
A BSP/CGM Algorithm for the All-Substrings Longest
Common Subsequence Problem

C. E. R. Alves �

Univ. São Judas Tadeu
São Paulo, Brazil

prof.carlos r alves@usjt.br

E. N. Cáceresy

Univ. Fed. Mato Grosso do Sul
Campo Grande, Brazil

edson@dct.ufms.br

S. W. Song z

Universidade de São Paulo
São Paulo, Brazil
song@ime.usp.br

Abstract

Given two strings X and Y of lengths m and n, re-
spectively, the all-substrings longest common subsequence
(ALCS) problem obtains the lengths of the subsequences
common to X and any substring of Y . The sequential al-
gorithm takes O(mn) time and O(n) space. We present
a parallel algorithm for ALCS on a coarse-grained multi-
computer (BSP/CGM) model with p <

p
m processors that

takes O(mn=p) time and O(n
p
m) space per processor,

with O(log p) communication rounds. The proposed paral-
lel algorithm also solves the well-known LCS problem. To
our knowledge this is the best BSP/CGM algorithm for the
ALCS problem in the literature.

1. Introduction

Given two strings, obtention of the longest subsequence
common to both strings is an important problem with ap-
plications in DNA sequence comparison, data compression,
pattern matching, etc. In this paper we consider the more
general all-substring longest common subsequence problem
and present a time and space efficient parallel algorithm.

Consider a string of symbols from a finite alphabet. A
substring of a string is any contiguous fragment of the given
string. A subsequence of a string is obtained by deleting
zero or more symbols from the original string. A subse-
quence can thus have noncontiguous symbols of a string.
Given the string lewiscarroll, an example of a substring is
scar and an example of a subsequence is scroll. Given two
strings X and Y , the longest common subsequence (LCS)
problem finds the length of the longest subsequence that is

�Doctorate student at Universidade de São Paulo
yPartially supported by CNPq Proc. No. 52.2028/02-9 and FINEP-

PRONEX-SAI Proc. No. 76.97.1022.00. Visiting Professor at the Univer-
sidade de São Paulo

zPartially supported by FAPESP Proc. No. 99/07390-0, CNPq Proc.
No. 52.3778/96-1, 46.1230/00-3, 521097/01-0 and 52.2028/02-9.

common to both strings. If X = twasbrillig and Y = lewis-
carroll, the length of the longest common subsequence is 5
(e.g. warll).

The all-substring longest common subsequence (ALCS)
problem finds the lengths of the longest common subse-
quences between X and any substring of Y . Given strings
X and Y of lengths m and n, respectively, we present a
parallel algorithm for ALCS on a coarse-grained multicom-
puter (BSP/CGM) with p processors. The LCS and ALCS
problems can be solved through a grid directed acyclic
graph (GDAG). The proposed algorithm finds the lengths
of the best paths between all pairs of vertices with the first
vertex on the upper row of the GDAG and the second vertex
on the lower row. On a BSP/CGM with p <

p
m proces-

sors, the proposed parallel algorithm takes O(mn=p) time
andO(n

p
m) space per processor, withO(log p) communi-

cation rounds. To our knowledge this is the best BSP/CGM
algorithm for this problem in the literature.

Solving the ALCS problem we obviously solve also the
less general LCS problem. However, even considering the
more general problem, we managed to obtain a time com-
plexity of O(mn=p), giving linear speedup over the usual
algorithms for the LCS problem. We explore the prop-
erties of totally monotone matrices and the similarity be-
tween rows of the DG matrix as well as between consecu-
tive MD [i] matrices. Thus the amount of information to be
computed is reduced through the elimination of redundancy.
Another concern of importance is the effort to use compact
data structures to store the necessary information and to re-
duce the size of messages to be communicated among pro-
cessors.

Sequential algorithms for the LCS problem are surveyed
in [4, 8]. PRAM algorithms for LCS and ALCS are pre-
sented in [7]. The ALCS problem can be solved on a
PRAM [7] in O(logn) time with mn= logn processors,
when log2m log logm � logn.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

a

c
b

c
b

a

a
b

(0; 0)
b a a b c a b c a b a c a

(8; 13)

Figure 1. GDAG for the ALCS problem, with
X = baabcbca and Y = baabcabcabaca.

2 The BSP/CGM Model

In this paper we use the Coarse Grained Multicomputer
(BSP/CGM) [5, 6, 10] model. A BSP/CGM consists of a set
of p processors P1; : : : ; Pp with O(N=p) local memory per
processor, where N is the space needed by the sequential
algorithm. Each processor is connected by a router that can
send messages in a point-to-point fashion. A BSP/CGM al-
gorithm consists of alternating local computation and global
communication rounds separated by a barrier synchroniza-
tion. In the BSP/CGM model, the communication cost is
modeled by the number of communication rounds. The
main advantage of BSP/CGM algorithms is that they map
very well to standard parallel hardware, in particular Be-
owulf type processor clusters [5]. Our goal is to minimize
the number of communication rounds and achieve a good
speedup.

