
Formalizing planning algorithms: a logical framework for the research on
extending the classical planning approach

�

Silvio do Lago Pereira and Leliane Nunes de Barros
Institute of Mathematics and Statistics – University of São Paulo

Rua do Matao, 1010 – 05508-090 – Sao Paulo, SP�
slago,leliane � @ime.usp.br

Abstract

In this work we show how a planner implemented as
an abductive reasoning process can have the same per-
formance and behavior as classical planning algorithms.
We demonstrate this result by considering three differ-
ent versions of an abductive event calculus planner on
reproducing some important comparative analyses of
planning algorithms found in the literature. We argue
that a logic-based planner, defined as the application of
general purpose theorem proving techniques to a gen-
eral purpose action formalism, can be a very solid base
for the research on extending the classical planning ap-
proach.

Keywords: abduction, event calculus, theorem prov-
ing, planning.

Introduction
In general, in order to cope with domain requirements, any
extension to STRIPS representation language would require
the construction of complex planning algorithms, whose
soundness can not be easily proved. The so called practi-
cal planners, which are said to be capable of solving com-
plex planning problems, are constructed in an ad hoc fash-
ion, making difficult to explain why they work or why
they present a successful behavior. The main motivation
for the construction of logic-based planners is the possibil-
ity to specify planning systems in terms of general theo-
ries of action and implement them as general purpose the-
orem provers, having a guarantee of soundness. Another
advantage is that a planning system defined in this way
has a close correspondence between specification and im-
plementation. There are several works aiming the con-
struction of sound and complete logic-based planning sys-
tems (Green 1969), (Eshghi 1988),(Missiaen, Bruynooghe,
& Denecker 1994). More recent research results (Shana-
han 2000) demonstrate that a good theorectical solution can
coexist with a good practical solution, despite of contrary
widespread belief (Russell & Norvig 2003).

In this work, we report on the implementation and anal-
ysis of three different versions of the AECP, a particular
�
This work has been supported by the Brazilian sponsoring

agencies Capes, FAPESP and CNPq.
Copyright c

�
2004, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

logic-based planner which uses event calculus (Shanahan
1995) as a formalism to reason about actions and change and
abduction (Kakas, Kowalski, & Toni 1992) as an inference
rule. By reproducing some important results on comparative
analyses of planning algorithms (Knoblock & Yang 1994)
(Kambhampati, Knoblock, & Yang 1995), and including ex-
periments with the corresponding versions of the abductive
event calculus planner, we show that there is a close cor-
respondence between well known planning algorithms and
logic-based planners. We also show that the efficiency re-
sults observed with a logic-based planner that adopts abduc-
tive event calculus and theorem proving can be comparable
to that observed with some practical planners. We claim that
one should start from an efficient logical implementation in
order to make further extensions towards the specification of
non-classical planners.

Abductive reasoning in the event calculus
Abduction is an inference principle that extends deduction,
providing hypothetical reasoning. As originally introduced
by (Peirce 1931 1958), it is an unsound inference rule that
resembles a reverse modus ponens: if we observe a fact � ,
and we know ���	� , then we can accept � as a possible
explanation for � . Thus, abduction is a weak kind of infer-
ence in the sense that it only guarantees that the explanation
is plausible, not that it is true.

Formally, given a set of sentences
 describing a domain
(background theory) and a sentence � describing an obser-
vation, the abduction process consists of finding a set of sen-
tences � (residue or explanation) such that
��� is con-
sistent and
�������� . Clearly, depending on
 , for the
same observed fact we can have multiple possible explana-
tions. In general, the definition of best explanation depends
on the context, but it is almost always related to some no-
tion of minimallity. In practice, we should prefer explana-
tions that postulates the minimum number of causes (Cox
& Pietrzykowski 1986). Furthermore, abduction is, by def-
inition, a kind of nonmonotonic reasoning, i.e. an expla-
nation consistent, w.r.t. a determined knowledge state, can
become inconsistent when new information is taken into ac-
count (Kakas, Kowalski, & Toni 1992).

Following, we present the event calculus as the formalism
used to describe the background theory on planning domains
and we show how the planning task can be understood as an

abductive process in the event calculus.

