processor and the number of communication rounds required, expressed
by a parameter called α. The proposed algorithm is expressed in terms
of this parameter that can be tuned to obtain the best overall parallel
time in a given implementation. We show very promising experimental
results obtained on a 64-node Beowulf machine. A characteristic of the
wavefront communication requirement is that each processor communi-
cates with few other processors. This makes it very suitable as a potential
application for grid computing.

1 Introduction

In Molecular Biology, the search for tools that identify, store, compare and ana-
lyze very long biosequences is becoming a major research area in Computational
Biology. In particular, sequence comparison is a fundamental problem that ap-
pears in more complex problems [13], such as the search of similarities between
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biosequences [11, 12, 14], as well as in the solution of several other problems such
as approximate string matching, file comparison, and text searching with errors
[9, 10, 16].

One way to identify similarities between sequences is to align them, with the
insertion of spaces in the two sequences, in such way that the two sequences
become equal in length. We are interested in the best alignment between two
strings, and the score of such an alignment gives a measure of how much the
strings are similar.

In this paper we extend and improve a previous result [2] for computing
an alignment between two strings A and C, with |A| = m and |C| = n. On a
distributed memory parallel computer of p processors each with O((m + n)/p)
memory, the algorithm proposed in this paper requires O(p) communication
rounds and O(mn/p) local computing time. Both in [2] as in this paper the pro-
cessors communicate in a wavefront or systolic manner, such that each processor
communicates with few other processors. Actually each processor sends data to
only two other processors. The novelty of the algorithm proposed in this paper is
based on a compromise between the workload of each processor and the number
of communication rounds required, expressed by a new parameter called α. The
proposed algorithm is expressed in terms of this parameter that can be tuned to
obtain the best overall parallel time in a given implementation. In addition to
showing theoretic complexity we confirm the efficiency of the proposed algorithm
through implementation. Very promising experimental results are obtained on a
64-node Beowulf machine.

A sequential algorithm to compute the similarity between two strings of
lengths m and n uses a technique called dynamic programming. The complexity
of this algorithm is O(mn). The construction of the optimal alignment can be
done in sequential time O(m + n) [13].

PRAM (Parallel Random Access Machine) algorithms for the dynamic pro-
gramming problem have been obtained by Galil and Park [6, 7]. PRAM algo-
rithms for the string editing problem have been proposed by Apostolico et al.
[3]. A more general study of parallel algorithms for dynamic programming can
be seen in [8].

The proposed algorithm uses the realistic BSP/CGM model. Observe that it
is simple to implement as opposed to another more complex BSP/CGM algo-
rithm proposed in [1] that is based on the Monge properties [3] of the grid DAG.
A characteristic and advantage of the wavefront or systolic communication re-
quirement used in this algorithm is that each processor communicates with few
other processors. This makes it very suitable as a potential application for grid
computing.

2 The Similarity Problem

We now define the similarity problem we wish to solve in this paper. Let A =
a1a2 . . . am and C = c1c2 . . . cn be two strings over some alphabet I .
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A a c t t c a – t A a c t t c a – t
C a t t c – a c g C a – t t c a c g

Score 1 0 1 0 0 1 0 0 3 Score 1 0 1 1 1 1 0 0 5

Fig. 1. Examples of alignment

To align the two strings, we insert spaces in the two sequences in such way
that they become equal in length. See Fig. 1 where each column consists of a
symbol of A (or a space) and a symbol of C (or a space). An alignment between
A and C is a matching of the symbols a ∈ A and c ∈ C in such way that if we
draw lines between the matched symbols, these lines cannot cross each other.
The alignment shows the similarities between the two strings. Fig. 1 shows two
simple alignment examples where we assign a score of 1 when the aligned symbols
in a column match and 0 otherwise. The alignment on the right has a higher
score (5) than that on the left (3).