3 The Grid Directed Acyclic Graph (GDAG)

As in the string editing problem [2, 9], the all-substrings
longest common subsequence (ALCS) problem can be
modeled by a grid directed acyclic graph (GDAG). Con-
sider two strings X and Y of lengths m and n, respectively.
To illustrate the main ideas of this paper, we use the follow-
ing example. Let X = baabcbca and Y = baabcabcabaca.
The corresponding GDAG has (m + 1) � (n + 1) vertices
(see Figure 1). We number the rows and columns starting
from 0. All the vertical and horizontal edges have weight
0. The edge from vertex (i � 1; j � 1) to vertex (i; j) has
weight 1 if xi = yj . If xi 6= yj , this edge has weight 0 and
can be ignored.

The vertices of the top row of G will be denoted by
TG(i), and those of the bottom row of G by BG(i), 0 �
i � n. Given a string Y of length n with symbols y1 to yn,
denote by Y j

i the substring of Y consisting of symbols yi to
yj .

We now define the cost or total weight of a path between
two vertices.

Definition 1 (Matrix CG) For 0 � i � j � n, CG(i; j) is
the cost or total weight of the best path between vertices
TG(i) and BG(j), representing the length of the longest
common subsequence between X and the substring Y j

i+1.

If i � j (Y j
i+1 is empty or nonexistent), CG(i; j) = 0.

CG 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 1 2 3 4 5 6 6 7 8 8 8 8 8
1 0 0 1 2 3 4 5 5 6 7 7 7 7 7
2 0 0 0 1 2 3 4 4 5 6 6 6 6 7
3 0 0 0 0 1 2 3 3 4 5 5 6 6 7
4 0 0 0 0 0 1 2 2 3 4 4 5 5 6
5 0 0 0 0 0 0 1 2 3 4 4 5 5 6
6 0 0 0 0 0 0 0 1 2 3 3 4 4 5
7 0 0 0 0 0 0 0 0 1 2 2 3 3 4
8 0 0 0 0 0 0 0 0 0 1 2 3 3 4
9 0 0 0 0 0 0 0 0 0 0 1 2 3 4
10 0 0 0 0 0 0 0 0 0 0 0 1 2 3
11 0 0 0 0 0 0 0 0 0 0 0 0 1 2
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2. CG of the given GDAG.

Values of CG(i; j) are shown in Figure 2. For example,
CG(0; 9) = 8. This means the length of the longest com-
mon subsequence between X = baabcbca and Y 9

1 = baab-
cabca is 8. However, note that CG(0; 10) is also 8. That is,
if we take one more symbol of Y , the length of the longest
common subsequence is still the same. This leads to the
next definition of DG that deals with this leftmost position
(in the example, 9 and not 10) to achieve a fixed length value
(in the example 8).

The values of CG(i; j) have the following property. For
a fixed i, the values of CG(i; j) with 0 � j � n form a
nondecreasing sequence that can be given implicitly by only
those values of j for which CG(i; j) > CG(i; j � 1). This
fact has been used in several sequential algorithms for LCS
[8] and in the PRAM algorithm presented in[7] which is the
basis for our algorithm and for the following definition.

Definition 2 (Matrix DG) Consider G the GDAG for the
ALCS problem for the strings X and Y . For 0 � i � n,
DG(i; 0) = i and for 1 � k � m, DG(i; k) indicates the
value of j such that CG(i; j) = k andCG(i; j�1) = k�1.
If there is no such a value, then DG(i; k) =1.

Implicit in this definition is the fact that C(i; j) � m.
For convenience, we define DG as a matrix with indices
starting from 0. We denote by Di

G the row i of DG,
that is, the row vector formed by DG(i; 0), DG(i; 1), . . . ,
DG(i;m). As an example, we again consider the GDAG of
Figure 1. The values of DG(i; k) are shown in Figure 3.

The algorithm we propose deals directly with this repre-
sentation. To understand theDG matrix, considerDG(i; k).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

DG(i; j) 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 8 9
1 1 2 3 4 5 6 8 9 1

2 2 3 4 5 6 8 9 13 1

3 3 4 5 6 8 9 11 13 1

4 4 5 6 8 9 11 13 1 1

5 5 6 7 8 9 11 13 1 1

6 6 7 8 9 11 13 1 1 1

7 7 8 9 11 13 1 1 1 1

8 8 9 10 11 13 1 1 1 1

9 9 10 11 12 13 1 1 1 1

10 10 11 12 13 1 1 1 1 1

11 11 12 13 1 1 1 1 1 1

12 12 13 1 1 1 1 1 1 1

13 13 1 1 1 1 1 1 1 1

Figure 3. DG of the given GDAG.

