A BSP/CGM Algorithm for the All-Substrings Longest Common Subsequence Problem

C. E. R. Alves *
Univ. São Judas Tadeu
São Paulo, Brazil
prof.carlos_r_alves@usjt.br

E. N. Cáceres ${ }^{\dagger}$
Univ. Fed. Mato Grosso do Sul
Campo Grande, Brazil
edson@dct.ufms.br

S. W. Song ${ }^{\ddagger}$
Universidade de São Paulo
São Paulo, Brazil
song@ime.usp.br

Abstract

Given two strings X and Y of lengths m and n, respectively, the all-substrings longest common subsequence (ALCS) problem obtains the lengths of the subsequences common to X and any substring of Y. The sequential algorithm takes $O(m n)$ time and $O(n)$ space. We present a parallel algorithm for ALCS on a coarse-grained multicomputer (BSP/CGM) model with $p<\sqrt{m}$ processors that takes $O(m n / p)$ time and $O(n \sqrt{m})$ space per processor, with $O(\log p)$ communication rounds. The proposed parallel algorithm also solves the well-known LCS problem. To our knowledge this is the best BSP/CGM algorithm for the ALCS problem in the literature.

1. Introduction

Given two strings, obtention of the longest subsequence common to both strings is an important problem with applications in DNA sequence comparison, data compression, pattern matching, etc. In this paper we consider the more general all-substring longest common subsequence problem and present a time and space efficient parallel algorithm.

Consider a string of symbols from a finite alphabet. A substring of a string is any contiguous fragment of the given string. A subsequence of a string is obtained by deleting zero or more symbols from the original string. A subsequence can thus have noncontiguous symbols of a string. Given the string lewiscarroll, an example of a substring is scar and an example of a subsequence is scroll. Given two strings X and Y, the longest common subsequence (LCS) problem finds the length of the longest subsequence that is

[^0]common to both strings. If $X=$ twasbrillig and $Y=$ lewiscarroll, the length of the longest common subsequence is 5 (e.g. warll).

The all-substring longest common subsequence (ALCS) problem finds the lengths of the longest common subsequences between X and any substring of Y. Given strings X and Y of lengths m and n, respectively, we present a parallel algorithm for ALCS on a coarse-grained multicomputer (BSP/CGM) with p processors. The LCS and ALCS problems can be solved through a grid directed acyclic graph (GDAG). The proposed algorithm finds the lengths of the best paths between all pairs of vertices with the first vertex on the upper row of the GDAG and the second vertex on the lower row. On a BSP/CGM with $p<\sqrt{m}$ processors, the proposed parallel algorithm takes $O(m n / p)$ time and $O(n \sqrt{m})$ space per processor, with $O(\log p)$ communication rounds. To our knowledge this is the best BSP/CGM algorithm for this problem in the literature.

Solving the ALCS problem we obviously solve also the less general LCS problem. However, even considering the more general problem, we managed to obtain a time complexity of $O(m n / p)$, giving linear speedup over the usual algorithms for the LCS problem. We explore the properties of totally monotone matrices and the similarity between rows of the D_{G} matrix as well as between consecutive $M D[i]$ matrices. Thus the amount of information to be computed is reduced through the elimination of redundancy. Another concern of importance is the effort to use compact data structures to store the necessary information and to reduce the size of messages to be communicated among processors.

Sequential algorithms for the LCS problem are surveyed in $[4,8]$. PRAM algorithms for LCS and ALCS are presented in [7]. The ALCS problem can be solved on a PRAM [7] in $O(\log n)$ time with $m n / \log n$ processors, when $\log ^{2} m \log \log m \leq \log n$.

Figure 1. GDAG for the ALCS problem, with $X=$ baabcbca and $Y=$ baabcabcabaca.

2 The BSP/CGM Model

In this paper we use the Coarse Grained Multicomputer (BSP/CGM) $[5,6,10]$ model. A BSP/CGM consists of a set of p processors P_{1}, \ldots, P_{p} with $O(N / p)$ local memory per processor, where N is the space needed by the sequential algorithm. Each processor is connected by a router that can send messages in a point-to-point fashion. A BSP/CGM algorithm consists of alternating local computation and global communication rounds separated by a barrier synchronization. In the BSP/CGM model, the communication cost is modeled by the number of communication rounds. The main advantage of BSP/CGM algorithms is that they map very well to standard parallel hardware, in particular Beowulf type processor clusters [5]. Our goal is to minimize the number of communication rounds and achieve a good speedup.

3 The Grid Directed Acyclic Graph (GDAG)

As in the string editing problem [2,9], the all-substrings longest common subsequence (ALCS) problem can be modeled by a grid directed acyclic graph (GDAG). Consider two strings X and Y of lengths m and n, respectively. To illustrate the main ideas of this paper, we use the following example. Let $X=$ baabcbca and $Y=$ baabcabcabaca. The corresponding GDAG has $(m+1) \times(n+1)$ vertices (see Figure 1). We number the rows and columns starting from 0 . All the vertical and horizontal edges have weight 0 . The edge from vertex $(i-1, j-1)$ to vertex (i, j) has weight 1 if $x_{i}=y_{j}$. If $x_{i} \neq y_{j}$, this edge has weight 0 and can be ignored.

The vertices of the top row of G will be denoted by $T_{G}(i)$, and those of the bottom row of G by $B_{G}(i), 0 \leq$ $i \leq n$. Given a string Y of length n with symbols y_{1} to y_{n}, denote by Y_{i}^{j} the substring of Y consisting of symbols y_{i} to y_{j}.

We now define the cost or total weight of a path between two vertices.

