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Abstract

Given two strings A and B of lengths na and nb, respectively, the All-substrings
Longest Common Subsequence (ALCS) problem obtains, for any substring B ′ of B, the
length of the longest string that is a subsequence of both A and B ′. The sequential
algorithm takes O(nanb) time and O(nb) space. We present a parallel algorithm for
the ALCS on the Coarse Grained Multicomputer (BSP/CGM) model with p <

√
na

processors, that takes O(nanb/p) time and O(nb

√
na) space per processor, with O(log p)

communication rounds. The proposed algorithm also solves the basic Longest Common
Subsequence (LCS) Problem that finds the longest string (and not only its length) that
is a subsequence of both A and B. To our knowledge, this is the best BSP/CGM
algorithm for the LCS and ALCS problems in the literature.

∗Partially supported by FINEP-PRONEX-SAI Proc. No. 76.97.1022.00, CNPq Proc. No. 52.3778/96-1
and 52.2028/02-9.
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1 Introduction

Given two strings, obtention of the longest subsequence common to both strings is an impor-
tant problem with applications in DNA sequence comparison, data compression, pattern
matching, etc [16, 19]. In this report we consider the more general all-substring longest
common subsequence problem and present a time and space efficient parallel algorithm.

1.1 The Longest Common Subsequence Problem

Consider a string of symbols from a finite alphabet. A substring of a string is any fragment
of contiguous symbols of the string. In other words, a substring is obtained from a string by
the deletion of zero or more symbols from its beginning or its end. A subsequence of a string,
on the other hand, is obtained by deleting zero or more symbols from the original string,
from any position. The remaining symbols preserve the order they had on the original
string.

Before we proceed, let us define some notation for strings, substrings and symbols:
Strings of symbols will be denoted by upper-case letters, like A and B. Isolated symbols
of a string will be identified by the string name (lower-case) with a subscripted index. The
indices start at 1, for the first symbol. The length of the string will be denoted by n with
the lower-case string name subscripted. For example,

A = a1a2a3 . . . ana−1ana.

A substring is indicated by the upper-case letter of the original string and indices that
indicate the initial (subscripted) and final (superscripted) positions of the symbols in the
original string. For example,

A6
3 = a3a4a5a6.

We define the Longest Common Subsequence (LCS) Problem as follows:

Definition 1.1 (Longest Common Subsequence Problem) Given two strings A and
B, find the longest string C that is a subsequence of A and B.

Figure 1 illustrates one instance of this problem and its solution.

A x y w w y x – – w
B x – w w y x y z –

value 1 0 1 1 1 1 0 0 0 5

Figure 1: Example of a solution to the LCS Problem. For strings xywwyxw and xwwyxyz
the longest common subsequence is xwwyx.

In this figure, we illustrate the concept of alignment of strings. The strings under
comparison are placed in an array of two lines in such a way that no column contains two
different symbols. Each column may contain one blank space, though. Columns with equal
symbols have a value of 1, the others have value 0. The array with the greatest possible
sum of column values gives the longest common subsequence.

In several applications, we are more interested in the length of the longest common
subsequence than in the actual subsequence.
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There are several algorithms for the LCS problem. Some are based on Dynamic Pro-
gramming, others on primal-dual algorithms or other techniques, but in the general case all
these algorithms have a worst-case time complexity that is O(nanb), where na and nb are
the lengths of strings A and B, respectively. See [7, 16, 17, 19] for surveys. Here we will
comment very briefly the Dynamic Programming algorithm for the LCS, when we present
the characteristic Grid Directed Acyclic Graph (GDAG for short) that is used throughout
this report.

There are also algorithms that exploit the finitude of the alphabet to decompose the
LCS into repetitive subproblems that can be solved separately and then merged, using what
is now known as the Four Russians technique (see [14, 15]). Unfortunately, although the
time complexity of these algorithms is subquadratic, they are not for practical use, as they
are better than the others previously mentioned only when the strings involved are very
large, much larger than the ones that occur in real problems [7].

1.2 The All-substrings Longest Common Subsequence Problem

The problem that will be covered in this report is a generalization of the LCS problem,
named the All-substrings Longest Common Subsequence (ALCS) Problem, defined as follows

Definition 1.2 (All-substrings Longest Common Subsequence Problem) For two
strings A and B, solve the LCS problem for A and all substrings of B, that is, solve the
LCS for all pairs (A,Bj

i ), where 1 ≤ i ≤ j ≤ nb.

In fact, we are more interested in the lengths of the longest common subsequences. The
determination of all these lengths for the ALCS can be done in O(nanb) time, as will be
shown in this report. Asymptotically, this is the same complexity we have for the basic
LCS problem, and the implementation of the algorithm is quite simple.

The ALCS problem is a restricted form of the All-Substrings Alignment Problem [3, 2,
18], and has several applications, like finding approximate tandem repeats in strings [18],
solving the circular alignment of two strings [13, 18] and finding the alignment of one string
with several others that have a common substring [10].

In this report, a parallel algorithm for the ALCS problem is presented. It is based
on a previous PRAM algorithm by Mi Lu and Hua Lin [12] and is adapted here for the
BSP/CGM Model of computation, to be explained in the next section. This model is quite
important for practical applications, being more suited to development of parallel algorithms
to distributed systems [6].

1.3 The BSP/CGM Model

In this report we use the Coarse Grained Computer model [5, 6], that is based on the Bulk
Synchronous Parallel (BSP) model [20, 21]. A BSP/CGM consists of a set of p processors
P1, . . . , Pp, each with its own local memory. Each processor is connected to a router that
can send messages in a point-to-point fashion.

A BSP/CGM algorithm consists of alternating rounds of local computation and global
communication that are separated by barrier synchronizations. A round is equivalent to
a superstep in the BSP model. Each communication round consists of routing a single
h-relation with h = O(M), being M the size of the local memory of each processor.

In the BSP/CGM model, the communication cost is modeled by the number of commu-
nication rounds. The main advantage of BSP/CGM algorithms is that they map very well
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to standard parallel hardware, like Beowulf type processor clusters [6]. So, our goal is to
achieve a linear speed-up with a low number of communication rounds, if possible depend-
ing only on the number of processors, not on the size of the instance of the problem. Of
course, minimizing the space required in the local memory and size of the communication
rounds are important. One space efficient algorithm should have M = O(N/p), where N is
the space required by reasonable sequential algorithm for the problem at hand.

1.4 Monotone and Totally Monotone Matrices

We present now the key ideas about Monotone and Totally Monotone Matrices, that are
very important to our CGM algorithm.

Monotone and totally monotone matrices arise in several applications. The main refer-
ence to this kind of matrices is the work of Aggarwal et al. in [1], where these matrices are
used in a geometric problem. The definitions and results presented here are adapted from
this reference1.

In Aggarwal et al. [1], several algorithms related to these kind of matrices were pre-
sented. To make this report more self-contained, this algorithms (already adapted) are
presented in the final appendix. Readers that are already familiar with these matrices may
skip that, but it is important to notice that we had to make some adaptations in the original
results to make them more suited to our needs.

The characteristic properties of monotone matrices and totally monotone matrices are
related to the location of the minimum element of each column. Before we describe these
properties, some terms have to be defined.

Definition 1.3 [Imin[M ] and Cmin[M ]] Given an n × m matrix M of integer numbers,
vector Imin[M ] is such that for all j, 1 ≤ j ≤ m, Imin[M ](j) is the smallest value of i such
that M(i, j) is the minimum of the column j of M . Vector Cmin[M ] contains the minima
of the columns of M , that is, Cmin [M ](j) = M(Imin [M ](j), j).

So, Imin[M ] contains the locations of the column minima, while Cmin[M ] contains the
values proper of these column minima. Now we proceed to the main definitions of this
section:

Definition 1.4 (Monotone Matrix) Let M be an n×m matrix of integer numbers. M
is a monotone matrix if and only if, for all 1 ≤ j1 < j2 ≤ m, Imin[M ](j1) ≤ Imin [M ](j2).

Definition 1.5 (Totally Monotone Matrix) Let M be a n×m matrix of integer num-
bers. M is a totally monotone matrix if and only if every 2×2 submatrix of M is monotone.

The following lemma is very simple to prove.

Lemma 1.1 Every totally monotone matrix is also monotone.

Proof. If M is not a monotone matrix then there are j1 and j2 such that j1 < j2 and
Imin[M ](j1) > Imin[M ](j2). The 2 × 2 matrix formed by M(i1, j1), M(i1, j2), M(i2, j1)
and M(i2, j2) is not monotone, so M cannot be totally monotone. 2

Here we will be interested in finding the minima of all the columns of monotone or
totally monotone matrices. We state this problem more formally now.

1For those familiar with the reference, we had to exchange the roles of matrix columns and matrix lines,
and also changed “maxima” to “minima”.
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Definition 1.6 (Column Minima Problem) Given an n×m matrix M of integers, de-
termine vector Imin [M ].

The problem is stated here in terms of the locations of the minima. Efficient algorithms
to solve this problem were already presented in [1] and are commented in the final appendix.

An important operation with totally monotone matrices is the contraction of lines. This
operation was used implicitly in [12], for the solution of LCS in the CREW-PRAM model.
We give now an explicit definition.

Definition 1.7 [Contraction of Contiguous Lines of a Matrix (with respect to the Column
Minima Problem)] The contraction of lines applied to a set of contiguous lines of a matrix
M is the substitution of these lines in M by a single new line. Element i of this new line is
the minimum of all elements in column i of the replaced lines.

So, if S = {l1, l1 + 1, l1 + 2, . . . , l2}, we will denote by ContS(M) the matrix resulting
from the contraction of matrix M applied to lines from l1 to l2. If M is an n×m matrix,
let M i denote the ith row of M , then N = ContS(M) is an (n− l2 + l1) ×m matrix such
that N l1 = Cmin[M(i, j)[l1 ≤ i ≤ l2]], N i = M i for i < l1 and N i = M i+l2−l1 for i > l1.

Theorem 1.2 If M is a totally monotone matrix and S is a set of consecutive indices of
lines of M , ContS(M) is also a totally monotone matrix and Cmin[M ] = Cmin [Cont S(M)].

Proof. Cmin [M ] = Cmin [ContS(M)] follows directly from Definition 1.7, for any kind of
matrix. We need to prove that ContS(M) is totally monotone.

Let ContS(M) be defined for some totally monotone matrix M and set S. For any 2×2
submatrix M ′ of ContS(M), with elements in columns j1 and j2 (j1 < j2), we will have
only two possibilities: none of the lines results from the contraction or one of them does.

In the first case M ′ is clearly monotone, because it is also a submatrix of M . In the
second case we have two subcases: both elements of the contracted line are in the same line
of M or not.

Again, in the first case M ′ is also a submatrix of M . In the second case, the elements
of the contracted line may be denoted by M(i1, j1) and M(i2, j2) with i1 < i2, because M
is (totally) monotone.

The other two elements of M ′ may be denoted by M(i0, j1) and M(i0, j2). Let us
suppose that i0 < i1. The case where i0 > i2 can be treated in an analogous way.

To prove that this submatrix is monotone, we need to show that if M(i1, j1) < M(i0, j1)
then M(i2, j2) < M(i0, j2). The total monotonicity of M assures that if M(i1, j1) <
M(i0, j1) then M(i1, j2) < M(i0, j2). Since M(i2, j2) < M(i1, j2) (because M(i1, j2) is
the minimum of column j2 among the lines S) we will have M(i2, j2) < M(i0, j2). 2

2 Properties of the ALCS Problem

We first introduce the characteristic GDAG (Grid Directed Acyclic Graph) for the ALCS
problem. Let A and B be two strings, respectively of lengths na and nb. The GDAG has
na + 1 lines and nb + 1 columns of vertices. Labeling lines from 0 to na and the columns
from 0 to nb, each vertex of a GDAG G is identified by G(i, j), where 0 ≤ i ≤ na and
0 ≤ j ≤ nb.

The arcs in this GDAG are weighted with values 0 or 1 as follows:
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Figure 2: GDAG for the ALCS problem. The strings being compared are A = yxxyzyzx
and B = yxxyzxyzxyxzx. The thick diagonal arcs have weight 1, the others have weight 0.

• (diagonal arcs) for 1 ≤ i ≤ na and 1 ≤ j ≤ nb there is an arc from G(i − 1, j − 1) to
G(i, j) with weight 1 if ai = bj, 0 otherwise.

• (vertical arcs) for 0 ≤ i ≤ na and 1 ≤ j ≤ nb there is an arc from G(i, j − 1) to G(i, j)
with weight 0.

• (horizontal arcs) for 1 ≤ i ≤ na and 0 ≤ j ≤ nb there is an arc from G(i − 1, j) to
G(i, j) with weight 0.

An example can be seen in Figure 2. The diagonal arcs with weight 0 will be ignored.
The vertices at the top (superior line) of G will be called TG(i) and the the ones at the

bottom (inferior line) will be called FG(i)2,0 ≤ i ≤ nb.
To solve the LCS problem, one may look for the highest weighting path from G(0, 0) to

G(na, nb). The total weight of this path is the length of the longest common subsequence
between A and B, and the actual path gives us the actual subsequence: each vertical arc
taken represents a deletion in A, each horizontal arc represents a deletion in B and each
diagonal arc (of weight 1) represents matched symbols in A and B.

Dynamic Programming techniques based on this principle are of common use and have
been applied in parallel and sequential algorithms. The knowledge of this algorithm is not
necessary for the comprehension of this report, so it will not be presented here. In fact,
this algorithm is a restricted form of the one that solves the more general string editing
problem. We suggest that the reader look for the algorithm by Hirschberg [8], that can be
found in [7, 16, 19]. With this algorithm, the basic LCS problem can be solved in O(nanb)
time and O(na + nb) space.

For the ALCS problem we are interested in more paths than just the one from G(0, 0)
to G(na, nb). We have then the following definition:

Definition 2.1 (CG(i, j)) For 0 ≤ i ≤ j ≤ nb, CG(i, j) is the largest total weight of a path
from TG(i) to FG(j) in G. If i > j (there is no path between TG(i) and FG(j)), CG(i, j) = 0.