Index i is the starting index of the Y string at the top row of
G. The value k is the desired length of the common subse-
quence between X and the string Y starting at i. Consider
the GDAG of Figure 1. If we start from position i of the
top row and proceed to the bottom row at the position given
by DG(i; k) then we can get a path of total weight k. Actu-
ally DG(i; k) gives the leftmost position that gives the total
weight k. Let us illustrate this with an example. Since the
length of string X is 8, the maximum value we can expect
for k is therefore 8. Let us consider DG(0; 8) = 9. This
means the following: in the GDAG of Figure 1, start from
the index 0 of the top row and take edges at either of the
three directions: by taking the diagonal we get a weight
1 while by taking the horizontal or vertical edges we get
weight 0. Now if we wish to have a total weight of 8, then
the leftmost position at the bottom row will be 9. Thus we
have DG(0; 8) = 9. If we make i greater than 0 then we
compare X with the string Y starting at position i.

The following property was proven in [7] and is impor-
tant to our results. This property suggests the definition of
VG.

Property 1 For 0 � i � n� 1, row Di+1
G can be obtained

from row Di
G by removing the first element (Di

G(0) = i)
and inserting just one new element (that can be 1).

Definition 3 (Vector VG) For 1 � i � n, VG(i) is the
value of the finite element that is present in row Di

G but
not present in row Di�1

G . If such a finite element does not
exist, then VG(i) =1.

For example, VG for the GDAG of Figure 1 is

(1; 13; 11;1; 7;1;1; 10; 12;1;1;1;1):

So we have an economical way of storing and commu-
nicating DG with O(m + n) space. We need only to store
and transmit the first row of DG, i.e. D0

G, of size O(m) and
a vector VG of size O(n).

Due to space limitation, we state the following result
without proof. Details can be obtained in [3].

Theorem 1 Given two strings X and Y of lengths m and
n, respectively, it is possible to solve the ALCS problem se-
quentially in O(mn) time and O(n) space.

Using a result by Schmidt[9] for all highest scoring
paths in GDAGs with unit weights we can solve the ALCS
problem with the above complexity. The sequential algo-
rithm for ALCS is important since it will be used in each
processor, as seen in the following. The time complexity for
this algorithm is equal to the complexity of the LCS when
solved by the classic dynamic programming algorithm, ex-
cept for a small multiplicative constant.

4 Basic Strategy of the BSP/CGM Algorithm

We will now present a BSP/CGM algorithm for the
ALCS problem of two given strings X and Y of lengths m
and n, respectively. For simplicity, we consider the number
of processors p to be a power of 2 and m to be a multiple of
p.

The algorithm divides string X into p substrings of
length m

p that do not overlap. The GDAG of the original
problem is divided horizontally into strips, thereby obtain-
ing p GDAGs of m

p + 1 rows each. Two such contiguous
strips share a common row. For 0 � i < p, processor
Pi solves sequentially the ALCS problem for the strings
X

m(i+1)=p
mi=p+1 and Y , and computes the local DG. From The-

orem 1, the time necessary for the p processors to solve the
ALCS subproblem in parallel is O(mn=p).

Then we use log p rounds to join the results, in which
pairs of partial solutions (for two neighboring strips) are
joined to give a single solution for the union of the two
strips. At each union step, the number of processors asso-
ciated to each strip doubles. After log p rounds we have the
solution of the original problem. The sum of the times of
all the union steps is O(n

p
m(1 + logmp

p)), as will be seen.
Figure 4 illustrates the union process, with p = 8. In each
strip of the GDAG G we indicate the processors used in the
solution of the GDAG of the strip.

p8

p7

p6

p5

p4

p3

p2

p1

p7 � p8

p5 � p6

p3 � p4

p1 � p2

p5 � p8

p1 � p4

p1 � p8

G G G G

Figure 4. Joining the partial solutions of
ALCS.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Thus the BSP/CGM algorithm for ALCS consists of the
two phases:

1. Each of the p processors runs the sequential ALCS al-
gorithm on its local strip and computes the local DG.

2. In log p rounds pairs of the contiguous partial solutions
are joined together successively to obtain the solution
of the original problem.

The most difficult part of the algorithm involves the
union of two contiguous strips. In particular we need to
pay special attention to the storage of DG using a compact
data structure as well as the size of messages to be commu-
nicated among processors in each union step. This is dealt
with in the next section. The union operation proper is pre-
sented in Section 6.