Definition 1 (Matrix C_{G}) For $0 \leq i \leq j \leq n, C_{G}(i, j)$ is the cost or total weight of the best path between vertices $T_{G}(i)$ and $B_{G}(j)$, representing the length of the longest common subsequence between X and the substring Y_{i+1}^{j}. If $i \geq j\left(Y_{i+1}^{j}\right.$ is empty or nonexistent $), C_{G}(i, j)=0$.

C_{G}	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	1	2	3	4	5	6	6	7	8	8	8	8	8
1	0	0	1	2	3	4	5	5	6	7	7	7	7	7
2	0	0	0	1	2	3	4	4	5	6	6	6	6	7
3	0	0	0	0	1	2	3	3	4	5	5	6	6	7
4	0	0	0	0	0	1	2	2	3	4	4	5	5	6
5	0	0	0	0	0	0	1	2	3	4	4	5	5	6
6	0	0	0	0	0	0	0	1	2	3	3	4	4	5
7	0	0	0	0	0	0	0	0	1	2	2	3	3	4
8	0	0	0	0	0	0	0	0	0	1	2	3	3	4
9	0	0	0	0	0	0	0	0	0	0	1	2	3	4
10	0	0	0	0	0	0	0	0	0	0	0	1	2	3
11	0	0	0	0	0	0	0	0	0	0	0	0	1	2
12	0	0	0	0	0	0	0	0	0	0	0	0	0	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 2. $\mathrm{C}_{\mathbf{G}}$ of the given GDAG.
Values of $C_{G}(i, j)$ are shown in Figure 2. For example, $C_{G}(0,9)=8$. This means the length of the longest common subsequence between $X=$ baabcbca and $Y_{1}^{9}=$ baabcabca is 8 . However, note that $C_{G}(0,10)$ is also 8 . That is, if we take one more symbol of Y, the length of the longest common subsequence is still the same. This leads to the next definition of D_{G} that deals with this leftmost position (in the example, 9 and not 10) to achieve a fixed length value (in the example 8).

The values of $C_{G}(i, j)$ have the following property. For a fixed i, the values of $C_{G}(i, j)$ with $0 \leq j \leq n$ form a nondecreasing sequence that can be given implicitly by only those values of j for which $C_{G}(i, j)>C_{G}(i, j-1)$. This fact has been used in several sequential algorithms for LCS [8] and in the PRAM algorithm presented in[7] which is the basis for our algorithm and for the following definition.

Definition 2 (Matrix D_{G}) Consider G the GDAG for the ALCS problem for the strings X and Y. For $0 \leq i \leq n$, $D_{G}(i, 0)=i$ and for $1 \leq k \leq m, D_{G}(i, k)$ indicates the value of j such that $C_{G}(i, j)=k$ and $C_{G}(i, j-1)=k-1$. If there is no such a value, then $D_{G}(i, k)=\infty$.

Implicit in this definition is the fact that $C(i, j) \leq m$. For convenience, we define D_{G} as a matrix with indices starting from 0 . We denote by D_{G}^{i} the row i of D_{G}, that is, the row vector formed by $D_{G}(i, 0), D_{G}(i, 1), \ldots$, $D_{G}(i, m)$. As an example, we again consider the GDAG of Figure 1. The values of $D_{G}(i, k)$ are shown in Figure 3.

The algorithm we propose deals directly with this representation. To understand the D_{G} matrix, consider $D_{G}(i, k)$.

$\mathbf{D}_{\mathrm{G}}(\mathbf{i}, \mathbf{j})$	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	8	9
1	1	2	3	4	5	6	8	9	∞
2	2	3	4	5	6	8	9	13	∞
3	3	4	5	6	8	9	11	13	∞
4	4	5	6	8	9	11	13	∞	∞
5	5	6	7	8	9	11	13	∞	∞
6	6	7	8	9	11	13	∞	∞	∞
7	7	8	9	11	13	∞	∞	∞	∞
8	8	9	10	11	13	∞	∞	∞	∞
9	9	10	11	12	13	∞	∞	∞	∞
10	10	11	12	13	∞	∞	∞	∞	∞
11	11	12	13	∞	∞	∞	∞	∞	∞
12	12	13	∞						
13	13	∞							

Figure 3. D_{G} of the given GDAG.

Index i is the starting index of the Y string at the top row of G. The value k is the desired length of the common subsequence between X and the string Y starting at i. Consider the GDAG of Figure 1. If we start from position i of the top row and proceed to the bottom row at the position given by $D_{G}(i, k)$ then we can get a path of total weight k. Actually $D_{G}(i, k)$ gives the leftmost position that gives the total weight k. Let us illustrate this with an example. Since the length of string X is 8 , the maximum value we can expect for k is therefore 8 . Let us consider $D_{G}(0,8)=9$. This means the following: in the GDAG of Figure 1, start from the index 0 of the top row and take edges at either of the three directions: by taking the diagonal we get a weight 1 while by taking the horizontal or vertical edges we get weight 0 . Now if we wish to have a total weight of 8 , then the leftmost position at the bottom row will be 9 . Thus we have $D_{G}(0,8)=9$. If we make i greater than 0 then we compare X with the string Y starting at position i.

The following property was proven in [7] and is important to our results. This property suggests the definition of V_{G}.

Property 1 For $0 \leq i \leq n-1$, row D_{G}^{i+1} can be obtained from row D_{G}^{i} by removing the first element $\left(D_{G}^{i}(0)=i\right)$ and inserting just one new element (that can be ∞).

Definition 3 (Vector V_{G}) For $1 \leq i \leq n, V_{G}(i)$ is the value of the finite element that is present in row D_{G}^{i} but not present in row D_{G}^{i-1}. If such a finite element does not exist, then $V_{G}(i)=\infty$.