2We use F (Floor) and not B (Bottom) to avoid confusion with string B.
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CG(i, j) represents the length of the longest common subsequence of A and the substring
Bj

i+1. When i = j, there is no such substring and the only path from TG(i) to FG(j) is

formed exclusively by vertical arcs and has total weight 0. When i > j, B j
i+1 also does not

exist and we adopt CG(i, j) = 0.
The values of CG(i, j) have the following properties:

Properties 2.1

1. For all i (0 ≤ i ≤ nb) and all j (1 ≤ j ≤ nb) we have CG(i, j) = CG(i, j − 1) or
CG(i, j) = CG(i, j − 1) + 1.

2. For all i (1 ≤ i ≤ nb) and all j (0 ≤ j ≤ nb) we have CG(i − 1, j) = CG(i, j) or
CG(i− 1, j) = CG(i, j) + 1.

3. For all i and all j (1 ≤ i < j ≤ nb) we have that if CG(i− 1, j) = CG(i− 1, j − 1) + 1
then CG(i, j) = CG(i, j − 1) + 1.

Proof. We demonstrate the property 2.1(1). The demonstration of 2.1(2) is similar.
Naturally, CG(i, j) and CG(i, j − 1) are integers. When i ≥ j we have CG(i, j) =

CG(i, j − 1) = 0. When i < j, looking at the paths that start at vertex TG(i) it becomes
clear that CG(i, j) ≥ CG(i, j − 1), since the best path to vertex FG(j − 1) can be extended
to FG(j) by a horizontal arc with weight 0. On the other hand, as all arcs with weight
1 are diagonal arcs, it is clear that CG(i, j) − CG(i, j − 1) ≤ 1. That is because a path
from TG(i) to FG(j − 1) can be created based on the best path to FG(j), eliminating the
vertices in column j and completing the path to FG(j− 1) with vertical arcs. One diagonal
is eliminated at the most.

To demonstrate 2.1(3), we suppose that CG(i− 1, j) = CG(i− 1, j − 1) + 1 for a certain
pair (i, j), 1 ≤ i < j ≤ nb. Let C1 be the leftmost path from TG(i− 1) to FG(j) with total
weight CG(i− 1, j) (C1 is such that no path from TG(i− 1) to FG(j) with the same weight
has any vertex to the left of a vertex of C1 in the same line). Let C2 be the leftmost path
from TG(i) to FG(j− 1) with total weight CG(i, j− 1). It is easy to show that such leftmost
paths shall exist and that they have a unique common subpath with at least one vertex. Let
C1a and C1b be the subpaths of C1 that do not belong in C2, C1a is the subpath starting
at TG(i− 1) and C1b is the subpath ending at FG(j). Let C2a and C2b be subpaths of C2
defined analogously. The common subpath is denoted C. See Figure 3.

Naturally, the weight of C1b must be equal to the weight of C2b plus 1. Otherwise we
would have a path from TG(i− 1) to FG(j − 1) (formed by C1a, C and C2b) with the same
weight as C1, which contradicts our hypothesis. So, the path composed by C2a, C and
C1b will have a total weight equal to the weight of C2 plus 1, which implies CG(i, j) >
CG(i, j − 1). By 2.1(1) we conclude that CG(i, j) = CG(i, j − 1) + 1.

2

Property 2.1(3) is a variation of the Monge properties. In [18] this kind of properties is
extensively used to solve the All-Substrings Alignment problem [2], specially in some special
cases related to the ALCS problem. These results will be commented in Section 3, that
contains the exposition of the sequential algorithm for the ALCS problem.

Property 2.1(1) is important because it indicates that for a fixed value of i, the values of
CG(i, 0), CG(i, 1), CG(i, 2), . . .CG(i, nb) form a non-decreasing sequence that can be defined
in an implicit way, indicating just the values of j for which CG(i, j) > CG(i, j − 1).
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C1a

C2a

C2b

C1b

C

i− 1 i

j − 1 j

TG

FG

Figure 3: Demonstration of Property 2.1(3).

This fact was used in several sequential algorithms for the LCS (see [4, 9, 17]). It is also
important for the CREW-PRAM algorithm presented by H. Lin and M. Lu [12], that is the
basis for the algorithm described in this report and for the following definition:

Definition 2.2 (Matrix DG) Let G be the GDAG for the ALCS problem with strings A
and B. For 0 ≤ i ≤ nb, DG(i, 0) = i and for 1 ≤ k ≤ na, DG(i, k) indicates the value of j
such that CG(i, j) = k and CG(i, j − 1) = k − 1. If there is no such value, DG(i, k) =∞.

This definition implies C(i, j) ≤ na. We define DG(i, 0) = i and not 0 because this
simplifies the exposition of the parallel algorithm, as will soon become clear. Notice that, for
notational simplicity, DG will be treated as a matrix with indices starting at 0. We denote
Di

G the line i of DG, that is, the vector composed by DG(i, 0), DG(i, 1), . . . , DG(i, na).
Matrix DG is essential to the CGM algorithm that will be presented, being the main form
of data representation used during its execution.

For an example, let us take the GDAG from Figure 2. The values of CG(i, j) and
DG(i, k) are displayed in tables 1 and 2 (page 10).

From the values of DG(i, k) we can obtain the values of CG(i, k). Furthermore, the
following results [11, 12] indicate that the information contained in DG can be represented
in space O(na + nb), instead of the O(nanb) space necessary for the direct representation.

Properties 2.2

1. If k1 < k2 and DG(i, k1) 6=∞ then DG(i, k1) < DG(i, k2).

2. If i1 < i2 then DG(i1, k) ≤ DG(i2, k).

3. If DG(i1, k1) = j1 and j1 6= ∞ then for all i, i1 ≤ i ≤ j1, there is k such that
DG(i, k) = j1. In other words, if component j1 appears in line Di

G then it also appears

in all the lines up to line Dj1
G .

4. If DG(i1, k1) = DG(i2, k2) = j1 then for all i, i1 ≤ i ≤ i2, there is k such that
DG(i, k) = j1. In other words, if j1 appears in lines Di1

G and Di2
G then it also appears

in lines between Di1
G and Di2

G .

Proof. If k1 < k2 and j1 = DG(i, k1) 6=∞ then CG(i, j1) = k1. CG(i, j) does not decrease
with j, so if there is j such that CG(i, j) = k2 then j > j1. If there is no such j then
DG(i, k2) =∞. In either case we have DG(i, k1) < DG(i, k2), proving (1).
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If i1 < i2, by Property 2.1(2) CG(i2, j) ≤ CG(i1, j) for all j. If DG(i1, k) > DG(i2, k) 6=
∞ for some value of k, then for j = DG(i2, k) we have CG(i2, j) = k > CG(i1, j), a
contradiction. Thus (2) follows.

The demonstration of (3) is done by induction on i. The presence of j1 in Dj1
G follows

from Definition 2.2. Now let us suppose that for a certain value of i (i1 ≤ i < j1 6= ∞)
we have DG(i, k) = j1 for some value of k (the specific value of k is not important). This
means that CG(i, j1) = k = CG(i, j1 − 1) + 1. By Property 2.1(3) we have CG(i + 1, j1) =
CG(i+1, j1−1)+1, which means that there is some k such that DG(i+1, k) = j1, concluding
the inductive step. This step applies while the condition for Property 2.1(3) (i + 1 < j1) is
true. So, j1 appears in every line from Di1

G to Dj1−1
G .

Property (4) can be easily demonstrated with (3), since DG(i, k) can only be j1 if i ≤ j1.
2

Properties 2.2(2) and 2.2(3) are used to reduce the space necessary to represent DG,
because they show that two consecutive lines of DG are very similar. We state this in a
more precise way now.

Properties 2.3 For 0 ≤ i < nb,

1. There is one unique finite component of Di
G that does not appear in Di+1

G , which is
DG(i, 0) = i.

2. There is at most one finite component of Di+1
G that does not appear in Di

G.

Proof. Property (1) follows directly from Property 2.2(3). If j1 appears in line Di
G then

it appears in all the following lines, up to line j1. As DG(i, 0) = i, this is the last line in
which i appears. All the other components from Di

G are larger than i (by Property 2.2(1))
and also appear in Di+1

G .
By Property 2.2(2) we have that Di+1

G cannot have more finite components than Di
G.

As only one finite component from Di
G does not appear in Di+1

G , there is at the most one
new component in Di+1

G . 2

Properties 2.3(1) and 2.3(2) indicate that we can transform one line of DG in the follow-
ing line through the removal of one component (the first one) and the insertion of another
component (finite or not). So we say that any two consecutive lines of DG are 1-variant .
Any r + 1 consecutive lines of DG we have that they are r-variant , because from any of
these lines we can obtain another one by the removal and insertion of r components at the
most.

This suggests a representation for DG in space O(na + nb). This representation is
composed by D0

G (the first line of DG), that has size na + 1, and a vector that has size nb,
defined below.

Definition 2.3 (Vector VG) For 1 ≤ i ≤ nb, VG(i) is the value of the finite component
that is present in line Di

G but not in line Di−1
G . If there is no such component, then VG(i) =

∞.

Table 3 (page 10) shows VG for the GDAG of Figure 2. It is worthy to compare the
three representations already commented: by CG (Table 1), by DG (Table 2) and this last
one.

The structure formed by VG and D0
G is important to the parallel algorithm, since the

main strategy involves the division of the original GDAG in strips and the resolution of
the ALCS in each strip. The strips are then united, which requires the transmission of the
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j
0 1 2 3 4 5 6 7 8 9 10 11 12 13

CG(0, j) 0 1 2 3 4 5 6 6 7 8 8 8 8 8

CG(1, j) 0 0 1 2 3 4 5 5 6 7 7 7 7 7

CG(2, j) 0 0 0 1 2 3 4 4 5 6 6 6 6 7

CG(3, j) 0 0 0 0 1 2 3 3 4 5 5 6 6 7

CG(4, j) 0 0 0 0 0 1 2 2 3 4 4 5 5 6

CG(5, j) 0 0 0 0 0 0 1 2 3 4 4 5 5 6

CG(6, j) 0 0 0 0 0 0 0 1 2 3 3 4 4 5

CG(7, j) 0 0 0 0 0 0 0 0 1 2 2 3 3 4

CG(8, j) 0 0 0 0 0 0 0 0 0 1 2 3 3 4

CG(9, j) 0 0 0 0 0 0 0 0 0 0 1 2 3 4

CG(10, j) 0 0 0 0 0 0 0 0 0 0 0 1 2 3

CG(11, j) 0 0 0 0 0 0 0 0 0 0 0 0 1 2

CG(12, j) 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CG(13, j) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: CG corresponding to the GDAG of Figure 2.

k
0 1 2 3 4 5 6 7 8

DG(0, k) 0 1 2 3 4 5 6 8 9

DG(1, k) 1 2 3 4 5 6 8 9 ∞
DG(2, k) 2 3 4 5 6 8 9 13 ∞
DG(3, k) 3 4 5 6 8 9 11 13 ∞
DG(4, k) 4 5 6 8 9 11 13 ∞ ∞
DG(5, k) 5 6 7 8 9 11 13 ∞ ∞
DG(6, k) 6 7 8 9 11 13 ∞ ∞ ∞
DG(7, k) 7 8 9 11 13 ∞ ∞ ∞ ∞
DG(8, k) 8 9 10 11 13 ∞ ∞ ∞ ∞
DG(9, k) 9 10 11 12 13 ∞ ∞ ∞ ∞
DG(10, k) 10 11 12 13 ∞ ∞ ∞ ∞ ∞
DG(11, k) 11 12 13 ∞ ∞ ∞ ∞ ∞ ∞
DG(12, k) 12 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞
DG(13, k) 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 2: DG corresponding to the GDAG of Figure 2.

k
1 2 3 4 5 6 7 8 9 10 11 12 13

VG(k) ∞ 13 11 ∞ 7 ∞ ∞ 10 12 ∞ ∞ ∞ ∞

Table 3: VG corresponding to the GDAG of Figure 2. VG and D0
G (first line from Table 2)

can be used together to reconstruct DG.
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solutions of the partial ALCS problems between processors. A compact representation for
these solutions makes the communication steps smaller.

In the following section we present the sequential algorithm for the ALCS.

3 Sequential Algorithm for the ALCS

The algorithm presented in this section is based on another one by Schmidt [18] that deals
with a similar problem, but with more flexibility with the weights of the arcs in the GDAG.

Our presentation is more complete and deals with the particular case of the ALCS. For
this presentation, several additional properties will be shown. These properties are used
only in this section, so the reading of this section is not needed to the comprehension of
the rest of the text. The one thing that must be known is that the ALCS problem can be
solved sequentially for strings of lengths na and nb in O(nanb) time and O(na + nb) space
(or O(nanb) space, if the actual common sequence is required besides its length).

3.1 Additional Properties of the ALCS Problem

For each vertex of the GDAG G we need to determine some information about the distance
between this vertex and each vertex on the top row of G. For this we have the following
definition:

Definition 3.1 (C l
G(i, j)) For 0 ≤ l ≤ na, 0 ≤ i ≤ nb and 0 ≤ j ≤ nb, C l

G(i, j) is the total
weight of the largest path between vertices (0, i) and (l, j), if there is such path. If there is
no such path (in the case that i > j), C l

G(i, j) = 0.

This definition is an extension of Definition 2.1 that deals with the internal vertices of
G (notice that CG(i, j) = Cna

G (i, j)). Now we have the following properties, that deal with
neighboring vertices in G.

Properties 3.1 For all l (0 ≤ l ≤ na) we have:

1. For all i (0 ≤ i ≤ nb) and all j (1 ≤ j ≤ nb) we have C l
G(i, j) = C l

G(i, j − 1) or
C l

G(i, j) = C l
G(i, j − 1) + 1.

2. For all i and all j (0 < i < j ≤ nb) we have that if C l
G(i− 1, j) = C l

G(i− 1, j − 1) + 1
then C l

G(i, j) = C l
G(i, j − 1) + 1.

The demonstration of these properties is omitted, for it is similar to the one already
presented to Property 2.1. The inclusion of l in these properties does not affect their nature.

Properties 3.1 are related to the differences between distances to two internal vertices
of G that are neighbors in the same line. The following properties are related to internal
vertices that are neighbors in the same column.