5 Compact Data Structures for DG

For an (n+1)� (m0+1) GDAG G, the two representa-
tions ofDG we have seen so far are not adequate. The direct
representation as matrices (as in Figure 3) presents redun-
dancy and takes much space (O(m0n)), though the obten-
tion of any individual value of DG(i; k), given i and k, can
be done in O(1) time. On the other hand, the incremental
representation through the use of the vectors D0

G and VG
uses only O(m0+ n) space but does not allow quick query-
ing of values of DG.

We now define a compact representation of DG that
takesO(n

p
m0) space and allows reads ofDG inO(1) time.

It can be constructed from D0
G and VG in O(n

p
m0) time.

This structure is essential to our algorithm. The construc-
tion is incremental by adding each row ofDG at a time. The
values of DG are stored in a vector called RDG (reduced
DG) of size O(nl), where l = dpm0 + 1e.

Before we describe the construction of RDG, we give
an overview of how a row of DG is represented. Row Di

G

(0 � i � n), of size m0 + 1, is divided into at most l sub-
vectors, all of size l with the possible exception of the last
one. These sub-vectors are stored in separate locations of
RDG, and we need an additional vector of size l to indicate
the location of each sub-vector. This additional vector is
denoted by Loci. The (n+ 1)� l matrix formed by all the
vectors Loci (one for each Di

G) is called Loc. The indices
of Loc start at 0 (see Figure 5). It can be easily shown that
the value of DG(i; k) can be obtained with Loc and RDG

in O(1) time.
Now we will show how to constructRDG and Loc. First

we includeD0
G. Each sub-vector ofD0

G of size l is allocated
in a fragment of RDG of size 2l. The extra space will be
used to allocate the next rows of DG. Thus each sub-vector
of D0

G is followed by an empty space of size l. Since we
have a lot of redundancies, the inclusion of the next row

Loci ���

012 l�1

RDG ��� ��� ��� ��� ��� ���

VG(i+ 1)

Loci+1 ���

012 l�1

Figure 5. Storing Di
G and Di+1

G in RDG.

of DG can be done in a clever way. The vector RDG (to-
gether with Loc) can contain all the data of DG in only
O(nl) space due to the fact that the sub-vectors of different
rows of DG can overlap. With Di

G already present, to in-
clude Di+1

G , we can use most of the data already in the data
structure. More precisely, the difference is that Di+1

G does
not have the value Di

G(0) = i but can have a new value
given by VG(i + 1). The inclusion of Di+1

G (see Figure 5)
consists of:

1. Determine the sub-vector of Di
G to insert VG(i + 1).

Let v be the index of this sub-vector.

2. Determine the position in this sub-vector to insert
VG(i+ 1).

3. All the sub-vectors of Di+1
G of index larger than v are

equal to those of Di
G, thus already present in RDG. It

suffices to make Loc(i+1; j) = Loc(i; j) for v < j <
l.

4. All the sub-vectors of Di+1
G of index smaller than v

are equal to those of Di
G, but for a left shift and for

the inclusion of a new element to the right (precisely
the element thrown out from the next sub-vector). The
sub-vectors can be shifted to the left easily by making
Loc(i+1; j) = Loc(i; j) + 1 for 0 � j < v. The new
element of each sub-vector can be written immediately
to the right of the sub-vector, given that there is empty
space for this in RDG. Otherwise we allocate a new
fragment of size 2l and do the necessary bookkeeping.

5. The sub-vector of index v is modified such that a new
sub-vector must be allocated in RDG, with the inclu-
sion of VG(i+ 1). Loc(i+ 1; v) indicates the position
of this new sub-vector.

In Figure 5 the element VG(i+1) must be inserted in the
sub-vector of index 2. The darker areas represent the data
written inDRG in this inclusion step. The dashed arrows in-
dicate copying of data. The inclusion of Di+1

G involves the
determination of a new row of Loc (O(nl) time and space)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

and some new sub-vectors in RDG for steps 4 and 5 (O(nl)
time and space in an amortized analysis).

We summarize the results of this section in the following.

Theorem 2 Consider the GDAG G of the ALCS problem
for the strings X and Y . From D0

G and VG we can recon-

struct a representation ofDG inO
�
n
p
m0
�

time and space

such that any value of DG can be read in O(1) time.

6 The Basic Union Operation of Two Partial
Solutions

The strategy of Section 4 utilizes one basic operation,
namely the union of two contiguous strips to form a larger
strip. After the last union operation we obtain the DG ma-
trix corresponding to the original GDAG. Let us consider
the union of two GDAGs U and L of m0 + 1 rows each,
resulting in a GDAG G of 2m0 + 1 rows. We use the given
example to illustrate the operation.

Consider DU corresponding to the upper half of the
GDAG (first 5 rows, from row 0 through row 4) andDL cor-
responding to the lower half of the GDAG (rows 4 through
row 8). DU and DL are shown in Figure 6 (the meaning of
� and Æ will be explained later). We first show how we can
obtain DG using DU and DL. The basic idea is the same as
in [7].