For example, V_{G} for the GDAG of Figure 1 is

$$
(\infty, 13,11, \infty, 7, \infty, \infty, 10,12, \infty, \infty, \infty, \infty)
$$

So we have an economical way of storing and communicating D_{G} with $O(m+n)$ space. We need only to store and transmit the first row of D_{G}, i.e. D_{G}^{0}, of size $O(m)$ and a vector V_{G} of size $O(n)$.

Due to space limitation, we state the following result without proof. Details can be obtained in [3].

Theorem 1 Given two strings X and Y of lengths m and n, respectively, it is possible to solve the $A L C S$ problem sequentially in $O(m n)$ time and $O(n)$ space.

Using a result by Schmidt[9] for all highest scoring paths in GDAGs with unit weights we can solve the ALCS problem with the above complexity. The sequential algorithm for ALCS is important since it will be used in each processor, as seen in the following. The time complexity for this algorithm is equal to the complexity of the LCS when solved by the classic dynamic programming algorithm, except for a small multiplicative constant.

4 Basic Strategy of the BSP/CGM Algorithm

We will now present a BSP/CGM algorithm for the ALCS problem of two given strings X and Y of lengths m and n, respectively. For simplicity, we consider the number of processors p to be a power of 2 and m to be a multiple of p.

The algorithm divides string X into p substrings of length $\frac{m}{p}$ that do not overlap. The GDAG of the original problem is divided horizontally into strips, thereby obtaining p GDAGs of $\frac{m}{p}+1$ rows each. Two such contiguous strips share a common row. For $0 \leq i<p$, processor P_{i} solves sequentially the ALCS problem for the strings $X_{m i / p+1}^{m(i+1) / p}$ and Y, and computes the local D_{G}. From Theorem 1, the time necessary for the p processors to solve the ALCS subproblem in parallel is $O(m n / p)$.

Then we use $\log p$ rounds to join the results, in which pairs of partial solutions (for two neighboring strips) are joined to give a single solution for the union of the two strips. At each union step, the number of processors associated to each strip doubles. After $\log p$ rounds we have the solution of the original problem. The sum of the times of all the union steps is $O\left(n \sqrt{m}\left(1+\frac{\log m}{\sqrt{p}}\right)\right)$, as will be seen. Figure 4 illustrates the union process, with $p=8$. In each strip of the GDAG G we indicate the processors used in the solution of the GDAG of the strip.

G
p_{1}
p_{2}
p_{3}
p_{4}
p_{5}
p_{6}
p_{7}
p_{8}

$p_{1}-p_{2}$
$p_{3}-p_{4}$
$p_{5}-p_{6}$
$p_{7}-p_{8}$

G
$p_{1}-p_{4}$
$p_{5}-p_{8}$

Figure 4. Joining the partial solutions of ALCS.

Thus the BSP/CGM algorithm for ALCS consists of the two phases:

1. Each of the p processors runs the sequential ALCS algorithm on its local strip and computes the local D_{G}.
2. In $\log p$ rounds pairs of the contiguous partial solutions are joined together successively to obtain the solution of the original problem.

The most difficult part of the algorithm involves the union of two contiguous strips. In particular we need to pay special attention to the storage of D_{G} using a compact data structure as well as the size of messages to be communicated among processors in each union step. This is dealt with in the next section. The union operation proper is presented in Section 6.

5 Compact Data Structures for D_{G}

For an $(n+1) \times\left(m^{\prime}+1\right)$ GDAG G, the two representations of D_{G} we have seen so far are not adequate. The direct representation as matrices (as in Figure 3) presents redundancy and takes much space $\left(O\left(m^{\prime} n\right)\right.$), though the obtention of any individual value of $D_{G}(i, k)$, given i and k, can be done in $\mathrm{O}(1)$ time. On the other hand, the incremental representation through the use of the vectors D_{G}^{0} and V_{G} uses only $O\left(m^{\prime}+n\right)$ space but does not allow quick querying of values of D_{G}.

We now define a compact representation of D_{G} that takes $O\left(n \sqrt{m^{\prime}}\right)$ space and allows reads of D_{G} in $O(1)$ time. It can be constructed from D_{G}^{0} and V_{G} in $O\left(n \sqrt{m^{\prime}}\right)$ time. This structure is essential to our algorithm. The construction is incremental by adding each row of D_{G} at a time. The values of D_{G} are stored in a vector called $R D_{G}$ (reduced D_{G}) of size $O(n l)$, where $l=\left\lceil\sqrt{m^{\prime}+1}\right\rceil$.

Before we describe the construction of $R D_{G}$, we give an overview of how a row of D_{G} is represented. Row D_{G}^{i} ($0 \leq i \leq n$), of size $m^{\prime}+1$, is divided into at most l subvectors, all of size l with the possible exception of the last one. These sub-vectors are stored in separate locations of $R D_{G}$, and we need an additional vector of size l to indicate the location of each sub-vector. This additional vector is denoted by $L o c^{i}$. The $(n+1) \times l$ matrix formed by all the vectors $L o c^{i}$ (one for each D_{G}^{i}) is called Loc. The indices of $L o c$ start at 0 (see Figure 5). It can be easily shown that the value of $D_{G}(i, k)$ can be obtained with $L o c$ and $R D_{G}$ in $O(1)$ time.