Properties 3.2 For all l (1 ≤ l ≤ na) we have:

1. For all i (0 ≤ i ≤ nb) and all j (0 ≤ j ≤ nb) we have C l
G(i, j) = C l−1

G (i, j) or

C l
G(i, j) = C l−1

G (i, j) + 1.

2. For all i and all j (0 < i ≤ j ≤ nb) we have that if C l
G(i− 1, j) = C l−1

G (i− 1, j) then

C l
G(i, j) = C l−1

G (i, j).
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The demonstration of these properties is also omitted.
A consequence of Properties 3.1 and 3.2 is that it is possible to encode variations in

the weights of the paths to internal vertices of the GDAG in an efficient way. If we pick a
vertex in the superior line of G, say TG(i), and determine the best possible paths from it
to two neighboring vertices in a line, say (l, j − 1) and (l, j), these paths will have the same
weight if i is below a certain limit. For values of i equal or above this limit, the weight of
the path to (l, j) will be larger (by 1) than the weight of the path to (l, j − 1). The value
of this limit depends on l and j and will be called ih(l, j).

In a similar way, the weights of the best paths from TG(i) to neighboring vertices in a
column, (l − 1, j) and (l, j), differ by 1 if i is below a certain limit iv(l, j). In the limit or
above it, the paths have the same weight.

Formally, we define:

Definition 3.2 (ih(l, j)) For all (l, j), 0 ≤ l ≤ na and 1 ≤ j ≤ nb, ih(l, j) is the smallest
value of i < j such that C l

G(i, j) = C l
G(i, j − 1) + 1. If there is no such i, ih(l, j) = j.

Definition 3.3 (iv(l, j)) For all (l, j), 1 ≤ l ≤ na and 1 ≤ j ≤ nb, iv(l, j) is the smallest
value of i ≤ j such that C l

G(i, j) = C l−1
G (i, j).

The algorithm for the ALCS is based on the determination of the limits ih and iv for all
the vertices of the GDAG. Before we proceed, we make an observation on ih: the existence
of this limit was already hinted in Property 2.2(3). The first value of i for which there is a k
such that DG(i, k) = j is ih(na, j). For values of i above this limit, j continues to appear in
Di

G, which means that there is a difference between the best paths from TG(i) to (na, j− 1)
and (na, j).

Besides ih and iv, for each vertex we need to determine two limits, i1 and i2, explained
below. Given a vertex (l, j), with 0 < l ≤ na and 0 < j ≤ nb, the best paths from the top
of the GDAG to it must have (l, j − 1), (l− 1, j − 1) or (l− 1, j) as the next-to-last vertex.
If we look for the leftmost paths, we see that they have the following property:

Property 3.3 For all (l, j), 1 ≤ l ≤ na and 0 < j ≤ nb, there are values i1 and i2 such
that the best (leftmost) path from TG(i) to (l, j) has as the next-to-last vertex:

• (l, j − 1) if 0 ≤ i < i1,

• (l − 1, j − 1) if i1 ≤ i < i2,

• (l − 1, j) if i2 ≤ i < j.

Figure 4 ilustrates Property 3.3.
The demonstration of this property is based on the impossibility of crossing of two

best-leftmost paths to a single vertex. The details are left to the reader.

3.2 Description and Analysis of the Sequential Algorithm

The determination of the four forementioned limits (ih, iv, i1 and i2) is done in a vertex-
by vertex basis, sweeping the GDAG by lines (or columns). To calculate the limits for a
vertex (l, j) it is necessary to know only ih(l− 1, j) and iv(l, j− 1), for these values indicate
differences between paths to vertices adjacent to (l, j). We will call these vertices candidate
vertices. Two distinct cases must be considered separately.

12



TG

j − 1 j
l

l − 1

0 i1 i2 j

Figure 4: Next-to-last vertex of each path in a GDAG. From the top of the GDAG, the
paths that arrive in an interior vertex pass through the adjacent vertices as shown.

Case 1 If al 6= bj , that is, the arc from (l − 1, j − 1) to (l, j) has weight 0, this arc can
be ignored and the next-to-last vertex of any path to (l, j) cannot be (l − 1, j − 1). In this
case, i1 = i2. There are two possibilities from this point:

Case 1.i iv(l, j − 1) ≤ ih(l − 1, j): there are three ranges of values to consider for i in the
choice of the next-to-last vertex in the path to (l, j):

• for 0 ≤ i < iv(l, j − 1) the best path from TG(i) to (l, j − 1) is better than the best
path to the other two candidates, so the chosen vertex is (l, j − 1).

• iv(l, j − 1) ≤ i < ih(l − 1, j): the best paths to each of the three candidates have
the same weight, so the chosen candidate is again (l, j − 1) (which gives the leftmost
path).

• ih(l − 1, j) ≤ i ≤ j: the best path from TG(i) to (l − 1, j) is better than the path to
the other two candidates, so (l − 1, j) is chosen.

So, i1 = i2 = ih(l − 1, j), ih(l, j) = ih(l − 1, j) and iv(l, j) = iv(l, j − 1).

Case 1.ii iv(l, j − 1) > ih(l− 1, j): there are again three ranges of values to consider for i.

• for 0 ≤ i < ih(l − 1, j): the chosen vertex is (l, j − 1).

• ih(l − 1, j) ≤ i < iv(l, j − 1): the best paths from TG(i) to (l, j − 1) and to (l − 1, j)
have the same weight (the path to (l − 1, j − 1) has a lower weight). The leftmost
vertex (l, j − 1) is chosen.

• iv(l, j − 1) ≤ i ≤ j: the chosen vertex is (l − 1, j).

So we have i1 = i2 = iv(l, j − 1), ih(l, j) = iv(l, j − 1) and iv(l, j) = ih(l − 1, j).

In Case 1 we have i1 = i2 = ih(l, j) = max(iv(l, j−1), ih(l−1, j)) and iv(l, j) = min(iv(l, j−
1), ih(l − 1, j)).

Case 2 If al = bj , that is, the arc from (l − 1, j − 1) to (l, j) has weight 1, We have to
consider the three candidates, but (l − 1, j − 1) has the advantage of being connected to
(i, j) through an arc of weight 1. In fact, as we search for the leftmost path among the best
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ones to (i, j), no path will pass through (l−1, j) except the one from TG(j), and so we have
i2 = j.

When i < iv(l, j − 1) the best path from TG(i) to (l, j − 1) has a lower weight than the
one to (l − 1, j − 1), compensating the weight 1 of the arc from (l − 1, j − 1) to (l, j). So,
i1 = iv(l, j − 1) and ih(l, j) = iv(l, j − 1). For similar reasons, we have iv(l, j) = ih(l− 1, j).

The preceding calculi apply to the vertices that are not in the upper and left borders of
the GDAG. For the vertices in the upper border we have ih(0, j) = j (1 ≤ j ≤ nb) and for
the vertices in the left border we have iv(l, 0) = 0 (1 ≤ l ≤ na). The other values are not
important.

From the values of ih(na, j) with 1 ≤ j < nb (related to the vertices in the lower border
of the GDAG) it is possible to determine the solution for the ALCS in the encoding that
we are using in this report (based on D0

G and VG).
At first we make D0

G(0) = 0. Then, if for a certain j we have ih(na, j) = 0, this means
that j is a component of D0

G. If ih(na, j) = i, 1 ≤ i ≤ j, this means that the first line of DG

in which j appears is Di
G, so VG(i) = j.

Algorithm 3.1 makes this procedure explicit. Notice that the limits i1 and i2 are not
necessary for the determination of D0

G and VG, so these limits are not included in the
algorithm. However, if it is necessary to make possible the fast retrieval of the actual paths
between TG(i) and FG(j) (for any i and j), then the determination and storage of the limits
i1 and i2 are necessary. These limits allow the reconstruction of the path, starting at FG(j)
and going back to TG(i), in time O(na + nb).

Algorithm 3.1: Sequential ALCS.
Input: Strings A = a1a2 . . . ana and B = b1b2 . . . bnb

.
Output: Vectors D0

G and VG related to the strings A and B.

1 For j ← 0 to nb do

1.1 ih(0, j) ← j

2 For l← 0 to na do

2.1 iv(l, 0)← 0

3 For l← 1 to na do

3.1 For j ← 1 to nb do

3.1.1 If al 6= bj then

3.1.1.1 ih(l, j)← max(iv(l, j − 1), ih(l − 1, j))

3.1.1.2 iv(l, j)← min(iv(l, j − 1), ih(l − 1, j))

3.1.2 Else

3.1.2.1 ih(l, j)← iv(l, j − 1)

3.1.2.2 iv(l, j)← ih(l − 1, j)

4 For j ← 1 to nb do

4.1 VG(j)←∞
5 D0

G(0)← 0

6 i← 1

7 For j ← 1 to nb do

7.1 If ih(na, j) = 0 then

14



7.1.1 D0
G(i)← j

7.1.2 i← i + 1

7.2 Else

7.2.1 VG(ih(na, j))← j

8 For l← i to na do

8.1 D0
G(l)←∞

end of the algorithm.

An example of the results of this algorithm can be seen in Table 4, where the values of
ih and iv are shown for each vertex of the GDAG of Figure 2 (page 6). The results in the
last line of the table (related to ih(na, j)) lead correctly to the results shown in Tables 2
and 3 (page 10).

j
bj

0 1 2 3 4 5 6 7 8 9 10 11 12 13
y x x y z x y z x y x z x

0 — — — — — — — — — — — — — —
— 1 2 3 4 5 6 7 8 9 10 11 12 13

1 y 0 1 1 1 4 4 4 7 7 7 10 10 10 10
— 0 2 3 1 5 6 4 8 9 7 11 12 13

2 x 0 0 2 3 1 1 6 4 4 9 7 11 11 13
— 0 0 2 3 5 1 6 8 4 9 7 12 11

3 x 0 0 0 2 2 2 1 1 1 4 4 7 7 11
— 0 0 0 3 5 2 6 8 1 9 4 12 7

l al 4 y 0 0 0 0 3 3 2 6 6 1 9 4 4 4
— 0 0 0 0 5 3 2 8 6 1 9 12 7

5 z 0 0 0 0 0 5 3 2 8 6 1 1 12 7
— 0 0 0 0 0 5 3 2 8 6 9 1 12

6 y 0 0 0 0 0 0 0 3 2 2 6 6 1 1
— 0 0 0 0 0 5 0 3 8 2 9 6 12

7 z 0 0 0 0 0 0 0 0 3 3 2 2 6 6
— 0 0 0 0 0 5 0 0 8 3 9 2 12

8 x 0 0 0 0 0 0 5 0 0 8 3 9 2 12
— 0 0 0 0 0 0 5 0 0 8 3 9 2

Table 4: Partial results of the execution of Algorithm 3.1 for the GDAG in Figure 2. In
each cell, the upper number represents iv(l, j) and the lower ih(l, j).

Theorem 3.1 Given two strings A and B, of lengths na and nb respectively, it is possible
to solve (sequentially) the ALCS problem for A and B in time O(nanb) and space O(nb)
(or O(nanb) to allow the retrieval of the actual best paths).

Proof. The execution time is clearly defined by the nested loops in lines 3 and 3.1, being
O(nanb). In the case where only the distances are important, we can discard the values of
ih(l, j) after the line l + 1 has been processed. So, to use the values ih(l, j), O(nb) space
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Loci · · ·
0 1 2 s− 1

DRG · · · · · ·· · · · · · · · ·

Figure 5: Storage of data from Di
G in DRG.

is required. The value of iv(l, j) must be kept only to the calculation of iv(l, j + 1), so the
space required by the values of iv(l, j) is only O(1).

The storage of the resulting vectors D0
G (space O(na)) and VG (space O(nb)) requires

O(na + nb) space. In fact, D0
G can be stored in O(nb) space, because if na > nb all values

of D0
G(k) are infinite for k > nb. For simplicity, we will consider na ≤ nb.

If the further retrieval of the paths is necessary, the necessary space becomes O(nanb),
for the storage of i1 and i2 for all the vertices. 2

The presentation of the sequential algorithm is concluded. Before we proceed to the
presentation of the CGM algorithm we will show a data structure that allows fast queries
of the components of DG and occupies less storage space than DG.

4 Compact Structure for DG

Until now we are considering two possible representations for matrix DG. The “direct”
representation has too much redundancy and so uses too much space (O(nanb)), but given
i and k DG(i, k) may be obtained in time O(1). On the other hand, the “incremental”
representation, given by vectors D0

G and VG, uses only O(nb) space but does not allow fast
accesses.

In this section we present an efficient data structure for the storage of DG. This structure
uses space O

(√
nanb

)
, allows data retrieval in time O(1) and can be constructed in time

O
(√

nanb

)
given D0

G and VG. This structure is essential to the CGM algorithm presented
later.

One of the main parameters of this data structure is s = d√na + 1e.
The data from DG is distributed in a vector DRG (reduced DG) of size O(nbs). Let

us consider first one single line of DG. Di
G (0 ≤ i ≤ nb) has size na + 1. It is divided

in s subvectors, all of size s with the possible exception of the last one. These subvectors
are stored in separate locations of DRG, so an additional vector of size s is necessary to
keep the location of each subvector (more exactly, the position of the first element of each
subvector). Let us call this additional (line) vector Loci. The (nb + 1) × s matrix formed
by all vectors Loci (one for each line Di

G) is called Loc. The indices of Loc start at 0. This
structure is shown in Figure 5.

The complete data structure is formed by vector DRG and matrix Loc. Before we
proceed with the description, we state the following lemma based on what was already
presented:

Lemma 4.1 Through DRG and Loc any element of DG may be read in time O(1).
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Proof. To locate one element of DG(i, k) in DR, first we calculate in which subvec-
tor it is stored. It is easy to see that the initial position of the subvector is given by
Loc(i, bk/sc). The displacement of the element inside the vector is (k mod s), so DG(i, k) =
DRG(Loc(i, bk/sc) + k mod s). All the operations may be done in time O(1). 2

Now we describe the construction of DRG and Loc. D0
G is the first line of DG to be

included in DRG. Each subvector of size s of D0
G is allocated in a space of size 2s in DRG,

leaving a free extra space of size s after the stored data of each subvector. This extra space
is used by the next lines of DG. So, vector Loc0 is filled with the first multiples of 2s.