DU 0 1 2 3 4 DL 0 1 2 3 4

0 0 1 2 3 4 0 0 1 2 6 9
1 1 2 3 4 10 1 1 2 5 6 9
2 2 3 4 7 10 2 2 3 5 6 9Æ

3 3 4 6 7 10 3 3 4 5 6Æ 9�

4 4 6 7 10 1 4 4 5 6Æ 8� 9
5 5 6 7 10 1 5 5 6 8 9 13
6 6 7 9 10 1 6 6 7 8 9 13
7 7 9 10 13 1 7 7 8 9 11 13
8 8 9 10 13 1 8 8 9 11 13 1

9 9 10 11 13 1 9 9 10 11 13 1

10 10 11 13 1 1 10 10 11Æ 13� 1 1

11 11 13 1 1 1 11 11 12 13 1 1

12 12 13 1 1 1 12 12 13 1 1 1

13 13 1 1 1 1 13 13 1 1 1 1

Figure 6. DU and DL corresponding to the
upper half and lower half of the GDAG.

Recall first Di
G(k) = DG(i; k) represents the smallest

value of j such that CG(i; j), the total weight of the best
path between TG(i) (vertex i of the top row of GDAG G)
and BG(j) (vertex j of the bottom row of GDAG G), is k.
All the paths from TG(i) = TU (i) to BG(j) = BL(j) have
to cross the common boundary BU = TL at some vertex
and the total weight of the path is the sum of the weights
of the interval in U and in L. So if we are interested in
determining DG(i; k) we need to consider paths that cross
U with total weight l and then cross L with total weight
k � l, for all l from 0 to m0.

Having fixed a certain value of l, the smallest value of j
such that there is a path from TG(i) to BG(j) with weight l
in U and weight k� l in L is given by DL(DU (i; l); k� l),
since DU (i; l) is the first vertex at the boundary that is at a
distance of l from TG(i) and DL(DU (i; l); k� l) is the first
vertex that is at a distance of k � l from the vertex at the
boundary.

By the above considerations we have:

DG(i; k) = min
0�l�m0

fDL(DU (i; l); k � l)g (1)

Observe that if we keep i fixed and vary k, the rows of
DL used are always the same. The variation of k changes
only the element that must be consulted in each row. For
each row of DL consulted, a different element is taken, due
to the term�l. This shift operation and the following obser-
vation suggest the following definitions of shift , diag and
MD . Before giving these definitions let us consider the ob-
tention of, say DG(1; 6) and DG(1; 5), by using Equation
1.

DG(1; 6) = min
0�l�m0

fDL(DU (1; l); 6� l)g

This involves the minimum of the values marked with �
in Figure 6, giving the value 8. On the other hand, to obtain

DG(1; 5) = min
0�l�m0

fDL(DU (1; l); 5� l)g;

we have to compute the minimum of the values marked with
Æ, which is 6.

Notice that if we shift the appropriate rows of DL (rows
1, 2, 3, 4, 10) to the right, with each row shifted one to the
right with respect the the previous row, all the values whose
minimum needs to be computed are aligned conveniently
on the same column, with all new positions filled with 1
(Figure 7). We see that all the minimum values of each re-
spective column give the entire row 1 of DG. The layout of
Figure 7 is called MD [1](i; j), which is formalized by the
definitions of shift and diag . Note the white and black bul-
lets are all aligned vertically. MD [1] can be used to obtain
row 1 of DG.

MD[1](i; j) 0 1 2 3 4 5 6 7 8

0 1 2 5 6 9 1 1 1 1

1 1 2 3 5 6 9Æ 1 1 1

2 1 1 3 4 5 6Æ 9� 1 1

3 1 1 1 4 5 6Æ 8� 9 1

4 1 1 1 1 10 11Æ 13� 1 1

#
Minimum 1 2 3 4 5 6 8 9 1

Figure 7. The matrix MD [1].

Definition 4 (shift [l;W; c]) Given a vectorW of length s+
1 (indices from 0 to s), for all l (0 � l � c � s) define

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

shift [l;W; c] as the vector of length c+1 (indices from 0 to
c) such that:

shift [l;W; c](i) =

8<
:

1 if 0 � i < l
W (i+ l) if l � i � s+ l
1 if s+ l < i � c

In other words, shift [l;W; c] is the vector W shifted to
the right l positions and completed with 1.

With this definition we can rewrite Equation 1:

DG(i; k) = min
0�l�m0

fshift [DDU (i;l)
L ; l; 2m0](k)g (2)

By taking all the rows relative to a certain value of i we
can obtain the matrix MD [i], through the following defini-
tions, to find all the elements of Di

G.