A more general score assignment for a given alignment between strings is done
as follows. Each column of the alignment receives a certain value depending on
its contents and the total score for the alignment is the sum of the values assigned
to its columns. Consider a column consisting of symbols r and s. If r = s (i.e. a
match), it will receive a value p(r, s) > 0. If r 6= s (a mismatch), the column will
receive a value p(r, s) < 0. Finally, a column with a space in it receives a value
−k, where k ∈ N . We look for the alignment (optimal alignment) that gives the
maximum score. This maximum score is called the similarity between the two
strings to be denoted by sim(A, C) for strings A and C. There may be more
than one alignment with maximum score [13].

Consider |A| = m and |C| = n. We can obtain the solution by computing all
the similarities between arbitrary prefixes of the two strings starting with the
shorter prefixes and use previously computed results to solve the problem for
larger prefixes. There are m + 1 possible prefixes of A and n + 1 prefixes of C.
Thus, we can arrange our calculations in an (m + 1) × (n + 1) matrix S where
each S(r, s) represents the similarity between A[1..r] and C[1..s], that denote
the prefixes a1a2 . . . ar and c1c2 . . . cs, respectively.

Observe that we can compute the values of S(r, s) by using the three previous
values S(r − 1, s), S(r − 1, s − 1) and S(r, s − 1), because there are only three
ways of computing an alignment between A[1 . . . r] and C[1 . . . s]. We can align
A[1..r] with C[1..s − 1] and match a space with C[s], or align A[1..r − 1] with
C[1..s− 1] and match A[r] with B[s], or align A[1..r− 1] with C[1..s] and match
a space with A[r].

The similarity score S of the alignment between strings A and C can be
computed as follows:

S(r, s) = max







S[r, s − 1] − k
S[r − 1, s − 1] + p(r, s)
S[r − 1, s] − k
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G(i, j − 1)
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Fig. 2. Grid DAG G for A = baabcbca and B = baabcabcab.

An l1 × l2 grid DAG (Fig. 2) is a directed acyclic graph whose vertices are
the l1l2 points of an l1 × l2 grid, with edges from grid point G(i, j) to the grid
points G(i, j + 1), G(i + 1, j) and G(i + 1, j + 1).

Let A and C be two strings with |A| = m and |C| = n symbols, respectively.
We associate an (m +1)× (n + 1) grid dag G with the similarity problem in the
natural way: the (m + 1)(n + 1) vertices of G are in one-to-one correspondence
with the (m + 1)(n + 1) entries of the S-matrix, and the cost of an edge from
vertex (t, l) to vertex (i, j) is equal to k if t = i and l = j − 1 or if t = i− 1 and
l = j; and to p(i, j) if t = i − 1 and l = j − 1.

It is easy to see that the similarity problem can be viewed as computing the
minimum source-sink path in a grid DAG. In Fig. 2 the problem is to find the
minimum path from (0,0) to (8,10).

3 Parallel Computation

Valiant [15] introduced a simple coarse granularity model, called Bulk Syn-

chronous Parallel Model - BSP. It gives reasonable predictions on the perfor-
mance of the algorithms when implemented on existing, mainly distributed mem-
ory, parallel machines. A BSP algorithm consists of a sequence of super-steps
separated by synchronization barriers. In a super-step, each processor executes a
set of independent operations using local data available in each processor at the
start of the super-step, as well as communication consisting of send and receive
of messages. An h-relation in a super-step corresponds to sending or receiving
at most h messages in each processor.

In this paper we use a similar model called the Coarse Grained Multicom-

puters - CGM, proposed by Dehne et al. [4]. In this model, p processors are
connected through any interconnection network. The term coarse granularity

comes from the fact that the problem size in each processor n/p is considerably



5

larger than the number of processors. A CGM algorithm consists of a sequence
of rounds, alternating well defined local computing and global communication.
A CGM algorithm is a special case of a BSP algorithm where all the com-
munication operations of one super-step are done in the h-relation. The CGM
algorithms implemented on currently available multiprocessors present speedups
similar to the speedups predicted in theory [5]. The CGM algorithm design goal
is to minimize the number of super-steps and the amount of local computation.