The construction is done incrementally, including the data of one line of DG at a time.
What makes possible for DRG to keep the data from DG in just O(nbs) space is that the
subvectors of different lines of DG may overlap. If the data from line Di

G are already in the
structure, the inclusion of data from Di+1

G is done by the insertion of just a few elements.
As already shown in Property 2.3 and in Definition 2.3, the only difference between lines

Di
G and Di+1

G is that Di+1
G does not have the value Di

G(0) = i but may have a value that is
not in Di

G, given by VG(i+1). The construction of the representation of Di+1
G is as follows:

1. We determine which of the s subvectors of Di
G should receive element VG(i + 1) to

transform Di
G into Di+1

G . Let v be the index of this subvector.

2. We determine the position in this subvector where VG(i + 1) should be inserted.

3. All suvectors of Di+1
G with index above v are equal to the ones of Di

G, so there is no
need to rewrite them in DRG. It is sufficient to make Loc(i + 1, j) = Loc(i, j) for
v < j < s.

4. All subvectors of Di+1
G with index below v are equal to the ones in Di

G, but for a
shift to the left and the inclusion of one new element at the last position (the element
that was “thrown out” from the next subvector). The simplest way to shift the
subvectors to the left is to make Loc(i + 1, j) = Loc(i, j) + 1 for 0 ≤ j < v. The new
element of each subvector can be copied just to the right of the subvector, in position
Loc(i + 1, j) + s − 1 of DRG, provided that this position is still free. The details of
this operation will be presented shortly.

5. The subvector v of Di
G would have to be changed in a more complex way, so a new

space is allocated in DRG, and subvector v of Di+1
G is constructed there, with VG(i+1)

already in position. Loc(i + 1, v) indicates the position of this new space.

This procedure is shown in Figure 6.
Each time a new line is included in DRG, a new free space of size between 0 and s is

left to the right of each of the s subvectors. In the inclusion of the next line, part of this
free space may be consumed, meaning that there will be less space for the next lines to be
included. Eventually, the previously described procedure will not work due to the lack of
space to perform step 4. When this happens, a totally new space must be allocated in DRG

and the data of the subvector must be copied there.
So, in the inclusion of Di+1

G there are two cases where the algorithm requires the allo-
cation of a new space and copy of a subvector:

1. The subvector is the one that should contain VG(i + 1). It is copied into a new space
with VG(i + 1) already inserted.
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Loci · · ·
0 1 2 s− 1

DRG · · · · · · · · · · · · · · · · · ·

VG(i + 1)

Loci+1 · · ·
0 1 2 s− 1

Figure 6: Inclusion of Di+1
G in DRG using data related to Di

G. In this example, element
VG(i+1) must be inserted in the subvector of index 2. The darker areas represent the data
written in DRG in this step. The dashed arrows indicate data copying.

· · · · · ·empty empty

Part A Part B

2js 2js + l 2(j + 1)s

Figure 7: Allocation unit in DRG. Part A (size s) is filled with data right after the unit is
allocated. Part B (also of size s) is filled with data one position at a time as new lines of
DG are included. When filled, Part B is copied into Part A of a new allocation unit.

2. It is not possible to make a left shift of a subvector of D i
G due to the lack of space for

the inclusion of the extra element at its end. The subvector of D i+1
G , already shifted

and with the new element, is copied into a new space.

Each new space allocated has size 2s, and the first s receive the copied subvector. The
extra space is used for the inclusion of the next lines. Each new line may require a position
in this extra space. The extra space is totally ocuppied when the next position to be used
has index multiple of 2s. This allocation scheme is shown in Figure 7.

Algorithm 4.1 contains the complete description of the construction of the structure.
Variable new indicates the next space of length 2s that will be allocated in DRG.

Algorithm 4.1: Construction of the compact representation of DG.
Input: Vectors D0

G and VG.
Output: Vector DRG and matrix Loc.

1 new ← 0

2 (* Insert the data from D0
G in the structure *)

For v ← 0 to s− 1 do
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2.1 Loc0(v)← new

2.2 (* Insert the data of the subvector of index v *)
For k ← vs to min{na, (v + 1)s− 1} do

2.2.1 DRG(Loc0(v) + k − vs)← D0
G(k)

2.3 new ← new + 2s

3 (* Insert the other lines of DG *)
For i← 0 to nb − 1 do

3.1 (* Find the subvector that must receive VG(i + 1) *)
v ← min

1≤j≤s
{j|j = s or DRG(Loci(j)) > VG(i + 1)} − 1

3.2 (* Find the insertion position of VG(i + 1) in the subvector *)
r ← max

1≤j<s
{j|DRG(Loci(v) + j) < VG(i + 1)}

3.3 (* allocates a new subvector *)
Loci+1(v)← new

3.4 (* transfer the data that is to the left of position r, shifting to the left *)
For j ← 0 to r − 1 do

3.4.1 DRG(new + j)← DRG(Loci(v) + j + 1)

3.5 (* Insert VG(i + 1) *)
DRG(new + r)← VG(i + 1)

3.6 (* transfer the data that is to the right of position r *)
For j ← r + 1 to s− 1 do

3.6.1 DRG(new + j)← DRG(Loci(v) + j)

3.7 new ← new + 2s

3.8 (* sharing subvectors of Di
G and Di+1

G above v *)
For j ← v + 1 to s− 1 do

3.8.1 Loci+1(v)← Loci(v)

3.9 (* below v, share subvectors if possible *)
For j ← 0 to v − 1 do

3.9.1 (* verify if the extra space after the subvector is over *)
If Loci(j) + s ≡ 0 (mod 2s) then

3.9.1.1 (* allocate new subvector and copy data, shifting to the left *)
Loci+1(j)← new

3.9.1.2 For t← 0 to s− 2 do

3.9.1.2.1 DRG(new + t)← DRG(Loci(j) + t + 1)

3.9.1.3 new ← new + 2s

3.9.2 Else

3.9.2.1 Loci+1(j)← Loci(j) + 1

3.9.3 (* copy the first element of the next subvector to the end of this one *)
DRG(Loci+1(j) + s− 1)← DRG(Loci(j))

end of the algorithm.

Lemma 4.2 From D0
G and VG, a representation of DG based on DRG and Loc can be

constructed in O(nbs) time using O(nbs) space.
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Proof. Since there are nb + 1 lines in DG and each one requires a line of size s in Loc, it
is clear that Loc uses O(nbs) space. Let us concentrate on the space used by DRG.

The information contained in D0
G is processed in step 2 in O(s2) time and uses O(s2)

space. Then, the loop in step 3 inserts the data of each additional line of DG in nb iteractions.
It remains to be proved that on average each iteration adds O(s) data to DRG and executes
in O(s) time. Let us analyze each step of this loop.

Steps 3.1 and 3.2 can be done with binary searches in O(log s) time. The steps 3.3 to 3.6
involve only loops that execute O(s) iteractions of constant time, so they take O(s) time.
A new allocation unit of size 2s is allocated and s data are copied. Step 3.8 takes O(s) time
and does not add new data to DRG.

The analysis of step 3.9 is a little different. In fact, the loops of lines 3.9 and 3.9.1.2
together may need time and space larger than O(s). This may occur if several subvectors
get out of extra space at the same time.

We proceed with an amortized analysis. Every time it is needed to copy a subvector
into another in step 3.9.1.2, the copy is done from Part B of an allocation unit to Part A
of another allocation unit that was recently allocated (see Figure 7). If the cost of the copy
of each element is counted “previously” at the moment that the element was first written
in Part B (in step 3.9.3), we may consider the cost of step 3.9.1.2 as null. On the other
hand, step 3.9.3 will have its cost doubled, but this does not affects our results. So, the
(amortized) time of step 3.9 is O(s). The (amortized) quantity of added data is also O(s).

So, all the steps inside loop 3 require O(s) time and space. The whole loop requires
O(nbs) time and space. 2

Some improvements can be made in Algorithm 4.1. For example, the case where VG(i+
1) =∞ may be treated in a special way. Anyway, these improvements would not affect the
results of our analysis, so they are ignored for simplicity.

The results of this section may be summarized in the following theorem, a direct conse-
quence of Lemmas 4.1 and 4.2:

Theorem 4.3 Let G be the GDAG of the ALCS problem for strings A and B. From D0
G

and VG it is possible to construct a representation of DG in O
(√

nanb

)
time and space such

that any value of DG may be read in constant time.

5 Outline of the CGM Algorithm for the ALCS

In this section a parallel CGM algorithm for the ALCS will be shown. With p processors,
the algorithm requires O(nanb

p ) time and O(C log p) communication steps. During each

communication step, O(nap
1/C + nb) data needs to be sent/received by each processor. In

these expressions, C is a positive integer constant to be chosen (small values like 1 or 2 are
the most probable choices).

The time complexity of this algorithm is adequate to the solution of the basic LCS
problem. Let us suppose, for simplicity and with no loss of generality in the following
complexity analysis, that na is a multiple of p and p is a power of 2.

The algorithm involves the division of string A in p non-overlapping substrings of size
na
p . For 1 ≤ t ≤ p, processor Pt sequentially solves the ALCS problem for the strings

A
nat/p
na(t−1)/p+1 and B. The GDAG of the original problem is divided horizontally in strips,

generating p GDAGs with na
p + 1 lines. Two contiguos strips share a line.
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Figure 8: Union of partial solutions for the ALCS, with p = 8. In each strip of GDAG G,
the processors used in the solution are shown.

The sequential algorithm used in this initial step is shown in Section 3. The time

needed for the p processors to solve all the subproblems in parallel is O
(

nanb
p

)

, as shown

in Theorem 3.1.
Next, the p partial solutions are united in a binary tree fashion, using log p parallel

steps. The basic operation is the union of two neighboring strips to form a merged strip.
More exactly, the solution for the ALCS problem in the original strips are used to generate
the solution for the merged strip. At each step, several unions are done in parallel. Each
union is itself a parallel process. At each step, the number of strips are halved, the size of
the strips are doubled and the number of processors allocated to each union is also doubled.
After log p union steps we obtain the solution for the whole problem. The total parallel

time of all this steps is O
(

nb
√

na

(

1 + log na√
p

))

, as will be shown in Section 7. Figure 8

illustrates this process.
The most complex part of algorithm involves the union process of two strips. This

process is explained in Section 6.

6 Union of Partial Solutions

In this section we will see how to solve the ALCS problem for two strings A2m
1 and B, of

lengths 2m and n = nb respectively, from the ALCS solutions for Am
1 and B and for A2m

m+1

and B. The GDAGs related to the first and second subproblems will be called S (superior)
and I (inferior), respectively. The GDAG formed by the union of these two GDAGs (by
making FS = TI) will be called U .

Naturally, all the properties already described for the GDAG G also apply to these
partial GDAGs. The notation introduced for G will be adapted for these GDAGs in the
following descriptions.

As explained in Section 2, the data related to a GDAG G can be stored in a reduced
space using vectors D0

G and VG. At the beginning of the union process the solutions for the
partial GDAGs will be stored in this compact representation: vectors D0

S , D0
I (with indices

between 0 and m), VS and VI (with indices between 1 and n).
We will consider that q processors (2 ≤ q ≤ p) will be involved in the determination of

D0
U (indices between 0 and 2m) and VU (indices between 1 and n). Thus, the parameters
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for the analysis of the union process are m, n and q. For simplicity, assume m ≤ n. If
m > n, the lines of DS and DI would contain ∞ in all positions above n, and this would
be used to reduce the time and space requirements of the union process.

As shown in Section 4, it is possible to access any element from DS or DI in constant
time, if we construct (in O (

√
mn) time and space) the data structure of Section 4. Each

of the q processors constructs its own copy of these data structures in its local memory for
fast accesses.

6.1 Basic Principles of the Union Process

The main idea in use here is the same that was used in [12].
For each i, 0 ≤ i ≤ n, we build Di

U from the available data. As already seen, Di
U (k) =

DU (i, k) represents the smallest value of j such that CU (i, j), the weight of the best path
from TU (i) (vertex i at the top of GDAG U) and FU (j) (vertex j at the bottom (floor) of
GDAG U), is k. All paths from TU (i) = TS(i) to FU (j) = FI(j) have to cross the common
border FS = TI at some vertex and the total weight of the path is the sum of the weights
of the path segments in S and I. So, if we want to determine DU (i, k) we need to consider
for all l, 0 ≤ l ≤ m, the paths that cross S with weight l and then cross I with weight k− l.

Fixing l, the smallest value of j such that there is a path from TU (i) to FU (j) with
weight l in S and weight k− l in I is given by DI(DS(i, l), k− l), because DS(i, l) is the first
vertex in the common border that is at a distance of l from TU (i), and DI(DS(i, l), k − l)
is the first vertex that is at a distance k − l from the chosen border vertex. Properties 2.2
justify this choice.

By the considerations above we have the following:

DU (i, k) = min
0≤l≤m

{DI(DS(i, l), k − l)} (1)

It should be noticed that if we keep i fixed and variate k, the lines of DI that are used
are always the same. The variation of k changes just the element that is used in each line.

For each line of DI used we get an element at a different position, due to the −l term.
This “shift” suggests the following definition:

Definition 6.1 (Shift [l,W, c]) Given a vector W of length s + 1 (indices from 0 to s) and
an integer l (0 ≤ l ≤ c− s), Shift [l,W, c] is the vector of length c + 1 (indices from 0 to c)
such that:

Shift [l,W, c](i) =







∞ if 0 ≤ i < l
W (i + l) if l ≤ i ≤ s + l
∞ if s + l < i ≤ c

In other words, Shift [l,W, c] is vector W shifted to the right by l positions, expanded to
size c + 1 and completed with ∞.