Definition 5 (Diag [W;M; l0]) Let W be a vector (starting
index 0) of integers in increasing order such that the first
m + 1 elements are finite numbers and W (m) � n. Let
M be an (n + 1) � (m0 + 1) matrix (starting indices 0).
Diag [W;M; l0] is an (m+1)� (2m0+1) matrix such that
its row of index l is shift [MW (l); l+ l0; 2m

0].

Diag [W;M; l0] has its rows copied from a matrix M .
The selection of which rows are copied is done by the vector
W . Each row copied is shifted one column to the right in
relation to the previous row. The amount to shift the first
row copied is indicated by l0.

Definition 6 (MD [i]) LetG be a GDAG for the ALCS prob-
lem, formed by the union of the U (upper) and L (lower)
GDAGs. Then MD [G; i] = Diag [Di

U ; DL; 0]. When G is
clear in the context, we will use only the notation MD [i].

Figure 7 shows MD [1] that can be used to obtain D1
G.

Thus by obtaining the minimum of each column of MD [i]
we get Di

G. If we denote by Cmin [M] the values of the
minimum of the respective column of matrix M , then we
can write:

Di
G(k) = Cmin [MD [i]](k) (3)

A matrix is called monotone if the minimum of a column
is below or to the right of the minimum of its right neighbor
column. If two or more elements have the minimum, take
the upper element. A matrix is called totally monotone if
every one of its 2� 2 sub-matrices is monotone [1].

Theorem 3 Matrix MD [i] is totally monotone.

The proof can be found in [3].
Given that all the matrices MD [i] are totally monotone,

the union of GDAGs can be solved through a search of the

minimum of columns for all the matrices, through an algo-
rithm based on [1] that takes only O(m) time for each of
the n+ 1 matrices (since the matrices have height m).

Even with this algorithm, however, the total time is still
O(nm). This is not good enough. To solve the union prob-
lem in less time we observe that, given the similarity be-
tween adjacent rows ofDG, matricesMD [i] are also similar
for values close to i. This will be explored now.

7 Redundancy Elimination by Exploring
Similarities

We explore the property that r + 1 consecutive rows of
DU are r-variant [7], i.e., to obtain any row from any other
row we need only to remove at most r elements and insert
at most r other elements. More importantly, with r + 1
consecutive rows of length m0 + 1, it is possible to obtain a
vector of elements that are common in all the r + 1 rows of
size m0 +1� r, that we call common vector. The elements
of the common vector may be noncontiguous. We use the
notation Di0;r

U to indicate the common vector of the rows
from Di0

U to Di0+r
U for a GDAG U . We use r = dpm0e.

It can be shown that all the elements of a vector Di0
U

are also present in the vector Di0+r
U , except those that are

smaller than i0 + r. For example, consider DU of Figure 6,
we have m0 = 4 and r = 2. The elements common to
D0
U = (0; 1; 2; 3; 4) and D2

U = (2; 3; 4; 7; 8) are 2, 3, 4 (the
last ones of D0

G).
It can also be shown that all the elements present in both

vectors Di0
U and Di0+r

U are also present in vectors Di
U for

i0 < i < i0 + r. So we have a simple form of determining
the common vector for a group of rows: we just need to take
the matrix DU and read all the elements of Di0

U ignoring
those that are smaller than i0 + r. This takes O(m0) time.
In the previous example, we have D0;2

U = (2; 3; 4).
Furthermore, it is important to determine which elements

are adjacent in all the rows and form the indivisible pieces
that will be called common fragments. In the example, tak-
ing rows 6, 7, 8, D6;2

U = (9; 10;1) and the common frag-
ments are (9; 10) and (1).

Determination of the common fragments can be done us-
ing the vector VU . From VU (i0 + 1) to VU (i0 + r) we have
the elements that do not appear in the common vector and
can be used to divide it into the common fragments. This
takes O(logm0) time for each element and a total time of
O(r logm0). The common fragments are numbered from 0
to r and the fragment t will be denoted Di0;r

U [t].
Now let us go back the union process of the algorithm.

We obtain the common vector and common fragments of
the matrix DU . Instead of constructing MD [i] for each in-
dividual i, we use rows Di0

U to Di0+r
U to construct matrices

MD [i0] to MD [i0 + r] and, as already mentioned, the sim-
ilarities between rows close to each other imply similarities

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

1
1block1

block2

block3

block4

MD[i0]

1
1

block1

block2

block3

block4

MD[i0 + r]

Figure 8. Structure of the matrices MD [i0] and
MD [i0 + r], showing four common blocks.

between matrices MD [i] for values close to i. The common
vector Di0;r

U contains the indices of the rows of DL that are
present in all the matrices of MD [i0] to MD [i0 + r]. Each
fragmentDi0;r

U [t] indicates a set of rows of DL, called com-
mon blocks, that can be used in adjacent rows in all these
matrices.