Now we will show how to construct $R D_{G}$ and Loc. First we include D_{G}^{0}. Each sub-vector of D_{G}^{0} of size l is allocated in a fragment of $R D_{G}$ of size $2 l$. The extra space will be used to allocate the next rows of D_{G}. Thus each sub-vector of D_{G}^{0} is followed by an empty space of size l. Since we have a lot of redundancies, the inclusion of the next row

Figure 5. Storing D_{G}^{i} and D_{G}^{i+1} in $R D_{G}$.
of D_{G} can be done in a clever way. The vector $R D_{G}$ (together with $L o c$) can contain all the data of D_{G} in only $O(n l)$ space due to the fact that the sub-vectors of different rows of D_{G} can overlap. With D_{G}^{i} already present, to include D_{G}^{i+1}, we can use most of the data already in the data structure. More precisely, the difference is that D_{G}^{i+1} does not have the value $D_{G}^{i}(0)=i$ but can have a new value given by $V_{G}(i+1)$. The inclusion of D_{G}^{i+1} (see Figure 5) consists of:

1. Determine the sub-vector of D_{G}^{i} to insert $V_{G}(i+1)$. Let v be the index of this sub-vector.
2. Determine the position in this sub-vector to insert $V_{G}(i+1)$.
3. All the sub-vectors of D_{G}^{i+1} of index larger than v are equal to those of D_{G}^{i}, thus already present in $R D_{G}$. It suffices to make $\operatorname{Loc}(i+1, j)=\operatorname{Loc}(i, j)$ for $v<j<$ l.
4. All the sub-vectors of D_{G}^{i+1} of index smaller than v are equal to those of D_{G}^{i}, but for a left shift and for the inclusion of a new element to the right (precisely the element thrown out from the next sub-vector). The sub-vectors can be shifted to the left easily by making $\operatorname{Loc}(i+1, j)=\operatorname{Loc}(i, j)+1$ for $0 \leq j<v$. The new element of each sub-vector can be written immediately to the right of the sub-vector, given that there is empty space for this in $R D_{G}$. Otherwise we allocate a new fragment of size $2 l$ and do the necessary bookkeeping.
5. The sub-vector of index v is modified such that a new sub-vector must be allocated in $R D_{G}$, with the inclusion of $V_{G}(i+1) . \operatorname{Loc}(i+1, v)$ indicates the position of this new sub-vector.

In Figure 5 the element $V_{G}(i+1)$ must be inserted in the sub-vector of index 2. The darker areas represent the data written in $D R_{G}$ in this inclusion step. The dashed arrows indicate copying of data. The inclusion of D_{G}^{i+1} involves the determination of a new row of $\operatorname{Loc}(O(n l)$ time and space $)$
and some new sub-vectors in $R D_{G}$ for steps 4 and $5(O(n l)$ time and space in an amortized analysis).

We summarize the results of this section in the following.
Theorem 2 Consider the GDAG G of the ALCS problem for the strings X and Y. From D_{G}^{0} and V_{G} we can reconstruct a representation of D_{G} in $O\left(n \sqrt{m^{\prime}}\right)$ time and space such that any value of D_{G} can be read in $O(1)$ time.

6 The Basic Union Operation of Two Partial Solutions

The strategy of Section 4 utilizes one basic operation, namely the union of two contiguous strips to form a larger strip. After the last union operation we obtain the D_{G} matrix corresponding to the original GDAG. Let us consider the union of two GDAGs U and L of $m^{\prime}+1$ rows each, resulting in a GDAG G of $2 m^{\prime}+1$ rows. We use the given example to illustrate the operation.

Consider D_{U} corresponding to the upper half of the GDAG (first 5 rows, from row 0 through row 4) and D_{L} corresponding to the lower half of the GDAG (rows 4 through row 8). D_{U} and D_{L} are shown in Figure 6 (the meaning of - and \circ will be explained later). We first show how we can obtain D_{G} using D_{U} and D_{L}. The basic idea is the same as in [7].

$\mathbf{D}_{\mathbf{U}}$	0	1	2	3	4	\mathbf{D}_{L}	0	1	2	3	4
0	0	1	2	3	4	0	0	1	2	6	9
1	1	2	3	4	10	1	1	2	5	6	9
2	2	3	4	7	10	2	2	3	5	6	9°
3	3	4	6	7	10	3	3	4	5	6°	9^{\bullet}
4	4	6	7	10	∞	4	4	5	6°	8^{\bullet}	9
5	5	6	7	10	∞	5	5	6	8	9	13
6	6	7	9	10	∞	6	6	7	8	9	13
7	7	9	10	13	∞	7	7	8	9	11	13
8	8	9	10	13	∞	8	8	9	11	13	∞
9	9	10	11	13	∞	9	9	10	11	13	∞
10	10	11	13	∞	∞	10	10	11°	13^{\bullet}	∞	∞
11	11	13	∞	∞	∞	11	11	12	13	∞	∞
12	12	13	∞	∞	∞	12	12	13	∞	∞	∞
13	13	∞	∞	∞	∞	13	13	∞	∞	∞	∞

Figure 6. D_{U} and D_{L} corresponding to the upper half and lower half of the GDAG.

Recall first $D_{G}^{i}(k)=D_{G}(i, k)$ represents the smallest value of j such that $C_{G}(i, j)$, the total weight of the best path between $T_{G}(i)$ (vertex i of the top row of GDAG G) and $B_{G}(j)$ (vertex j of the bottom row of GDAG G), is k. All the paths from $T_{G}(i)=T_{U}(i)$ to $B_{G}(j)=B_{L}(j)$ have to cross the common boundary $B_{U}=T_{L}$ at some vertex and the total weight of the path is the sum of the weights of the interval in U and in L. So if we are interested in determining $D_{G}(i, k)$ we need to consider paths that cross U with total weight l and then cross L with total weight $k-l$, for all l from 0 to m^{\prime}.