We this definition we may rewrite Equation 1:

DU (i, k) = min
0≤l≤m

{Shift [D
DS(i,l)
I , l, 2m](k)} (2)

Taking all the lines related to a certain value of i we can, using the following definitions,
build a matrix that will be used to find all elements of Di

U .
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l0

Figure 9: Construction of Diag [W,M, l0].

k
0 1 2 3 4 5 6 7 8 9 10 11-16

MD[2](0, k) 2 3 4 5 6 8 9 13 ∞ ∞ ∞ ∞
MD[2](1, k) ∞ 3 4 5 6 8 9 11 13 ∞ ∞ ∞
MD[2](2, k) ∞ ∞ 4 5 6 8 9 11 13 ∞ ∞ ∞
MD[2](3, k) ∞ ∞ ∞ 5 6 7 8 9 11 13 ∞ ∞
MD[2](4, k) ∞ ∞ ∞ ∞ 6 7 8 9 11 13 ∞ ∞
MD[2](5, k) ∞ ∞ ∞ ∞ ∞ 8 9 10 11 13 ∞ ∞
MD[2](6, k) ∞ ∞ ∞ ∞ ∞ ∞ 9 10 11 12 13 ∞
MD[2](7, k) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13 ∞ ∞ ∞ ∞

Table 5: Example MD matrix. Here we have MD[2] considering a GDAG formed by the
union of two identical GDAGs as the one in Figure 2.

Definition 6.2 (Diag[W,M, l0]) Let W be a vector (initial index 0) of integers in ascending
order such that the first m′ + 1 elements are finite and W (m′) ≤ n. Let M be an (n + 1)×
(m+1) matrix (indices starting at 0). Diag [W,M, l0] is an (m′ +1)× (2m+1) matrix such
that its line of index l is Shift [MW (l), l + l0, 2m].

Diag [W,M, l0] has its lines copied from matrix M . The selection of lines to be copied
is guided by vector W . The copies are shifted, in a way that the first element of each line
is one column to the right from the first element of the preceding line. The shift amount of
the first line is given by l0. Figure 9 illustrates this construction.

Definition 6.3 (MD[i]) Let U be a GDAG for the ALCS problem, formed by the union of
GDAGs S (superior) and I (inferior). MD [U, i] = Diag [Di

S , DI , 0]. If it is clear, from the
context, that we refer to U , we will write just MD [i].

As an example, supposing that a GDAG U is formed from two copies of the same GDAG
of Figure 2, then DS and DI are equal and given by Table 2. MD[2] has its rows defined
by D2

I = (2, 3, 4, 5, 6, 8, 9, 13,∞) and its complete structure is presented in Table 5. Notice
there is no row defined from DI(2, 8) =∞.

By the preceding definitions, by solving the Column Minima Problem (see Definition 1.6
in Section 1.4) in MD [i] we find Di

U . More exactly, if Cmin [M ] is the vector of the minima
of the columns of a matrix M (Definition 1.3, page 4), we have:
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Di
U (k) = Cmin[MD [i]](k) (3)

Continuing the example of Table 5, vector D2
U would be (2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13,∞).

Theorem 6.1, to be presented shortly, shows that the matrices MD [i] belong to the class
of totally monotone matrices (Definition 1.5). In Section 9 the Column Minima Problem
(Definition 1.6) for totally monotone matrices is covered, and efficient procedures to solve
this problem, originally developed by Aggarwal et al. [1], are shown.

Before we prove that the matrices MD [i] are totally monotone, some details must be
given about the infinite elements of these matrices, more exactly were they are located and
how we compare two of them. These details were also covered in [12].

Observation 6.1 Given two infinite elements of a column j of MD[i], MD [i](l1, j) and
MD [i](l2, j) with l1 < l2, we will consider that MD [i](l1, j) > MD [i](l2, j) if and only if
l2 < j, that is, the two elements are above the main diagonal, otherwise, we will consider
that MD [i](l1, j) < MD [i](l2, j).

Observation 6.2 Since the first element of all lines of DI are finite (DI(k, 0) = k), all the
main diagonal of MD[i] is finite. By construction, all elements below this main diagonal
are infinite. Also, all finite elements in any line of MD [i] occupy adjacent positions, with
eventual infinite elements to the left and to the right.

Theorem 6.1 If we do the comparisons according to Observation 6.1, matrix MD[i] is
totally monotone.

Proof. We need to prove that every 2×2 submatrix of MD[i] is monotone, that is, that for
any l1 < l2 and j1 < j2, if MD [i](l2, j1) < MD [i](l1, j1) then MD[i](l2, j2) < MD [i](l1, j2).

Let us see the case where j2 = j1 + 1 (using two adjacent columns of MD [i]). The more
general case can be easily proved by induction from this case.

Let us initially suppose that all elements involved in the submatrix are finite. Let
v1 = DS(i, l1) and v2 = DS(i, l2). By Property 2.2(1) we have v1 < v2. Using Definitions 6.1
and 6.3, we need to prove that

DI(v2, j1 − l2) < DI(v1, j1 − l1)⇒ DI(v2, j1 − l2 + 1) < DI(v1, j1 − l1 + 1) .

Supposing that DI(v2, j1 − l2) < DI(v1, j1 − l1) and recalling that the elements of Dv2

I

are greater than or equal to v2 (this follows directly from the definition) we have that
DI(v1, j1− l1) > v2. So, Property 2.2(3) states that t = DI(v1, j1− l1) is a common element
of Dv1

I and Dv2

I .
It should be noticed that Property 2.2(1) indicates that Dv2

I is in increasing order, so
there should be no element in Dv2

I with value between the adjacent elements DI(v2, j1− l2)
and DI(v2, j1 − l2 + 1). Since DI(v2, j1 − l2) < t we have DI(v2, j1 − l2 + 1) < t. Since
t < DI(v1, j1 − l1 + 1) (again by Property 2.2(1)), we conclude that DI(v2, j1 − l2 + 1) <
DI(v1, j1 − l1 + 1) as expected. Figure 10 illustrates this discussion.

To study the case where there is at least one infinite element in the submatrix, we utilize
Observations 6.1 and 6.2. Considering the 4 elements of the submatrix, there are 16 possible
arrangements of infinite and finite elements. We have already studied the case where there
is no infinite element. We eliminate all the cases where the submatrix is clearly monotone.
The remaining cases are shown below.
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DI(v2, j1 − l2)

DI(v2, j1 − l2 + 1)

DI(v1, j1 − l1)

DI(v1, j1 − l1 + 1)

Figure 10: Proof of the monotonicity of a 2× 2 submatrix of MD [i] when all elements are
finite. This figure illustrates the GDAG I only. The marked interval in FI is comprehended
between two adjacent elements of Dv2

I , which prohibits the existence in it of any breaking
point to any vertex preceding v2.
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By Observation 6.2 cases (A) and (B) cannot occur. Case (C) can only occur if the
second column of the submatrix is formed by elements that are above the main diagonal of
MD [i], so the minimum of the second column is in the second line (Observation 6.1) and
the submatrix is monotone.

The following cases also involve Observation 6.1. In cases (D) and (E) the first column
contains elements that are below the main diagonal of MD[i], so the minimum of this column
is in the first line and the submatrix is monotone (in fact, case (E) is not possible when
we consider only submatrices that are taken from adjacent columns of MD [i]). In case (F)
the submatrix is monotone because if the first column contains elements that are above the
main diagonal of MD [i] the same will happen with the elements of the second column.

So, all 2× 2 submatrices of MD [i] are monotone and MD[i] is totally monotone 2

Given that all matrices of MD [i] are totally monotone, the union of the GDAGs may
be done through the search of the minima of their columns through Algorithm 9.4 (see
Section 9.1). This algorithm can make these searches in O(m) time for each of these n + 1
matrices, totaling O(nm) time. This is not good enough.

To solve the problem of the union in a better time we need to notice that, since adjacent
vectors of DS are very similar, matrices MD [i] for close values of i are also very similar.
This will be explored in the following section.

6.2 Elimination of the Redundancy Among Subproblems

Still exploring the ideas presented in [12], we use the fact that a set of r+1 adjacent lines of
DG are r-variant: it is possible to obtain one line from another through at most r insertions
and r deletions of elements. One important fact is that for r adjacent lines, all with length
m, it is possible to find a vector of m−r common elements, that we will call simply common
vector . We will denote Di0,r

G the common vector of lines from Di0
G to Di0+r

G related to a
GDAG G.

By Property 2.2(3), all elements of a vector Di0
G will be present in vector Di0+r

G , except
those that are less than i0 + r. For example, using data from Table 2, we have that the
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MD[U, i0 + r]

Figure 11: Structure of matrices MD [i0] and MD [i0 + r], highlighting r common blocks (in
this case, r = 3). These blocks are also present in matrices between MD [i0] and MD [i0 +r].

common elements of D0
G = (0, 1, 2, 3, 4, 5, 6, 8, 9) and D6

G = (6, 7, 8, 9, 11, 13,∞,∞,∞) are
6, 8 and 9 (the last ones of D0

G). Using larger matrices and values of r that are significantly
smaller than m, the number of common elements become close to m. In [12] two distinct
algorithms use r = log2 m and r = log4 m. The value used in this report is r = d√me.

By Property 2.2(4), all the elements present in both vectors D i0
G and Di0+r

G will be
present also in vectors Di

G for i0 < i < i0 + r. So we have a simple way to determine the
common vector: we just have to read and copy all the elements of D i0

G , discarding those
that are smaller than i0 + r. This copy takes O(m) time. In the preceding example we
would have Di0,r

G = (6, 8, 9).
Besides that, it is important to determine which elements are adjacent in all vectors,

forming “indivisible groups” that we will call common groups. In the preceding example,
the common groups of Di0,r

G are (6, 8) and (9).
The determination of the common groups can be done based on vector VG. From

VG(i0 + 1) to VG(i0 + r) we have all the elements that do not appear in the common vector
and can divide it (notice that the elements removed from D i0

G also does not appear in the
common vector but are all smaller than its elements). We determine the divisions between
groups searching for the insertion point of each element of VG, in O(log m) time per element
or O(r log m) in total.

With r possible division points, it is clear that we will have at most r + 1 groups in
Di0,r

G . These groups will be enumerated from 0 to r and group t will be called D i0,r
G [t].

The operations of common vector and common group determinations will be applied
to matrix DS in each union step of the algorithm. The lines from Di0

S to Di0+r
S lead

the construction of matrices from MD[i0] to MD [i0 + r] and, as already mentioned, the
similarities between neighboring lines in DS lead to similarities between matrices MD [i] for
close values of i. The common vector Di0,r

S contains indices of lines of DI that are present

in all matrices from MD [i0] to MD [i0 + r]. Each group Di0,r
S [t] indicates a set of lines of DI

that will be used in adjacent lines in all these matrices.
Let us consider a common group Di0,r

S [t], 0 ≤ t ≤ r. All matrices MD [i] with i0 ≤ i ≤
i0 +r will contain Diag [Di0,r

S [t], DI , li,t] as a block of contiguous lines starting at line li,t (the
value of li,t depends on the matrix and the common group). This is illustrated in Figure 11.

These common blocks cover the greatest part of matrices MD [i] when r � m. Since we
will have to solve the Column Minima Problem in each matrix, the determination of the
column minima of the common blocks may avoid the repetitive processing of these blocks.
So we have the following definition:
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Definition 6.4 (ContBl [i0, r, t])

ContBl [i0, r, t] = Cmin[Diag [Di0,r
S [t], DI , 0]]

In other words, ContBl [i0, r, t] is the vector that contains the minima of the columns of
block t, common to the matrices from MD[i0] to MD [i0 + r].

The determination of the column minima of the blocks will be covered in detail in
Section 6.3.

We recall the definition of the contraction of lines (Definition 1.7, page 5). If for a
matrix MD[i] we perform successive contractions of lines, one for each common block, the
result will be another totally monotone matrix that will be called ContMD [i]. This matrix
is such that Cmin [MD [i]] = Cmin[ContMD [i]] (see Theorem 1.2).

The common blocks appear in different matrices MD [i] in different positions, but the
results of the search for the column minima in these blocks can be used in all matrices.
More precisely, if a common block t appears in line li,t of matrix MD [i], the contraction
of this block in this matrix is done by the simple substitution of the block by the vector
Shift [li,t,ContBl [i0, r, t], 2m]. In Section 6.4 we show how this substitution is done.

Each matrix ContMD [i] will contain, besides the r+1 lines generated by the contraction
of the common blocks, at most r additional lines. As already mentioned, r = d√me and
so the contraction of the matrices reduce their height to O(

√
m). The benefit of operating

over r + 1 = d√me + 1 matrices of reduced height more than compensates the additional
cost of the contraction of the common blocks.

The next sections will contain the details and analysis of each step of this procedure.

6.3 Determination of the Column Minima for the Common Blocks

In this section we cover the determination of vectors ContBl [i0, r, t], 0 ≤ t ≤ r. Each of these
vectors contains the solution for the Column Minima Problem for a matrix Diag [D i0,r

S [t], DI , 0].
Each matrix has width Θ(m) and the sum of the heights of all of them is O(m) (the length
of the common vector Di0,r

S ).

As already mentioned, the r + 1 common groups of Di0,r
S may be determined in O(m)

time. We call mt the length of the common group t, that defines the height of matrix
Diag [Di0,r

S [t], DI , 0].
The elements of the groups may be accessed in O(1) time, just like the elements of DS

and DI , so we may consider that the elements of the matrices are (indirectly) accessible in
constant time.

In Section 9.2 an algorithm for the Column Minima Problem for totally monotone
matrices is shown (Algorithm 9.4). This algorithm finds the vector of solutions for block t
in O(mt+m+mt log(m/mt))) time (Theorem 9.5). With this, the time for the determination
of all r vectors ContBl [i0, r, t] is Θ(mr) = Θ(m

√
m), too much for our objectives.

Algorithm 9.4 may be adapted as suggested in Section 9.2 (Corollary 9.6) to build a data
structure that allows queries on the column minima of the blocks in O(log mt) = O(log m)
time. The larger access time for these minima is compensated by a smaller construction time
of O(mt log(m/mt)). The time for the construction of the structures for all the matrices is
O(m log m).

At the end of these constructions, vectors ContBl [i0, r, t] will be available for queries in
O(log m) time per element. The space utilized in the construction and storage of all these
vectors is O(m log m) (Corollary 9.6).
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6.4 Representation of Matrices ContMD [i]

Once the column minima of the common blocks are determined, we can proceed with the
determination of the column minima of all matrices ContMD [i]. These minima are the
elements of the matrix we are trying to build, DU .