Consider a common fragment Di0;r
U [t], 0 � t � r. All

the matrices MD [i] with i0 � i � i0 + r will contain
Diag [Di0;r

U [t]; DL; li;t] as a set of contiguous rows from the
row li;t, where li;t varies from matrix to matrix and from
block to block. This is illustrated in Figure 8.

As in each matrix it is necessary to solve the problem of
the column minima, we can avoid the repetitive computa-
tion by determining first the column minima of the common
blocks. We have thus the following definition:

Definition 7 (ContBl [i0; r; t])

ContBl [i0; r; t] = Cmin [Diag [Di0;r
U [t]; DL; 0]]

In other words, ContBl [i0; r; t] is a vector of the min-
ima of the columns of the block t common to the matrices
MD [i0] to MD [i0 + r].

Consider now the idea of row contraction of a (totally)
monotone matrix.

Definition 8 [Contraction of rows of a (totally) monotone
matrix] Let M be a (totally) monotone matrix. A row con-
traction applied to a set of contiguous rows is the substitu-
tion of all these rows in M by a single row. The element
of column i of this new row is the minimum of the elements
present in column i of the original substituted rows.

It can be shown that after contraction the matrix contin-
ues to be (totally) monotone.

If for each matrix MD [i] we do successive contraction
of rows, one for each one of the common blocks, the re-
sult will be a matrix that we call ContMD [i], such that
Cmin[MD [i]] = Cmin [ContMD [i]].

The contraction of each block can be done by an al-
gorithm presented in [1] adapted for matrices with very

few rows. A block t of mt rows is contracted in
O(mt log(m

0=mt)) time. For each row i in a particular
block, this algorithm indicates the range of columns that
have their minima in this row. This indirect representation
of the column minima can be queried in O(logm0) time for
each element of ContBl[i0; r; t]. In the following analysis,
the logm0 factor in the time complexities comes from this
querying time. The contraction of all the blocks can be done
in O(m0 logm0) time.

The common blocks appear in the matrices MD [i] in dif-
ferent positions, but the result of the search for the minima
of the columns of these blocks can be used in all the matri-
ces. More precisely, if the common block t appears starting
from row li;t of the matrix MD [i], the contraction of this
block in this matrix is done by simply substituting of the
block by the vector shift [li;t;ContBl [i0; r; t]; 2m].

In addition to the r + 1 rows obtained from the contrac-
tion of the common blocks, each matrix ContMD [i] con-
tains at most r additional rows. Recall that r = dpm0e. So
the contraction of the matrices reduces the height of these
matrices to O(

p
m0).

The construction of the matrices ContMD[i0] to
ContMD[i0 + r] can be done by simple pointer manip-
ulations. In fact, to build ContMD[i + 1], we can use
ContMD[i], remove the first row and insert a new one. A
structure similar to the one for DG of Section 5 can be use
here.

We use the algorithm from Aggarwal et al. [1] to find
all the column minima of the first matrix of the range,
ContMD[i0], obtaining row Di0

G in O(m0 logm0) time.
For row Di

G, i0 < i � i0 + r, using Property 1, we just
need to determine VG(i) from Di�1

G . We do this by taking
fromContMD[i]O(

p
m0) columns, spaced by dpm0e and

finding their minima in O(
p
m0 logm0) time. This gives us

a dpm0e-sample of Di
G, which can be compared to Di�1

G

to give us an interval of size O(
p
m0) where VG(i) can be

found. To find VG(i) we do another determination of col-
umn minima in O(

p
m0 logm0) time. Doing so for r values

of i, we spend O(r
p
m0 logm0) = O(m0 logm0) time. The

rows of DG can be kept in the data structure described in
Section 5 for comparing adjacent rows (the data for rows
already used can be discarded).

Since there are a total of (n + 1)=(r + 1) groups of
r + 1 matrices MD [i] to process, the total time to deter-
mine D0

G and VG from DU e DL is O((nm0=r) logm0) =
O(n

p
m0 logm0). We can divide this work by using q pro-

cessors, through the division of DU among the processors.
Each block of r rows of DU can be used to determine the
r rows of DG, the processing of each block being inde-
pendent of the other blocks. With this, the time becomes
O((n

p
m0 logm0)=q).

We need to consider the time to construct the represen-
tation of DU and DL, as shown earlier. The representa-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

tion of DL must be available in the local memory of all
the processors. This construction takes O(n

p
m0) time, or

O(n
p
m0=q) by using q processors. We thus have the fol-

lowing.