Having fixed a certain value of l, the smallest value of j such that there is a path from $T_{G}(i)$ to $B_{G}(j)$ with weight l in U and weight $k-l$ in L is given by $D_{L}\left(D_{U}(i, l), k-l\right)$, since $D_{U}(i, l)$ is the first vertex at the boundary that is at a distance of l from $T_{G}(i)$ and $D_{L}\left(D_{U}(i, l), k-l\right)$ is the first vertex that is at a distance of $k-l$ from the vertex at the boundary.

By the above considerations we have:

$$
\begin{equation*}
D_{G}(i, k)=\min _{0 \leq l \leq m^{\prime}}\left\{D_{L}\left(D_{U}(i, l), k-l\right)\right\} \tag{1}
\end{equation*}
$$

Observe that if we keep i fixed and vary k, the rows of D_{L} used are always the same. The variation of k changes only the element that must be consulted in each row. For each row of D_{L} consulted, a different element is taken, due to the term $-l$. This shift operation and the following observation suggest the following definitions of shift, diag and $M D$. Before giving these definitions let us consider the obtention of, say $D_{G}(1,6)$ and $D_{G}(1,5)$, by using Equation 1.

$$
D_{G}(1,6)=\min _{0 \leq l \leq m^{\prime}}\left\{D_{L}\left(D_{U}(1, l), 6-l\right)\right\}
$$

This involves the minimum of the values marked with • in Figure 6, giving the value 8. On the other hand, to obtain

$$
D_{G}(1,5)=\min _{0 \leq l \leq m^{\prime}}\left\{D_{L}\left(D_{U}(1, l), 5-l\right)\right\}
$$

we have to compute the minimum of the values marked with \circ, which is 6 .

Notice that if we shift the appropriate rows of D_{L} (rows $1,2,3,4,10$) to the right, with each row shifted one to the right with respect the the previous row, all the values whose minimum needs to be computed are aligned conveniently on the same column, with all new positions filled with ∞ (Figure 7). We see that all the minimum values of each respective column give the entire row 1 of D_{G}. The layout of Figure 7 is called $M D[1](i, j)$, which is formalized by the definitions of shift and diag. Note the white and black bullets are all aligned vertically. $M D[1]$ can be used to obtain row 1 of D_{G}.

$M D[\mathbf{1}](\mathbf{i}, \mathbf{j})$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{\infty}$	∞	∞	∞
$\mathbf{1}$	∞	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{9}^{\circ}$	∞	∞	∞
$\mathbf{2}$	∞	∞	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}^{\circ}$	$\mathbf{9}^{\bullet}$	∞	∞
$\mathbf{3}$	∞	∞	∞	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}^{\circ}$	$\mathbf{8}^{\bullet}$	$\mathbf{9}$	∞
$\mathbf{4}$	∞	∞	∞	∞	$\mathbf{1 0}$	$\mathbf{1 1}^{\circ}$	$\mathbf{1 3}^{\bullet}$	∞	∞
	\downarrow								
Minimum	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$	∞

Figure 7. The matrix $M D[1]$.

Definition 4 (shift $[l, W, c]$) Given a vector W of length $s+$ 1 (indices from 0 to $s)$, for all $l(0 \leq l \leq c-s)$ define
shift $[l, W, c]$ as the vector of length $c+1$ (indices from 0 to c) such that:

$$
\operatorname{shift}[l, W, c](i)= \begin{cases}\infty & \text { if } 0 \leq i<l \\ W(i+l) & \text { if } l \leq i \leq s+l \\ \infty & \text { if } s+l<i \leq c\end{cases}
$$

In other words, shift $[l, W, c]$ is the vector W shifted to the right l positions and completed with ∞.

With this definition we can rewrite Equation 1:

$$
\begin{equation*}
D_{G}(i, k)=\min _{0 \leq l \leq m^{\prime}}\left\{\operatorname{shift}\left[D_{L}^{D_{U}(i, l)}, l, 2 m^{\prime}\right](k)\right\} \tag{2}
\end{equation*}
$$

By taking all the rows relative to a certain value of i we can obtain the matrix $M D[i]$, through the following definitions, to find all the elements of D_{G}^{i}.

Definition 5 ($\left.\operatorname{Diag}\left[W, M, l_{0}\right]\right)$ Let W be a vector (starting index 0) of integers in increasing order such that the first $\bar{m}+1$ elements are finite numbers and $W(\bar{m}) \leq n$. Let M be an $(n+1) \times\left(m^{\prime}+1\right)$ matrix (starting indices 0$)$. $\operatorname{Diag}\left[W, M, l_{0}\right]$ is an $(\bar{m}+1) \times\left(2 m^{\prime}+1\right)$ matrix such that its row of index l is shift $\left[M^{W(l)}, l+l_{0}, 2 m^{\prime}\right]$.
$\operatorname{Diag}\left[W, M, l_{0}\right]$ has its rows copied from a matrix M. The selection of which rows are copied is done by the vector W. Each row copied is shifted one column to the right in relation to the previous row. The amount to shift the first row copied is indicated by l_{0}.

Definition 6 ($M D[i]$) Let G be a GDAG for the ALCS problem, formed by the union of the U (upper) and L (lower) $G D A G s$. Then $M D[G, i]=\operatorname{Diag}\left[D_{U}^{i}, D_{L}, 0\right]$. When G is clear in the context, we will use only the notation $M D[i]$.