To describe the solution of these minimization problems we initially need to describe how
ContMD [i] (i0 ≤ i ≤ i0 + r) is represented and accessed. All the lines of these matrices are
already available, some in a direct form (through the lines of DI), some indirectly (through
the representation of vectors ContBl [i0, r, t], as seen in the previous section). To build a
particular matrix it is necessary to specify which lines will be used, and in which order.
Each line has to be shifted to the right by a certain amount, and this amount changes from
matrix to matrix.

Since matrices ContMD [i] will be processed sequentially, we can build a structure that
is capable of representing just one matrix at a time, modifying it at each step to represent
the next matrix; Two vectors will be used to accomplish this, both of size 2r + 1 (indices
from 0 to 2r). Vector Lin will indicate the source of the data of each line of ContMD [i]
(this source can be a line of DI or a vector ContBl [i0, r, t]). Vector Shf will indicate how
much each source has to be shifted to the right.

The construction of ContMD [i0], the first matrix in the range, is done directly with Di0
S .

This line of DS is read element by element and the vectors Lin and Shf are filled starting
at index 0. Each element of Di0

S that is not part of the common vector is inserted in the
next position of Lin, representing one single line of DI . When an element that is part of
the common vector is found in Di0

S , it and all the elements of the same common group are
substituted in Lin by a reference to the corresponding vector ContBl [i0, r, t], representing
an already contracted block of lines.

The first position of Shf receives 0. For l > 0, Shf (l) receives Shf (l− 1) + 1, if the item
registered in Lin(l− 1) is a single line, or Shf (l− 1) + mt, if the item is a contracted block
of height mt.

This construction can be done in time O(m). For reading any element of ContMD [i0](l, k)
we proceed in this way: Lin(l) indicates the source of the data, a vector from which we
get the element of index k − Shf (l). In the case that this index is not usable, the element
returned is∞. The total access time is O(1) for single lines, O(log m) for contracted blocks.

When line Di0
U = Cmin[ContMD [i0]] is determined and matrix ContMD [i0] is no longer

necessary, we may proceed to the next matrices. The changes in Lin and Shf for each
matrix ContMD [i], i0 < i ≤ i0 +r, is done by the insertion of VS(i) in Lin. All the elements
smaller than VS(i) (including those that represent blocks of lines with indices smaller than
VS(i)) are shifted one position to the left. The one that was in position 0 is discarded. The
corresponding positions in Shf are decremented and the one that corresponds to VS(i) is
calculated. All this can be done in O(r) = O(

√
m) time.

The additional space for the representation of the matrices is O(
√

m) and the total time
for the maintenance of this representation during the processing of r + 1 matrices is O(m).

We will now see how these matrices are actually used. From now on, we will consider
that the access time to ContMD [i](l, k) is O(log m), ignoring the implementation details.

6.5 Determination of lines from i0 to i0 + r of DU

The determination of line Di0
U is done based on ContMD [i0], using Algorithm 9.4. This

determination takes O(
√

m log2 m) time, by Corollary 9.6, where the extra log m factor is
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due to the access time of each item of ContMD [i0]. Throughout this section, this log m
factor will appear in all time estimates. An extra O(m) time is necessary to make explicit
all elements of Di0

U .
Each of the following lines of DU is generated based on the preceding one. Here we

have a huge difference from the procedure of Lu & Lin ([12]), as the parallel model in
consideration in that paper is the PRAM, requiring the simultaneous determination of all
lines of DU .

Using Properties 2.3, if we have Di
U we can obtain Di+1

U through the deletion of the first
element and the insertion of a new one, VU (i + 1), in order with the other elements. All
elements of Di

U that are smaller than VU (i+1) are shifted one position to the left (the first
one, as already said, is removed). The other elements are kept in their positions.

So, the determination of Di+1
U may be done simply by determining VU (i + 1), avoiding

the search for the minima of all the columns of ContMD [i+1]. If the minimum of a certain
column k is equal to Di

U (k), this means that the insertion position of VU (i + 1) is less than
k. If the minima of column k is larger than DU (i, k), this means that the insertion position
of VU (i + 1) is k or greater.

There are 2m + 1 columns in ContMD [i + 1]. We take the columns of index multiple of
r = d√me (except 0) and determine the minimum in each of them. This can be done through
Algorithm 9.4 for the submatrix ContMD [i + 1](l, k)[k = rs ≤ 2m, s = 1, 2, . . . , b2m/rc].
This submatrix has less than 2

√
m columns and approximately

√
m lines, so Algorithm 9.4

executes in O(
√

m log m) time.
We then compare the minima of the selected columns with the corresponding elements

of Di
U (the indices are multiple of r). Let s0 be the smallest value of s such that DU (i, rs)

is equal to the minimum of column rs of ContMD [i+1]. We know that VU (i+1) has to be
in a column in the range from k1 = r(s0 − 1) to k2 = rs0. If there is no such s0, VU (i + 1)
has to be in a column in the range from k1 = rb2m/rc and k2 = 2m. The determination of
s0 may be done in O(log m) time by a binary search.

We obtain the value and insertion position of VU (i + 1) using again Algorithm 9.4, now
for the submatrix ContMD [i + 1](l, k)[k1 ≤ k ≤ k2], and comparing the column minima
with the corresponding values of Di

U . This step also requires O(
√

m log m) time.
We conclude that the determination of lines from i0 + 1 to i0 + r of DU may be done

in O(r
√

m log m) = O(m log m) time. Including the determination of line i0, we still have
O(m log m) time.

An important observation: this procedure demands that the line D i
U is available for

queries in constant time during the determination of VU (i + 1). This can be accomplished
using the structure presented in Section 4 for the representation of matrix DU . Initially we
store Di0

U . Then, for each new element of VU the structure is updated in time O(
√

m) to
represent the new determined line of DU .

Since we are interested in producing only D0
U and VU (the compact representation of

DU ), the other lines of DU are used only to determine the elements of VU and can be
discarded when they are no longer necessary. The structure of Section 4 can be easily
modified to occupy only O(m) space, enough to contain the elements of the last determined
line of DU .

6.6 Complete Analysis of the Union Process

Using the redundancies among matrices MD [i] it is possible to determine D i0
U and VU (i) for

i0 ≤ i ≤ i0 + r in O(m log m) time: O(m log m) is spent on the contraction of the groups of
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common lines of matrices MD [i], O(m) is spent on the maintenance of matrices ContMD [i]
and O(m log m) is spent on the determination of results. Considering that there are a total
of (n + 1)/(r + 1) groups of r + 1 matrices MD [i] to process in this way, the total time for
the determination of D0

U and VU from DS and DI is O((nm/r) log m) = O(n
√

m log m).
We may split this work among q processors through the division of DS among them.

Each block of r lines of DS is used to determine r lines of DU . The processing of each
block is independent of the others. With this, the time spent in the union drops to
O((n

√
m log m)/q).

We still need to consider the time spent (before the union itself) on the construction of
the compact representations of DS and DI , as shown in Section 4. The biggest problem
is the representation of DI , that has to be available in the local memory of all processors.
This construction takes O(n

√
m) time and is done by all processors in a redundant manner.

With these results we may present the following lemma:

Lemma 6.2 Let U be a GDAG (2m + 1) × (n + 1) for the ALCS problem, formed by the
union of the (m+1)× (n+1) GDAGs S (superior) and I (inferior). The determination of

D0
U and VU from D0

S, VS, D0
I and VI can be done by q processors in O

(

n
√

m
(

1 + log m
q

))

time and O(n
√

m) space.

7 Analysis of the CGM Algorithm for the ALCS Problem

The parameters of the complete problem are the lengths of the strings A and B and the
number of processors, respectively na, nb and p. As already mentioned, the resolution of

the ALCS in the p GDAGs defined by p substrings of A takes O
(

nanb
p

)

time.

The log p union steps that follow take O
(

n
√

m
(

1 + log m
q

))

time each one, as seen in

Lemma 6.2. The parameters q, n and m are such that n = nb and m = naq
2p , turning the

time expression into

O

(

nb
√

naq√
2p

(

1 +
log naq

2p

q

))

= O

(
nb
√

na√
p

(√
q +

log na√
q

))

.

So, the time for each union step is defined by a single variable, that is the number of
processors involved with each new GDAG produced, q. This number doubles at each step,
so the sum of the times of all the union steps is

O

(

nb
√

na√
p

(
log p
∑

i=1

(
√

2)i +

log p
∑

i=1

log na

(
√

2)i

))

= O

(
nb
√

na√
p

(
√

p + log na)

)

=

O

(

nb
√

na

(

1 +
log na√

p

))

.

In order to guarantee a linear speed-up for the CGM algorithm, the time above must

be O
(

nanb
p

)

. This is achieved if p <
√

na, so we choose this to be the limit for the number

of processors to be used in our algorithm.
We now study the communication complexity. When there are q processors working in

a union of GDAGs, each one determines nb/q elements of VU and needs to send this to other

30



2q − 1 processors that will work in the next union step. So, for the transmission of VU we
have O(nb) data sent/received per processor in a communication round.

The processor that determines D0
U needs to transfer the naq

p elements of these vector

to other 2q − 1 processors, so it transfers O( naq2

p ) data in one communication round. Our
computational model does not consider communication broadcasts.

For some constant C, the transfer of D0
U may also be done in C communication rounds,

with only O
(

naq1+1/C

p

)

data transfered by each processor: in the first round the processor

that determined D0
U broadcast this vector to bq1/Cc other processors, that in the next round

transmit to other bq2/Cc processors and so on. There are other schemes for reducing the
amount each processor has to send, utilizing a larger number of rounds. We will use this
one, that keeps the number of rounds constant for each union step.

The union step with the largest amount of data to be transfered is the last one, when
all processor need to send O(nap

1/C + nb) data, already considering D0
U and VU .

In the last union step, vectors D0
G and VG are determined for the complete GDAG

G, that represents the full ALCS problem. With a little change in the algorithm, each
processor can generate and keep part of DG in a compact structure. In this way, processor

Pt (1 ≤ t ≤ p) will have the data of the lines from D
bnb(t−1)/pc
G to D

bnbt/pc−1
G .

These results are summarized in the following theorem:

Theorem 7.1 Given two strings A and B, respectively of lengths na and nb, let G be the
GDAG for the ALCS Problem for A and B. The construction of DG can be done by p <

√
na

processors in O
(

nanb
p

)

time, O(nb
√

na) space per processor and O(C log p) communication

rounds with O(nap
1/C + nb) data transfered from/to each processor.

Matrix DG allows the determination of the similarity of string A and any substring of B,
but not in O(1) time. For this it would be necessary to build matrix CG (Definition 2.1). One
access to CG(i, j) may be simulated with DG (compact representation or not) in O(log na)
time, using a binary search in Di

G to find the smallest value of k such that Di
G(k) is larger

than j. The value of CG(i, j) is k − 1.
If a quicker access is desirable, a representation of CG can be constructed. The con-

struction is very simple: each line of DG is used to build a line of CG in time O(nb). The
complete construction, done by p processors, takes O(n2

b/p) time. The space required is
also O(n2

b/p) per processor.
These results are summarized below:

Theorem 7.2 Given two strings A and B, respectively of lengths na and nb, let G be the
GDAG for the ALCS Problem for A and B. The construction of CG can be done by p <

√
na

processors in O
(

(na+nb)nb

p

)

time, O(nb max{√na, nb/p}) space per processor and O(C log p)

communication rounds with O(nap
1/C + nb) data transfered from/to each processor.

It should be noticed that to get the similarity of A and B (basic LCS Problem) only
D0

G is needed. The similarity is equal to the index of the last finite element of DG.

8 Obtention of the Longest Common Subsequence

Normally there is no interest in the obtention of the actual longest common subsequence
for string A and all substrings of B. The lengths of these subsequences are determined as
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previously shown and if an interest in any of the subsequences arises it can be determined
later. To keep a data structure that allows the fast obtention of any common subsequence
requires too much space, so our objective here is to maintain some data that allow the
obtention of a common subsequence in a reasonable time.

Particularly, the algorithm presented in this report for the ALCS can be used for the
solution of basic LCS, since the complexity of this algorithm is satisfactory also for the
LCS. In other words, this algorithm may be applied in situations where a particular longest
common subsequence (the one for string A and the complete string B) is desired.

8.1 Basic Procedure

We present now some extensions to the CGM algorithm for the ALCS that allow the obten-
tion of the longest common subsequence of A and any substring of B in O(nb log p+na log na)
time and O(log p) communication rounds.

A recursive procedure is used, decomposing a GDAG in smaller GDAGs at each call.
The union steps are followed “backwards”, utilizing data collected during these steps.

In a union step, two GDAGs S and I are united to determine a new GDAG U . In the
sequence determination phase, the best path from TU (i) = TS(i) to FU (j) = FI(j) must
be determined. A vertex in FS = TI (the common border) that belongs to this path is
determined, say FS(x) = TI(x). There may be several vertices of the path in the border,
and FS(x) = TI(x) will be the leftmost one. This vertex will be called the crossing vertex
between S and I.

After that, the best path from TS(i) to FS(x) and the best path from TI(x) to FI(j)
are determined, which is done recursively, that is, S and I will be decomposed in smaller
GDAGs and new crossing vertices will be found inside them. This recursion stops when a
path in a basic GDAG (whose matrix DG were determined by a single processor and not in
a union step) is to be determined.

Then, the p GDAGs that were used in the initial step of the algorithm are used again.
The paths in these GDAGs are determined by the p processors in parallel, in O(nanb/p) time
and O(na/p + nb) space per processor using the algorithm by Hirschberg [8]. The complete
path is formed by the union of the paths in the basic GDAGs. Figure 12 illustrates the
process.

Figure 12 also shows which processor will contain the data for a particular GDAG. Each
processor keeps the data of at most two GDAGs, neighbors is some union step. The data
that processor Pt stores are generated at step w(t) = max{x | t ≡ 0 (mod 2x)}. If w(t) = 0,
processor Pt stores data from two of the basic p GDAGs.

Each processor uses these data in the determination of one of the vertices in the de-
sired path. This data distribution allows the determination of the path with very little
communication.