Lemma 1 Let G0 be a (2m0 + 1)� (n+ 1) GDAG for the
ALCS problem, formed by the union of the (m0+1)�(n+1)
U (upper) and L (lower) GDADs. The determination of
D0
G0 and VG0 from D0

U , VU , D0
L and VL can be done by q

processors inO
�
n
p
m0
�
1 + logm0

q

��
time andO(n

p
m0)

space.

8 Analysis of the Complete Algorithm

Given strings X and Y of lengths m and n, respectively,
phase 1 of the BSP/CGM algorithm of Section 4 solves the
ALCS for the p GDAGs defined for the p substrings of X
in O(mn=p) time.

We need to obtain the time complexity of phase 2. Con-
sider a basic union operation that joins an upper GDAG U 0

and a lower GDAG L0, say of sizes (m0+1)� (n+1) each,
to produce a union GDAG G0 of size (2m0 + 1)� (n+ 1).
The value ofm0 doubles in each union step until the last one
when we have the solution (when 2m0 = m).

When there are q processors to deal with GDAG G0, we
have m0 = mq

2p . By Lemma 1, the time complexity be-
comes:

O

�
n
p
m

�r
q

2p
+

log mq

2p
p
2pq

��
= O

�
n
p
m

p
p

�
p
q +

logm
p
q

��

The amount of processors q involved in obtaining each
GDAG doubles in each union process. Thus the sum of the
times of all the union processes is:

O

�
n
p
m

�
1 +

logm
p
p

��

The details can be found in [3].
To get linear speedup we need to make this time

O(mn=p). This is accomplished if p <
p
m. The space

needed for the proposed algorithm is O(n
p
m) per proces-

sor, due to the representation of DL in each union process.
As for the communication requirements, with q proces-

sors performing a union, each processor determines n=q
elements of VG0 that needs to be transmitted to the other
2q � 1 processors for the next union step. This results in
O(n) data transferred per processor. The processor that de-
termines D0

G0 needs to transfer the mq=p elements of this
vector to other 2q � 1 processors, resulting in a communi-
cation round where O(mq2=p) data are transmitted.

For some constant C, this can also be done in C
communication rounds in which each processor transmits

O((mq1+1=C)=p) data: in the first round the processor that
determined D0

G0 does a broadcast of this vector to bq1=Cc
other processors, that then transmits to bq2=Cc other pro-
cessors and so on. The last union step is when the largest
amount of data is transmitted per processor,O(mp1=C+n).

We thus conclude this section with the main result of this
paper which is a linear speedup BSP/CGM algorithm for the
ALCS problem.

Theorem 4 Given two stringsX and Y of lengthsm and n,
respectively, the ALCS problem can be solved by p <

p
m

processors in O(mn=p) time, O(n
p
m) space per proces-

sor, and O(C log p) communication rounds, for some cho-
sen constant C, in which O(mp1=C + n) data are transmit-
ted from/to each processor.

Corollary 1 Given two strings X and Y of lengths m and
n, respectively, the ALCS problem can be solved in the BSP
model with p <

p
m processors in time O(mn

p +C log pL+

log p(Cmp1=C + n)g), where g and L are the communica-
tion throughput ratio and communication latency, respec-
tively.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and
R. Wilber. Geometric applications of a matrix-searching al-
gorithm. Algorithmica, 2:195–208, 1987.

[2] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song.
Parallel dynamic programming for solving the string editing
problem on a CGM/BSP. In Proceedings of the 14th Sym-
posium on Parallel Algorithms and Architectures (SPAA),
pages 275–281. ACM Press, 2002.

[3] C. E. R. Alves, E. N. Cáceres, and S. W. Song. Sequential
and parallel algorithms for the all-substrings longest com-
mon subsequence problem. Technical report, Dept. of Com-
puter Science, University of São Paulo, November 2002.

[4] A. Apostolico and C. Guerra. The longest common subse-
quence problem revisited. Algorithmica, 2:315–336, 1987.

[5] F. Dehne. Coarse grained parallel algorithms. Special Issue
of Algorithmica, 24(3/4):173–176, 1999.

[6] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable paral-
lel computational geometry for coarse grained multicomput-
ers. In Proc. 9th Annual ACM Symp. Comput. Geom., pages
298–307, 1993.

[7] M. Lu and H. Lin. Parallel algorithms for the longest com-
mon subsequence problem. IEEE Transactions on Parallel
and Distributed Systems, 5(8):835–848, 1994.

[8] C. Rick. New algorithms for the longest common subse-
quence problem. Technical Report 85123–CS, Institut fr In-
formatik, Universitt Bonn, 1994.

[9] J. Schmidt. All highest scoring paths in weighted graphs
and their application to finding all approximate repeats in
strings. SIAM J. Computing, 27(4):972–992, 1998.

[10] L. G. Valiant. A bridging model for parallel computation.
Communication of the ACM, 33(8):103–111, 1990.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