Figure 7 shows $M D[1]$ that can be used to obtain D_{G}^{1}. Thus by obtaining the minimum of each column of $M D[i]$ we get D_{G}^{i}. If we denote by $\operatorname{Cmin}[M]$ the values of the minimum of the respective column of matrix M, then we can write:

$$
\begin{equation*}
D_{G}^{i}(k)=\operatorname{Cmin}[M D[i]](k) \tag{3}
\end{equation*}
$$

A matrix is called monotone if the minimum of a column is below or to the right of the minimum of its right neighbor column. If two or more elements have the minimum, take the upper element. A matrix is called totally monotone if every one of its 2×2 sub-matrices is monotone [1].

Theorem 3 Matrix $M D[i]$ is totally monotone.

The proof can be found in [3].
Given that all the matrices $M D[i]$ are totally monotone, the union of GDAGs can be solved through a search of the
minimum of columns for all the matrices, through an algorithm based on [1] that takes only $O(m)$ time for each of the $n+1$ matrices (since the matrices have height m).

Even with this algorithm, however, the total time is still $O(n m)$. This is not good enough. To solve the union problem in less time we observe that, given the similarity between adjacent rows of D_{G}, matrices $M D[i]$ are also similar for values close to i. This will be explored now.

7 Redundancy Elimination by Exploring Similarities

We explore the property that $r+1$ consecutive rows of D_{U} are r-variant [7], i.e., to obtain any row from any other row we need only to remove at most r elements and insert at most r other elements. More importantly, with $r+1$ consecutive rows of length $m^{\prime}+1$, it is possible to obtain a vector of elements that are common in all the $r+1$ rows of size $m^{\prime}+1-r$, that we call common vector. The elements of the common vector may be noncontiguous. We use the notation $D_{U}^{i_{0}, r}$ to indicate the common vector of the rows from $D_{U}^{i_{0}}$ to $D_{U}^{i_{0}+r}$ for a GDAG U. We use $r=\left\lceil\sqrt{m^{\prime}}\right\rceil$.

It can be shown that all the elements of a vector $D_{U}^{i_{0}}$ are also present in the vector $D_{U}^{i_{0}+r}$, except those that are smaller than $i_{0}+r$. For example, consider D_{U} of Figure 6, we have $m^{\prime}=4$ and $r=2$. The elements common to $D_{U}^{0}=(0,1,2,3,4)$ and $D_{U}^{2}=(2,3,4,7,8)$ are 2, 3, 4 (the last ones of D_{G}^{0}).

It can also be shown that all the elements present in both vectors $D_{U}^{i_{0}}$ and $D_{U}^{i_{0}+r}$ are also present in vectors D_{U}^{i} for $i_{0}<i<i_{0}+r$. So we have a simple form of determining the common vector for a group of rows: we just need to take the matrix D_{U} and read all the elements of $D_{U}^{i_{0}}$ ignoring those that are smaller than $i_{0}+r$. This takes $O\left(m^{\prime}\right)$ time. In the previous example, we have $D_{U}^{0,2}=(2,3,4)$.

Furthermore, it is important to determine which elements are adjacent in all the rows and form the indivisible pieces that will be called common fragments. In the example, taking rows $6,7,8, D_{U}^{6,2}=(9,10, \infty)$ and the common fragments are $(9,10)$ and (∞).

Determination of the common fragments can be done using the vector V_{U}. From $V_{U}\left(i_{0}+1\right)$ to $V_{U}\left(i_{0}+r\right)$ we have the elements that do not appear in the common vector and can be used to divide it into the common fragments. This takes $O\left(\log m^{\prime}\right)$ time for each element and a total time of $O\left(r \log m^{\prime}\right)$. The common fragments are numbered from 0 to r and the fragment t will be denoted $D_{U}^{i_{0}, r}[t]$.

Now let us go back the union process of the algorithm. We obtain the common vector and common fragments of the matrix D_{U}. Instead of constructing $M D[i]$ for each individual i, we use rows $D_{U}^{i_{0}}$ to $D_{U}^{i_{0}+r}$ to construct matrices $M D\left[i_{0}\right]$ to $M D\left[i_{0}+r\right]$ and, as already mentioned, the similarities between rows close to each other imply similarities

Figure 8. Structure of the matrices $M D\left[i_{0}\right]$ and $M D\left[i_{0}+r\right]$, showing four common blocks.
between matrices $M D[i]$ for values close to i. The common vector $D_{U}^{i_{0}, r}$ contains the indices of the rows of D_{L} that are present in all the matrices of $M D\left[i_{0}\right]$ to $M D\left[i_{0}+r\right]$. Each fragment $D_{U}^{i_{0}, r}[t]$ indicates a set of rows of D_{L}, called common blocks, that can be used in adjacent rows in all these matrices.

Consider a common fragment $D_{U}^{i_{0}, r}[t], 0 \leq t \leq r$. All the matrices $M D[i]$ with $i_{0} \leq i \leq i_{0}+r$ will contain $\operatorname{Diag}\left[D_{U}^{i o, r}[t], D_{L}, l_{i, t}\right]$ as a set of contiguous rows from the row $l_{i, t}$, where $l_{i, t}$ varies from matrix to matrix and from block to block. This is illustrated in Figure 8.

As in each matrix it is necessary to solve the problem of the column minima, we can avoid the repetitive computation by determining first the column minima of the common blocks. We have thus the following definition:

Definition $7\left(\operatorname{ContBl}\left[i_{0}, r, t\right]\right)$

$$
\operatorname{ContBl}\left[i_{0}, r, t\right]=\operatorname{Cmin}\left[\operatorname{Diag}\left[D_{U}^{i_{0}, r}[t], D_{L}, 0\right]\right]
$$

In other words, ContBl $\left[i_{0}, r, t\right]$ is a vector of the minima of the columns of the block t common to the matrices $M D\left[i_{0}\right]$ to $M D\left[i_{0}+r\right]$.