8.2 Determination of the Crossing Vertices

As always, let U be a (2m+1)× (n+1) GDAG resulting from the union of (m+1)× (n+1)
GDAGs S and I. The data structures used to unite these GDAGs are vectors D0

S , VS ,
D0

I and VI . These structures may be kept in memory after the union steps, for they do
not occupy too much space. They contain the data that are transfered during the union
steps and are later used to build the compact representation of Section 4. This compact
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Figure 12: Obtention of the path from TU (i) to FU (j). At each step, the data that was
determined in the union steps are used in the reverse order to obtain the crossing points
between GDAGs. In the last step, the subpaths inside the GDAGs are determined. In this
figure, each GDAG indicates the processor that contain the data about it.

representation allows fast retrieval of data but occupies too much space, so no data are kept
in this format after the union steps.

To obtain the path from TU (i) to FU (j) two vectors are needed: Di
S , that gives infor-

mation about the paths from TU (i) to the common line FU = TI , and Dj
Irev , that gives

information about the paths from the common line to FI(j). This last vector is equivalent
to Dj

I , if all the arcs of I were reversed. Its definition is given below:

Definition 8.1 (Vector Dj
Irev) Let I be a GDAG (m+1)×(n+1) for the ALCS problem.

For 0 ≤ j ≤ m, Dj
Irev (0) = j and for 1 ≤ k ≤ n, Dj

Irev(k) indicates the value i such that
CI(i, j) = k and CI(i + 1, j) = k − 1. If there is no such value, DIrev(i, j) = −∞.

It is convenient to compare definitions 2.2 (page 8) and 8.1 now. Both definitions are
very similar, with exchanged roles for variables i and j. We recall that CI(i, j) indicates the
weight of the best path from TI(i) to FI(j). Notice that the elements of Dj

Irev are sorted
decreasingly.

For better comprehension, Table 7 shows Dj
Irev for several values of j, using GDAG G

of Figure 2 as I. The data from CI (in this case CG) for the same GDAG are shown in
Table 6 (it is the same table from page 10).

The following observations can be easily deduced from the definitions:

Observation 8.1 For any GDAG G, given two vertices TG(i) and FG(j), the weight of the
best path between these vertices (CG(i, j)) is equal to:

1. the number of elements of Di
G that belong in the interval ]i, j].

2. the number of elements of Dj
Grev that belong in the interval [i, j[.

These observations highlight the symmetry that exists between DG and DGrev . Now,
we will see how to obtain vectors Di

S and Dj
Irev .
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j
0 1 2 3 4 5 6 7 8 9 10 11 12 13

CG(0, j) 0 1 2 3 4 5 6 6 7 8 8 8 8 8

CG(1, j) 0 0 1 2 3 4 5 5 6 7 7 7 7 7

CG(2, j) 0 0 0 1 2 3 4 4 5 6 6 6 6 7

CG(3, j) 0 0 0 0 1 2 3 3 4 5 5 6 6 7

CG(4, j) 0 0 0 0 0 1 2 2 3 4 4 5 5 6

CG(5, j) 0 0 0 0 0 0 1 2 3 4 4 5 5 6

CG(6, j) 0 0 0 0 0 0 0 1 2 3 3 4 4 5

CG(7, j) 0 0 0 0 0 0 0 0 1 2 2 3 3 4

CG(8, j) 0 0 0 0 0 0 0 0 0 1 2 3 3 4

CG(9, j) 0 0 0 0 0 0 0 0 0 0 1 2 3 4

CG(10, j) 0 0 0 0 0 0 0 0 0 0 0 1 2 3

CG(11, j) 0 0 0 0 0 0 0 0 0 0 0 0 1 2

CG(12, j) 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CG(13, j) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6: CG corresponding to the GDAG of Figure 2(reprise).

k
0 1 2 3 4 5 6 7 8

DGrev(13, k) 13 12 11 10 9 6 5 3 0

DGrev(12, k) 12 11 10 9 6 5 3 1 0

DGrev(11, k) 11 10 9 8 6 5 3 1 0

DGrev(10, k) 10 9 8 6 5 3 2 1 0

DGrev(9, k) 9 8 7 6 5 3 2 1 0

DGrev(8, k) 8 7 6 5 3 2 1 0 −∞
DGrev(7, k) 7 6 5 3 2 1 0 −∞ −∞
DGrev(6, k) 6 5 4 3 2 1 0 −∞ −∞
DGrev(5, k) 5 4 3 2 1 0 −∞ −∞ −∞
DGrev(4, k) 4 3 2 1 0 −∞ −∞ −∞ −∞
DGrev(3, k) 3 2 1 0 −∞ −∞ −∞ −∞ −∞
DGrev(2, k) 2 1 0 −∞ −∞ −∞ −∞ −∞ −∞
DGrev(1, k) 1 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞
DGrev(0, k) 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

Table 7: DGrev corresponding to the GDAG of Figure 2 (lines in reverse order).

k
1 2 3 4 5 6 7 8 9 10 11 12 13

VG(k) ∞ 13 11 ∞ 7 ∞ ∞ 10 12 ∞ ∞ ∞ ∞

Table 8: VG corresponding to the GDAG of Figure 2. It can be used to determine a line of
DGrev .
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The determination of Dj
Irev can be done through VI alone, D0

I is not necessary. Table 8
shows VI (in this case, VG) in the same page with DIrev to facilitate the comprehension of
the following lemma:

Lemma 8.1 For all i′ < j, i′ is an element of Dj
Irev if and only if VI(i

′ + 1) > j.

Proof. If i′ < j and VI(i
′ +1) > j then by Definition 2.3, there is no element in Di′+1

I that

is not in Di′
I and is less than or equal to j. However, element i′ is in Di′

I but not in Di′+1
I .

By Observation 8.1(2) we conclude that CI(i
′, j) = CI(i

′ + 1, j) + 1. By definition 8.1, i′ is
an element of Dj

Irev .

On the other hand, if i′ < j and i′ is an element of Dj
Irev , by Definition 8.1 we have

CI(i
′, j) = CI(i

′ + 1, j) + 1. By observation 8.1(1), the number of elements of the interval
]i′, j] in DI(i

′) has to be less than DI(i
′ + 1). This can only occur if VI(i

′ + 1) > j (the
element that appears in DI(i

′ + 1) is outside the interval ]i′, j]). 2

Through this lemma, we have a simple way to construct vector Dj
Irev in O(n) time. We

make Dj
Irev(0) = j and verify vector VI from the end to the beginning, inserting in Dj

Irev

all i′ such that VI(i
′ + 1) > j.

To construct Di
S we need to insert all the elements from D0

S and VS (up to VS(i)),
discarding the ones that are smaller than i. This can be done in O(m + n) time, obtaining
a vector of size O(m) that can be sorted in O(m log m) time.

So, both necessary vectors can be constructed in O(n + m log m) time and space.
Then we proceed with the search for the crossing vertex. Let l0 be the number of

elements of Dj
Irev in the interval [i, j[. This number may be determined in time O(m) and

is equal to CI(i, j) (Observation 8.1(2) ).
To find the crossing vertex as the leftmost vertex in the best path, the natural candidates

are those indicated by Di
S . The first candidate is FS(i) = TI(i), just below TS(i), because

Di
S(0) = i. The best path from TS(i) to FI(j) that pass through this vertex has weight

l0. For the following candidates, the weight of the path from TS(i) to the candidate is one
plus the weight of the path to the preceding candidate, but the weight of the path from this
candidate to FI(j) may be smaller.

If Max(k) is the total weight of the best path that pass through candidate k (that is,
through vertex FS(Di

S(k)) ) by Observation 8.1 we have:

Max(k) = l0 + k − number of elements of Dj
Irev in the interval [i,Di

S(k)[ .

The determination of these values, for all candidates, can be done in O(m) time. Fig-
ure 13 illustrates the procedure. Getting the largest of these values we find the crossing
vertex.

So, from the data of D0
S , VS and VI it is possible, in O(n + m log m) time, determine

the crossing vertex in the path from TU (i) and FU (j).

8.3 Analysis of the Process of Obtention of the Longest Common Subse-
quence

To determine all the crossing vertices, log p steps are necessary. In each step, each processor
sends/receives just O(1) data, indicating vertices found in the previous step.

In a step where the GDAGs are (m + 1) × (n + 1), the time spent (in parallel) is
O(n + m log m). At each step m is halved, being na/2 in the first one, and n = nb in all
steps. From this we conclude that the time spent in all the steps is O(nb log p + na log na).
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TU (i) = TS(i)

FU (j) = FI(j)

FS

TI

U

I

5 6 5 4 4

Figure 13: Obtention of the crossing vertex in the path between TU (i) and FU (j). The
paths shown in S go from TU (i) to the vertices indicated in Di

S . The paths in I go from

the vertices indicated in Dj
Irev to FU (j). Next to each vertex indicated by Di

S we have the
total weight of the best path to FU (j) that pass through this vertex. The determination of
this weight involves counting of the vertices indicated by Dj

Irev that are to the left of the
vertex.

The subpaths contained in basic GDAGs may be determined in time O(nb + na/p) if
the data used during the execution of Algorithm 3.1 (sequential ALCS) are kept, occupying
space O(nanb/p). This is indicated in Theorem 3.1. However, it is more advantageous to
keep the used space low. When a path between two crossing vertices is required in a basic
GDAG, a sequential algorithm for the LCS that uses linear space is preferred (see [8]).

Each processor determines a subpath in the full GDAG, and from it a piece of the longest
common subsequence of A and B is obtained. All pieces can be joined in one communication
round of size O(na/p)

This leads to the following result, that unite the results of this section with Theorem 7.1:

Theorem 8.2 Given two strings A and B, respectively of lengths na and nb, the determina-
tion of the longest common subsequence of A and B may be done by p <

√
na processors in

O
(

nanb
p

)

time, with O(nb
√

na) space per processor and O(C log p) rounds of communication

with O(nap
1/C + nb) data transfered from/to each processor per round.

9 Appendix: Algorithms for the Monotone and Totally Mono-
tone Matrices

In this section we present the algorithms for the monotone and totally monotone matrices,
already mentioned in the previous sections. This appendix is important because, although
its results were already given by Aggarwal et al. [1], we need some further considerations to
use them. More specifically, we need to know how to find the column minima of a “wide”
matrix. Furthermore, this section makes this report more self-contained.
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For those familiar with the results of the original article, this appendix may be skipped.
However, it is important to notice that the definitions and algorithms presented here and in
Section 1.4 exchange the roles of columns and lines of the matrices in the original article (The
“rows” here are “columns” there and vice versa) and also change “maxima” for “minima”.

Our special considerations are explicited in Algorithm 9.2, Theorem 9.2 and Corol-
lary 9.6.

9.1 The Column Minima Problem in a Monotone Matrix

For monotone matrices, the (recursive) algorithm for the determination of the column min-
ima is presented here. The algorithm is defined for submatrices to make the recursion
explicit.

Algorithm 9.1: Determination of the minima of the columns of a monotone
matrix.

Input: Submatrix M(i, j)[i1 ≤ i ≤ i2, j1 ≤ j ≤ j2].
Output: Imin [M ](j), j1 ≤ j ≤ j2.

1 aux← i1

2 middle← b(j1 + j2)/2c
3 For i← i1 + 1 to i2 do

3.1 If M(i,middle) < M(aux,middle) then

3.1.1 aux← i

4 Imin[M ](middle) ← aux

5 If middle > j1 solve the problem for submatrix M(i, j)[i1 ≤ i ≤ aux, j1 ≤ j <
middle].

6 If middle < j2 solve the problem for submatrix M(i, j)[aux ≤ i ≤ i2,meio < j ≤ j2].

end of the algorithm.

Figure 14 illustrates the operation of Algorithm 9.1.

Theorem 9.1 The minima of all the columns of a monotone n×m matrix M can be found
in O(n log m + m) time and O(m) space (enough for the answer).

Proof. The proof is based on Algorithm 9.1. Steps 1 and 3 determine the minimum of the
central column of the submatrix while steps 5 and 6 deal with the columns respectively to
the left and to the right of the central column. Steps 5 and 6 deal with submatrices of the
original matrix. An element that is not in these submatrices cannot be the minimum of its
column, due to the monotonicity of M . This assures that the algorithm works correctly.

Let us evaluate the time needed by the algorithm through the number of accesses to
M that it has to do. Denoting as t(n,m) the largest possible number of accesses required
to solve the problem for a n × m submatrix , we can prove that t(n,m) ≤ f(n,m) =
(blog mc + 1)(n − 1) + 2m − 1. In fact, testing for small values of m we have f(n, 1) = n,
f(n, 2) = 2n + 1, f(n, 3) = 2n + 3 and f(n, 4) = 3n + 4.

We make an induction in m. For a n×m matrix, we have n accesses related to steps 1 and
3, plus the accesses related to the recursive calls in steps 5 and 6. Let x = imin(dm/2e). Since
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1

imin(dm/2e)

n

1 dm/2e m

Figure 14: Determination of the minima of the columns of a monotone matrix. The mini-
mum of the central column was determined, the shaded areas may be ignored. In the clear
areas the algorithm will proceed recursively.

each recursive call will involve at most bm/2c columns and since blogbm/2cc = blog mc− 1,
by the induction hypothesis we have

t(n,m) ≤ n + f(x, bm/2c)
︸ ︷︷ ︸

step 5

+ f(n− x + 1, bm/2c)
︸ ︷︷ ︸

step 6

=

n + blogbm/2c+ 1c(x − 1) + 2bm/2c − 1
︸ ︷︷ ︸

step 5

+ blogbm/2c + 1c(n− x) + 2bm/2c − 1
︸ ︷︷ ︸

step 6

≤

n + blog mc(x− 1) + blog mc(n− x) + 2m− 2 = n + blog mc(n− 1) + 2m− 2 =

(blog mc+ 1)(n− 1) + 1 + 2m− 2 = f(n,m).