4 The Wavefront Parameterized Algorithm

In this section we present a parameterized O(p) communication rounds parallel
algorithm for computing the similarity between two strings A and B, over some
alphabet I , with |A| = m and |C| = n. We use the CGM/BSP model with p
processors, where each processor has O(mn/p) local memory. As will be seen
later, this can be reduced to O((m + n)/p).
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Fig. 3. An O(p) communication rounds scheduling with α = 1

Let us first give the main idea to compute the similarity matrix S by p
processors. The string A is broadcasted to all processors, and the string C is
divided into p pieces, of size n

p , and each processor Pi, 1 ≤ i ≤ p, receives the

i-th piece of C (c(i−1) n
p
+1 . . . ci n

p
).

The scheduling scheme can be illustrated in Fig. 3. The notation P k
i denotes

the work of Processor Pi at round k. Thus initially P1 starts computing at
round 0. Then P1 and P2 can work at round 1, P1, P2 and P3 at round 2,
and so on. In other words, after computing the k-th part of the sub-matrix Si

(denoted Sk
i ), processor Pi sends to processor Pi+1 the elements of the right

boundary (rightmost column) of Sk
i . These elements are denoted by Rk

i . Using
Rk

i , processor Pi+1 can compute the k-th part of the sub-matrix Si+1. After p−1
rounds, processor Pp receives R1

p−1 and computes the first part of the sub-matrix
Sp. In the 2p− 2 round, processor Pp receives Rp

p−1 and computes the p-th part
of the sub-matrix Sp and finishes the computation.
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It is easy to see that with this scheduling, processor Pp only initiates its work
when processor P1 is finishing its computation, at round p − 1. Therefore, we
have a very poor load balancing.

In the following we attempt to assign work to the processors as soon as
possible. This can be done by decreasing the size of the messages that processor
Pi sends to processors Pi+1. Instead of message size m

p we consider sizes αm
p and

explore several sizes of α. In our work, we make the assumption that the sizes of
the messages αm

p divides m. Therefore, Sk
i (the similarity sub-matrix computed

by processor Pi at round k) represents kαm
p + 1 to (k + 1)αm

p rows of Si that
are computed at the round k.

Algorithm 1 Similarity

Input: (1) The number p of processors; (2) The number i of the processor,
where 1 ≤ i ≤ p; and (3) The string A and the substring Ci of size m and n

p ,

respectively; (4) The constant α.
Output: S(r, s) = max{S[r, s − 1] − k, S[r − 1, s − 1] + p(r, s), S[r − 1, s] − k},
where (i − 1) m

√
p + 1 ≤ r ≤ i m

√
p and (j − 1)n

p + 1 ≤ s ≤ j n
p .

(1) for 1 ≤ k ≤ p
α

(1.1) if i = 1 then

(1.1.1) for α(k − 1)m
p + 1 ≤ r ≤ αk m

p and 1 ≤ s ≤ n
p

compute S(r, s);
(1.1.2) send(Rk

i ,Pi+1);

(1.2) if i 6= 1 then

(1.2.1) receive(Rk
i−1, Pi−1);

(1.2.2) for α(k − 1)m
p + 1 ≤ r ≤ αk m

p and 1 ≤ s ≤ n
p

compute S(r, s);
(1.2.3) if i 6= p then

send(Rk
i ,Pi+1);

— End of Algorithm —

Algorithm 1 works as follow: After computing Sk
i , processor Pi sends Rk

i to
processor Pi+1. Processor Pi+1 receives Rk

i from Pi and computes Sk+1
i+1 . After

p − 2 rounds, processor Pp receives Rp−2
p−1 and computes Sp−1

p . If we use α <
1 all the processors will work simultaneously after the (p − 2)-th round. We
explore several values for α trying to find a balance between the workload of
the processors and the number of rounds of the algorithms. Fig. 4 shows how
the algorithm works when α = 1/2. In this case, processor Pp receives R3p−3

p−1 ,

computes S3p−2
p and finishes the computation.

Using the schedule of Fig. 4, we can see that in the first round, only processor
P1 works. In the second round, processors P1 and P2 work. It is easy to see that
in round k, all processors Pi work, where 1 ≤ i ≤ k. Since the total number of
rounds is increased with smaller values of α the processors start working earlier.