Consider now the idea of row contraction of a (totally) monotone matrix.

Definition 8 [Contraction of rows of a (totally) monotone matrix] Let M be a (totally) monotone matrix. A row contraction applied to a set of contiguous rows is the substitution of all these rows in M by a single row. The element of column i of this new row is the minimum of the elements present in column i of the original substituted rows.

It can be shown that after contraction the matrix continues to be (totally) monotone.

If for each matrix $M D[i]$ we do successive contraction of rows, one for each one of the common blocks, the result will be a matrix that we call $\operatorname{ContMD[i],~such~that~}$ $\operatorname{Cmin}[M D[i]]=C \min [\operatorname{Cont} M D[i]]$.

The contraction of each block can be done by an algorithm presented in [1] adapted for matrices with very
few rows. A block t of m_{t} rows is contracted in $O\left(m_{t} \log \left(m^{\prime} / m_{t}\right)\right)$ time. For each row i in a particular block, this algorithm indicates the range of columns that have their minima in this row. This indirect representation of the column minima can be queried in $O\left(\log m^{\prime}\right)$ time for each element of $C o n t B l\left[i_{0}, r, t\right]$. In the following analysis, the $\log m^{\prime}$ factor in the time complexities comes from this querying time. The contraction of all the blocks can be done in $O\left(m^{\prime} \log m^{\prime}\right)$ time.

The common blocks appear in the matrices $M D[i]$ in different positions, but the result of the search for the minima of the columns of these blocks can be used in all the matrices. More precisely, if the common block t appears starting from row $l_{i, t}$ of the matrix $M D[i]$, the contraction of this block in this matrix is done by simply substituting of the block by the vector shift $\left[l_{i, t}\right.$, ContBl $\left.\left[i_{0}, r, t\right], 2 m\right]$.

In addition to the $r+1$ rows obtained from the contraction of the common blocks, each matrix $\operatorname{Cont} 1 M D[i]$ contains at most r additional rows. Recall that $r=\left\lceil\sqrt{m^{\prime}}\right\rceil$. So the contraction of the matrices reduces the height of these matrices to $O\left(\sqrt{m^{\prime}}\right)$.

The construction of the matrices $\operatorname{ContM} D\left[i_{0}\right]$ to $\operatorname{Cont} M D\left[i_{0}+r\right]$ can be done by simple pointer manipulations. In fact, to build $\operatorname{Cont} M D[i+1]$, we can use Cont $M D[i]$, remove the first row and insert a new one. A structure similar to the one for D_{G} of Section 5 can be use here.

We use the algorithm from Aggarwal et al. [1] to find all the column minima of the first matrix of the range, $\operatorname{Cont} M D\left[i_{0}\right]$, obtaining row $D_{G}^{i_{0}}$ in $O\left(m^{\prime} \log m^{\prime}\right)$ time. For row D_{G}^{i}, $i_{0}<i \leq i_{0}+r$, using Property 1 , we just need to determine $V_{G}(i)$ from D_{G}^{i-1}. We do this by taking from ContMD[i] $O\left(\sqrt{m^{\prime}}\right)$ columns, spaced by $\left\lceil\sqrt{m^{\prime}}\right\rceil$ and finding their minima in $O\left(\sqrt{m^{\prime}} \log m^{\prime}\right)$ time. This gives us a $\left\lceil\sqrt{m^{\prime}}\right\rceil$-sample of D_{G}^{i}, which can be compared to D_{G}^{i-1} to give us an interval of size $O\left(\sqrt{m^{\prime}}\right)$ where $V_{G}(i)$ can be found. To find $V_{G}(i)$ we do another determination of column minima in $O\left(\sqrt{m^{\prime}} \log m^{\prime}\right)$ time. Doing so for r values of i, we spend $O\left(r \sqrt{m^{\prime}} \log m^{\prime}\right)=O\left(m^{\prime} \log m^{\prime}\right)$ time. The rows of D_{G} can be kept in the data structure described in Section 5 for comparing adjacent rows (the data for rows already used can be discarded).

Since there are a total of $(n+1) /(r+1)$ groups of $r+1$ matrices $M D[i]$ to process, the total time to determine D_{G}^{0} and V_{G} from D_{U} e D_{L} is $O\left(\left(n m^{\prime} / r\right) \log m^{\prime}\right)=$ $O\left(n \sqrt{m^{\prime}} \log m^{\prime}\right)$. We can divide this work by using q processors, through the division of D_{U} among the processors. Each block of r rows of D_{U} can be used to determine the r rows of D_{G}, the processing of each block being independent of the other blocks. With this, the time becomes $O\left(\left(n \sqrt{m^{\prime}} \log m^{\prime}\right) / q\right)$.

We need to consider the time to construct the representation of D_{U} and D_{L}, as shown earlier. The representa-
tion of D_{L} must be available in the local memory of all the processors. This construction takes $O\left(n \sqrt{m^{\prime}}\right)$ time, or $O\left(n \sqrt{m^{\prime}} / q\right)$ by using q processors. We thus have the following.

Lemma 1 Let G^{\prime} be a $\left(2 m^{\prime}+1\right) \times(n+1)$ GDAG for the ALCS problem, formed by the union of the $\left(m^{\prime}+1\right) \times(n+1)$ U (upper) and L (lower) GDADs. The determination of $D_{G^{\prime}}^{0}$ and $V_{G^{\prime}}$ from $D_{U}^{0}, V_{U}, D_{L}^{0}$ and V_{L} can be done by q processors in $O\left(n \sqrt{m^{\prime}}\left(1+\frac{\log m^{\prime}}{q}\right)\right)$ time and $O\left(n \sqrt{m^{\prime}}\right)$ space.