This proves the superior limit, that is f(n,m) = O(n log m+m), concluding the demon-
stration. Notice that the value of x, that is determined by the position of the minimum of
the central column, has no influence in the determination of the superior limit. 2

The term m in the execution time is due to the necessity of processing all the columns,
even when the elimination of lines generates submatrices with only one line. Relaxing
this requisite, the execution time can be reduced to O(n log m), which is better for “wide”
matrices (m � n). On the other hand, the column minima cannot be made explicit (that
is, written in a vector). Aggarwal et al. [1] demonstrated that the inferior limit for the time
to solve the Column Minima problem is in fact Ω(n log m) in the case of monotone matrices,
but it is also said that the superior limit is also O(n log m), disregarding the problem of not
making the solution explicit.

Algorithm 9.1 may be adapted to work in O(n log m) time when m � n, generating
information about the minima. Unfortunately, this information does not allow the deter-
mination of these minima in constant time. The new algorithm produces a vector J of size
n+1 (with indices starting at 1), such that Imin [M ](j) = i1 for all j, J(i1) ≤ j < J(i1 +1).
So, given j, to determine Imin [M ](j) we need to make a binary search in J , which takes
O(log n) time. We can call value J(i) the starting point of line i, because it indicates the
column where the minima start to occur in line i (and stop occurring in line i− 1). Notice
that J(1) is always 1 and we will define J(n + 1) = m + 1.
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Now we present the adaptation of the Algorithm 9.1 that determines the starting points.

Algorithm 9.2: Determination of the minima of the columns of a “wide”
monotone matrix.

Input: Submatrix M(i, j)[i1 ≤ i ≤ i2, j1 ≤ j ≤ j2].
Output: J(i), i1 + 1 ≤ i ≤ i2.

1 If j1 ≤ j2 then

1.1 aux← i1

1.2 middle← b(j1 + j2)/2c
1.3 For i← i1 + 1 to i2 do

1.3.1 If M(i,middle) < M(aux,middle) then

1.3.1.1 aux← i

1.4 If aux > i1 solve the problem for submatrix M(i, j)[j1 ≤ j < middle, i1 ≤ i ≤
aux].

1.5 If aux < i2 solve the problem for submatrix M(i, j)[middle < j ≤ j2, aux ≤
i ≤ i2].

2 Else

2.1 For i← i1 + 1 to i2 do

2.1.1 J(i)← j1

end of the algorithm.

Theorem 9.2 For a monotone n ×m matrix M with n < m it is possible to construct a
structure in O(n log m) time and O(n+log m) space that allows the retrieval of the minimum
element of any column in O(log n) time.

Proof. The proof is based on Algorithm 9.2. Instead of determining the minimum of the
central column as in Algorithm 9.1, this algorithm just uses the position of this minimum
to divide the problem in smaller problems, to determine the starting points.

To prove that the algorithm works correctly, we establish just for the sake of this proof
that Imin [M ](0) = 1 and Imin[M ](m + 1) = n. We also suppose that the initial call to
Algorithm 9.2 is done for the complete matrix M as argument (that is, i1 = j1 = 1, i2 = n
and j2 = m) and that n > 1 (otherwise the algorithm would not be necessary).

We have the following invariants in the beginning of each call:

1. Imin [M ](j1 − 1) = i1.

2. Imin [M ](j2 + 1) = i2.

3. i1 < i2

It is easy to notice that the recursive calls on lines 1.4 and 1.5 maintain these invariants.
Each call establishes a value of J(i) for i1 < i ≤ i2. This can be proven by induction on

the number of columns of the submatrix. When this number is 0 (j1 > j2, which implies
j1 = j2 + 1), the starting point for all lines from i1 + 1 to i2 is j1 and the loop in line 2.1
establishes the values of J(i). When there is at least one column, line 1.4 establishes J(i)
for i1 < i ≤ aux and line 1.5 establishes J(i) for aux < i ≤ i2.
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So, the algorithm establishes J(i) correctly for 1 < i ≤ m. In the end, it is necessary to
make J(1) = 1 and J(m + 1) = n + 1.

The used space is just O(n + log m), necessary to store the starting points and to keep
the recursion stack. For the time analysis we will consider the level of each call of the
algorithm as 0 for the call that involves the complete matrix and l + 1 for each call made
recursively by a call of level l. Each call involves a set of contiguous lines of the matrix,
with at least two lines. It is easy to prove that two calls in a same level will involve, at the
most, one common line. So, there are n calls at each level at the most.

Considering all the calls in a level, the sum of all the accesses done in the loop of line 1.3
is O(n). Since the number of columns of the submatrices is halved at each new level, the
number of levels is O(log m). So, the execution time of Algorithm 9.2 is O(n log m).

Finally, as already commented, to determine Imin [M ](j) for a certain j we do a binary
search through the values of J(i), searching for i that makes J(i) ≤ j < J(i + 1). 2

9.2 The Column Minima Problem in a Totally Monotone Matrix

For a totally monotone n×m matrix, the determination of the column minima can be done
in O(n) time, if the matrix is “narrow” (n > m). In this kind of matrix, it is possible to
perform an initial step in time O(n) where several lines of the matrix are eliminated. The
resulting matrix is square and no minimum of any column is eliminated in the process. We
will first see the elimination process, then we will see how the column minima problem is
solved.

The reduction process is based on the comparison of two elements in a column. Based
on the result of this comparison, we can state that certain elements of the matrix are dead,
that is, they cannot be the minimum element of their respective columns. More precisely,
we have the following lemma:

Lemma 9.3 Let M be a n × m totally monotone matrix. For 1 ≤ i1 < i2 ≤ m and
1 ≤ j ≤ m we have that

1. If M(i1, j) ≤M(i2, j) then all elements M(i2, j
′) with 1 ≤ j ′ ≤ j are dead, and

2. If M(i1, j) > M(i2, j) then all elements M(i1, j
′) with j ≤ j ′ ≤ m are dead.

Proof. The proof is based on the monotonicity of certain 2 × 2 submatrices of M , more
exactly the ones formed by elements M(i1, j), M(i2, j), M(i1, j

′) and M(i2, j
′). If M(i1, j) ≤

M(i2, j) and 1 ≤ j ′ ≤ j then M(i1, j
′) ≤ M(i2, j

′) and this proves the affirmation 1. If
M(i1, j) > M(i2, j) and j ≤ j ′ ≤ m then M(i1, j

′) > M(i2, j
′) and affirmation 2 is proved.

2

Algorithm 9.3 performs the reduction on a n × m matrix M using Lemma 9.3. This
algorithm determines complete lines that are dead and eliminates them from M . The result
is matrix R, that is made initially equal to M . At each step, and index K is used to indicate
that all elements M(i, j) with 1 < i ≤ k and 1 ≤ j < i are dead. If k = 1 there are no dead
elements in R. Figure 15 illustrates this procedure.

Algorithm 9.3: Reduction of a totally monotone matrix.
Input: Matrix M (n×m).
Output: Matrix R (m×m) which has the same column minima as M .

1 R←M
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k + 1

n

1 k m

a

b

a

b

Elements that are dead if a > b.

Line k is eliminated.

Dead elements if a ≤ b.

If k < m then k is incremented,

else line k + 1 is eliminated.

Elements already considered dead.

Figure 15: Reduction of a totally monotone matrix.

2 k ← 1

3 While R has more than m lines do

3.1 If R(k, k) ≤ R(k + 1, k) then

3.1.1 If k < m then

3.1.1.1 k ← k + 1

3.1.2 Else

3.1.2.1 Eliminate line k + 1 from R

3.2 Else

3.2.1 Eliminate line k from R

3.2.2 If k > 1 then

3.2.2.1 k ← k − 1

end of the algorithm.

Lemma 9.4 Given a n×m totally monotone matrix M (n > m), Algorithm 9.3 produces,
in O(n) time and using O(n) additional space, a m×m matrix R such that the minimum
element of each column of R is equal to the minimum element of the corresponding column
of M . The solution to the Column Minima Problem for M can be obtained from the solution
of the same problem for R in O(m) time.

Proof. In the beginning of each iteration of the loop in line 3, it is alway true that the
elements R(i, j) with 1 < i ≤ k and 1 ≤ j < i are dead. In fact, with k = 1 no element is
dead, as already said, and if the affirmation above is true in the beginning of an iteration
it will be true in the end, because:

• If R(k, k) ≤ R(k +1, k) then by Lemma 9.3(1) all elements R(k +1, j) with 1 ≤ j ≤ k
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are dead. k may be incremented, keeping the affirmation true, given that this does not
make k > m. If k > m then all the line k + 1 would be dead and could be eliminated.

• If R(k, k) > R(k + 1, k) the by Lemma 9.3(2) all elements R(k, j) with k ≤ j ≤ m
are dead. This makes all elements in line k dead. This line is eliminated and k is
decremented, unless this makes k < 1.

The invariant affirmation just proved, and also the fact that the lines that are eliminated
are those with only dead elements, can be seen in Figure 15.

It is not explicited in Algorithm 9.3 that matrix R can be defined from matrix M with
the use of a linked list of lines, using just O(n) space. The assignment of line 1 indicates the
initialization of the linked list in time O(n). Each line elimination can be done in constant
time. Now it remains to be shown that the loop in line 3 is executed O(n) times.

Let a, b and c be the number of times that the lines 3.1.1.1, 3.1.2.1 and 3.2.1 are executed,
respectively. We have that b + c = n −m because this is the number of eliminated lines.
Since k starts at 1 and can grow up to m, we have that a− c ≤ m− 1. So, the number of
iterations of the loop in line 3 is a+b+c ≤ a+2b+c = a−c+2(b+c) ≤ 2n−m−1 = O(n).

Finally, the linked list that defines which lines of M are in R can be copied in a vector
in O(m) time. The elements of R can then be accessed in O(1) time. Once the Column
Minima Problem is solved for R, the vector can be used to give the answer for M . 2

Algorithm 9.4 solves the Column Minima Problem for totally monotone matrices using
the reduction procedure.

Algorithm 9.4: Determination of the column minima of a totally monotone
matrix.

Input: Matrix M (n×m).
Output: Imin [M ](j), 1 ≤ j ≤ m.

1 Apply Algorithm 9.3 to M , generating a reduced matrix R (m×m).

2 If m = 1 then

2.1 Determine the minimum of the (only) column of M from R and stop.

3 Else

3.1 M2 ← R(i, 2j)[1 ≤ i ≤ m, 1 ≤ 2j ≤ m] (M2 has the even columns of R).

3.2 Solve the Column Minima Problem for M2 recursively. This solution gives the
minima for the even columns of R, registered in Imin [R](2j) for 1 ≤ 2j ≤ m.

3.3 Determine Imin [R](2j+1) for 1 ≤ 2j+1 ≤ m using the results of the preceding
step.

3.4 Determine Imin[M ](j) from Imin[R](j), for 1 ≤ j ≤ m.

end of the algorithm.

Theorem 9.5 The Column Minima Problem can be solved for a totally monotone n ×m
matrix in O(n + m + n log(m/n)) time and O(n + m log m) space.

Proof. Let us first consider the operation of Algorithm 9.4 for the case when n ≥ m, then
we will extend it to the general case. When n ≥ m, the theorem affirms that the execution
time is just O(n).
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By Lemma 9.4 step 1 reduces matrix M using O(n) time and space. After the execution
of this step, matrix R occupies O(m) space, just enough to establish the relation between
lines of M and R.

Step 3.1 indicates the construction of a matrix M2 which has only the even columns of
R. As this matrix is used in the recursive call to the algorithm, the actual construction of
M2 may be implemented by a new parameter of the algorithm, that indicates the distance
between columns where the minimum is to be found. This parameter is doubled at each
recursive call, so the construction of M2 is actually done in constant time.

Step 3.3 can be solved in O(m) time. The results for the even columns divide the m
lines of R in dm/2e intervals, one for each minimum to be found in an odd column of R.
The sum of the lengths of this intervals is at most m+ d(m−1)/2e = O(m). The additional
space required for this step is constant.

Step 3.4 uses the results of the reduction in step 1, stored in O(m) space, to adapt the
minima found to M .

So, the algorithm utilizes O(n + m) time and space, not counting the recursive call in
step 3.2. The space required by a recursive call before the next call is just O(m), so the
algorithm accumulates O(m log m) space, totaling O(n + m log m).

The time spent by the algorithm without considering the recursive call is O(n + m) =
O(n). In the first recursive call the size of the matrix is m×m/2 and the time spent (not
considering the following calls) is O(m). At each new call the dimensions of the matrices
are halved, which indicates that the total time for all the calls is O(m). Since n ≥ m, the
total time spent is O(n).

The case where n < m may be treated normally by Algorithm 9.4. For the analysis
of the time spent, it is simpler to consider the following variation: initially, the Column
Minima Problem is solved for the submatrix M(i, dmj/ne)[1 ≤ i ≤ n, 1 ≤ j ≤ n], formed
by n equally spaced columns of M . Using Algorithm 9.4, this step takes O(n) time and
require O(n log n) = O(m log m) space.

With the determination of the minima of the n selected columns, the minima of the
remaining columns are restricted to n sumatrices. Each submatrix is comprehended be-
tween two selected columns and between the two lines where the minima of these columns
are situated. The application of Algorithm 9.1 to all these submatrices determines the re-
maining minima of the matrix in O(n log(m/n) + m) time. The complete algorithm takes
O(n log(m/n) + m) time and requires O(n + m log m) space. 2

In Theorem 9.5, as in Theorem 9.1, the term m in the execution time is due to the ne-
cessity of making the minima explicit, which induces the search for the minima even in sub-
matrices with just one line. If these term is discarded, the resulting time is O(n log(m/n)).
In [1] it is demonstrated that the lower limit for the time to find the minima of all the
columns in a totally monotone n×m matrix is also Θ(n log(m/n)).

For “wide” submatrices (m � n) it is worthy to consider a new variation of the al-
gorithm. Utilizing Algorithm 9.2 in place of Algorithm 9.1 (see the end of the proof of
Theorem 9.5), we can construct a vector J(i)(1 ≤ i ≤ n + 1), as explained in Section 9.1,
that allows queries for the minimum of any column in O(log n) time. This leads to the
following result.

Corollary 9.6 For a totally monotone n×m matrix M with n < m, we can build a a data
structure in O(n log(m/n)) time and O(m log m) space that allows queries to the minimum
element of any column in O(log n) time.
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São Paulo, Brazil, Dec 2002.
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