Theorem 1. Algorithm 1 uses (1+1/α)p−2 communication rounds with O( mn
p )

sequential computing time in each processor.
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Fig. 4. An O(p) rounds scheduling with α = 1/2

Proof. Processor P1 sends Rk
1 to processor P2 after computing the k-th block

of αm
p lines of the mn

p sub-matrix S1. After p/α − 1 communication rounds,
processor P1 finishes its work. Similarly, processor P2 finishes its work after
p/α communication rounds. Then, after p/α − 2 + i communication rounds,
processor Pi finishes its work. Since we have p processors, after (1 + 1/α)p − 2
communication rounds, all the p processors have finished their work.

Each processor uses a sequential algorithm to compute the similarity sub-
matrix Si. Thus this algorithm takes O(mn

p ) computing time.

Theorem 2. At the end of Algorithm 1, S(m, n) will store the score of the

similarity between the strings A and C.

Proof. Theorem 1 proves that after (1 + 1/α)p− 2 communication rounds, pro-
cessor Pp finishes its work. Since we are essentially computing the similarity
sequentially in each processor and sending the boundaries to the right proces-
sor, the correctness of the algorithm comes naturally from the correctness of the
sequential algorithm. Then, after (1+1/α)p−2 communication rounds, S(m, n)
will store the similarity between the strings A and C.

5 Implementation Results

We have implemented the proposed algorithm on a Beowulf with 64 nodes. Each
node has 256 MB of RAM memory in addition to 256 MB for swap. The nodes
are connected through a 100 MB interconnection network.
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5.1 Parameter Tuning

8K × 16K p = 4 p = 8 p = 16 p = 32 p = 64

α = 2 16.000 8.6738 4.7117 2.5494 1.4172

α = 1 11.622 6.2732 3.3209 1.8213 1.0718

α = 1/2 9.5802 5.0730 2.6848 1.4811 0.9023

α = 1/4 8.5727 4.4721 2.3604 1.3726 0.8306

α = 1/8 8.0455 4.1770 2.2151 1.3349 0.8107

α = 1/16 7.7996 4.0530 2.1522 1.2794 0.8681

α = 1/32 7.7079 3.9948 2.1469 1.3295 0.9656

α = 1/64 7.6800 3.9857 2.1891 1.4127 1.1525
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Fig. 5. Curves of the observed times for m = 8196 and n = 16384

The table shows running times for string sizes m = 8K and n = 16K where
K = 1024. The same times are shown in Fig. 5. They show that with very small

α, the communication time is significant when compared to the computation
time. We have analyzed the behavior of α to estimate the optimal block size.
The observed times show that when αm

p decreases from 16 to 8 (the number

of lines of the sub-matrix Sk
i ), we have an increase on the total time. The best

times are obtained for α between 1/4 and 1/8.

5.2 Quadratic versus Linear Space Implementation

We can further improve our results by exploring a linear space implementation,
by storing a vector instead of the entire matrix. In the usual quadratic space
implementation, each processor uses O(mn/p) space, while in the linear space
implementation each processor requires only O((m + n)/p) space. The results
are impressive, as shown in Figures 6 and 7. With less demand on the swap of
disk space, we get an almost 50% improvement. We have used α = 1.
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Fig. 6. Curves of the observed times - quadratic space
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Fig. 7. Curves of the observed times - linear space

6 Conclusion

We have presented a parameterized BSP/CGM parallel algorithm to compute
the score of the similarity between two strings. On a distributed memory parallel
computer of p processors each with O((m + n)/p) memory, the proposed algo-
rithm requires O(p) communication rounds and O(nm/p) local computing time.
The novelty of this algorithm is based on a compromise between the workload of
each processor and the number of communication rounds required, expressed by
a new parameter called α. We have worked with a variable block size of α m

p × n
p

and studied the behavior of the block size. We show how this parameter can be
tuned to obtain the best overall parallel time in a given implementation. Very
promising experimental results are shown.
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As a final observation notice that a characteristic of the wavefront communi-
cation requirement is that each processor communicates with few other proces-
sors. This makes it very suitable as a potential application for grid computing.
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