8 Analysis of the Complete Algorithm

Given strings X and Y of lengths m and n, respectively, phase 1 of the BSP/CGM algorithm of Section 4 solves the ALCS for the p GDAGs defined for the p substrings of X in $O(m n / p)$ time.

We need to obtain the time complexity of phase 2 . Consider a basic union operation that joins an upper GDAG U^{\prime} and a lower GDAG L^{\prime}, say of sizes $\left(m^{\prime}+1\right) \times(n+1)$ each, to produce a union GDAG G^{\prime} of size $\left(2 m^{\prime}+1\right) \times(n+1)$. The value of m^{\prime} doubles in each union step until the last one when we have the solution (when $2 m^{\prime}=m$).

When there are q processors to deal with GDAG G^{\prime}, we have $m^{\prime}=\frac{m q}{2 p}$. By Lemma 1, the time complexity becomes:
$O\left(n \sqrt{m}\left(\sqrt{\frac{q}{2 p}}+\frac{\log \frac{m q}{2 p}}{\sqrt{2 p q}}\right)\right)=O\left(\frac{n \sqrt{m}}{\sqrt{p}}\left(\sqrt{q}+\frac{\log m}{\sqrt{q}}\right)\right)$

The amount of processors q involved in obtaining each GDAG doubles in each union process. Thus the sum of the times of all the union processes is:

$$
O\left(n \sqrt{m}\left(1+\frac{\log m}{\sqrt{p}}\right)\right)
$$

The details can be found in [3].
To get linear speedup we need to make this time $O(m n / p)$. This is accomplished if $p<\sqrt{m}$. The space needed for the proposed algorithm is $O(n \sqrt{m})$ per processor, due to the representation of D_{L} in each union process.

As for the communication requirements, with q processors performing a union, each processor determines n / q elements of $V_{G^{\prime}}$ that needs to be transmitted to the other $2 q-1$ processors for the next union step. This results in $O(n)$ data transferred per processor. The processor that determines $D_{G^{\prime}}^{0}$ needs to transfer the $m q / p$ elements of this vector to other $2 q-1$ processors, resulting in a communication round where $O\left(m q^{2} / p\right)$ data are transmitted.

For some constant C, this can also be done in C communication rounds in which each processor transmits
$O\left(\left(m q^{1+1 / C}\right) / p\right)$ data: in the first round the processor that determined $D_{G^{\prime}}^{0}$ does a broadcast of this vector to $\left\lfloor q^{1 / C}\right\rfloor$ other processors, that then transmits to $\left\lfloor q^{2 / C}\right\rfloor$ other processors and so on. The last union step is when the largest amount of data is transmitted per processor, $O\left(m p^{1 / C}+n\right)$.

We thus conclude this section with the main result of this paper which is a linear speedup BSP/CGM algorithm for the ALCS problem.

Theorem 4 Given two strings X and Y of lengths m and n, respectively, the ALCS problem can be solved by $p<\sqrt{m}$ processors in $O(m n / p)$ time, $O(n \sqrt{m})$ space per processor, and $O(C \log p)$ communication rounds, for some chosen constant C, in which $O\left(m p^{1 / C}+n\right)$ data are transmitted from/to each processor.

Corollary 1 Given two strings X and Y of lengths m and n, respectively, the $A L C S$ problem can be solved in the BSP model with $p<\sqrt{m}$ processors in time $O\left(\frac{m n}{p}+C \log p L+\right.$ $\left.\log p\left(C m p^{1 / C}+n\right) g\right)$, where g and L are the communication throughput ratio and communication latency, respectively.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987.
[2] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song. Parallel dynamic programming for solving the string editing problem on a CGM/BSP. In Proceedings of the 14th Symposium on Parallel Algorithms and Architectures (SPAA), pages 275-281. ACM Press, 2002.
[3] C. E. R. Alves, E. N. Cáceres, and S. W. Song. Sequential and parallel algorithms for the all-substrings longest common subsequence problem. Technical report, Dept. of Computer Science, University of São Paulo, November 2002.
[4] A. Apostolico and C. Guerra. The longest common subsequence problem revisited. Algorithmica, 2:315-336, 1987.
[5] F. Dehne. Coarse grained parallel algorithms. Special Issue of Algorithmica, 24(3/4):173-176, 1999.
[6] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for coarse grained multicomputers. In Proc. 9th Annual ACM Symp. Comput. Geom., pages 298-307, 1993.
[7] M. Lu and H. Lin. Parallel algorithms for the longest common subsequence problem. IEEE Transactions on Parallel and Distributed Systems, 5(8):835-848, 1994.
[8] C. Rick. New algorithms for the longest common subsequence problem. Technical Report 85123-CS, Institut fr Informatik, Universitt Bonn, 1994.
[9] J. Schmidt. All highest scoring paths in weighted graphs and their application to finding all approximate repeats in strings. SIAM J. Computing, 27(4):972-992, 1998.
[10] L. G. Valiant. A bridging model for parallel computation. Communication of the ACM, 33(8):103-111, 1990.

[^0]: * Doctorate student at Universidade de São Paulo
 ${ }^{\dagger}$ Partially supported by CNPq Proc. No. 52.2028/02-9 and FINEP-PRONEX-SAI Proc. No. 76.97.1022.00. Visiting Professor at the Universidade de São Paulo
 \ddagger Partially supported by FAPESP Proc. No. 99/07390-0, CNPq Proc. No. 52.3778/96-1, 46.1230/00-3, 521097/01-0 and 52.2028/02-9.