The event calculus formalism
The event calculus (Kowalski & Sergot 1986) is a formalism
designed to model and reason about scenarios described as
sets of events whose occurrences have the effect of starting
or terminating the truth of determined properties (fluents) of
the world. There are many versions of event calculi (Santos
1998). In this work, we use a version defined in (Shanahan
1995), whose axiomatization is the following:���������
	�������������

(EC1)������������� ��!#"%$ &('*),+.-/���10%032#43$ 576�&�698:'���������
	�������������
(EC2)��;/<#<>=
?3�#�	@�A��B
���3CD�FEHG�?7G���G�;I��=J�K�	L�M�.����B9�NE1�3CPOQ�R�HETSVUD��GW<#<X=/�>1��BY�M�.���R�S����������
	��D��.���R���
(EC3)������������� ��!�Z3$A&('*),+.4�2#-/���10�0[2#43$ 576Y&�6Y8:'S����������
	��D��.���R���
(EC4)��;/<#<>=
?3�#�	@�A��B
���3CD�FE(��=
\J]^G�?7;K��=J�#�	@��������BM�NE1�3CPOQ�R�HETSV�I=
UD��GW<#<>=
�>1��BY�M�.���R�UD�_G`<a<>=
�>1��BD�M�.���3CD�Nb
(EC5)c%	L���Fda���Feaf ��;/<#<X=/?3�#�	@� �Fd����Fe/�FEg1� B Oh�Fd
�*E1� e OQ�3C��3Eif ��=
\�]jGA?7;K��=J�#�	@���.��� d �FkH\�=J��=/;%�
=J�#�	@������� d � l`l�I=
UD��GW<#<X=/�>1� B �M�.��� C �*b
(EC6)c%	L��� d ��� e f ��;/<#<X=/?3�#�	@� � d ��� e �FEg1��BmOh� d �FEg1� e Oh�3CD�*Ef G�?FGn��GA;K��=��#�	L���.��� d �FkH\�=J��=/;%�
=J�#�	@������� d � l`l��;/<#<>=
?3�#�	@�A� B ��� C �Nop� B�q � C
(EC7)

Table 1: Predicates of the event calculus

predicate description���������
	������� �R�
fluent

�
holds at time

�G�?7G���G�;%����rJs���L�
fluent

�
holds from time 0G�?7G���G�;%����r#tF��L�

fluent
�

does not hold from time 0��;/<#<>=
?3�#�	@�A��B
���Rua�
event

	
starts at

��B
and finishes at

�3CG�?7G���G�;I��=J�K�	L���.���R�
event

	
starts fluent

�
at time

���=
\J]^G�?7;K��=J�#�	@���������
event

	
finishs fluent

�
at time

�\�=J��=/;%�
=J�#�	@���������
event

	
releases fluent

�
at time

�UD�_G`<a<>=
�>1��B��M�.���3CD�
fluent

�
ceased to hold in

f �*B
���3C9l�I=
UD��GW<#<X=/�>1� B �M�.��� C �
fluent

�
started to hold in

f � B ��� C l

In the event calculus, the frame problem is overcome
through circumscription. Given v a domain description ex-
pressed as a conjunction of formulae that does not include
the predicates

������������� ��!
or w �a0�0[2��Nx

; � a narrative of ac-
tions expressed as a conjunctions of formulae that does not
include the predicates

�������������M2#x
,
�M2ay#z{���*���M2Kx

or
yK2#�A2#�>x�2Kx

;|
a conjunction of uniqueness-of-names axioms for actions

and fluents; and }j~ a conjunction of the axioms of the event
calculus, we have to consider the following formula as the
background theory on the abductive event calculus planning:

CIRC ��v:� �������������M2Kx%69�M2ay#z{���*���M2Kx%69yK2#�A2#�>x�2KxJ��)
CIRC � �g�Dw �a0%032a�NxJ�X) |) }H~ ,

where CIRC ��v:�9�7� 6J���J�J6 � Z �
means the circumscription of v

with relation to the predicate symbols � � 6J���J�/6 � Z
. By cir-

cumscribing
�����������%�M2Kx

,
�M2ay#z{���*���M2Kx

and
y#2#� 2a�>xa2Kx

we are

imposing that the known effects of actions are the only ef-
fects of actions, and by circumscribing w �a0�032a�Nx

we assume
that there are no unexpected event occurrences. An extended
discussion about the frame problem and its solution through
circumscription can be found in (Shanahan 1997).

An abductive event calculus planner
Planning in the event calculus is naturally handled as an ab-
duction process (Eshghi 1988). In this setting, given a do-
main description v , the task of planning a sequence of ac-
tions � in order to satisfy a given goal � corresponds to an
abductive process expressed by:

CIRC � v:� �������������M2Kx�6Y�M2ayaz����*���M2#x%6Yy#2#� 2a�>xa2KxJ�n)
CIRC � �{��w �a0�0[2��NxJ��) |) }H~ � � � ,

where � – the abductive explanation – is a plan for the goal
� . In (Shanahan 2000) a planning system based on this
idea is presented as a PROLOG abductive meta-interpreter.
This meta-interpreter is specialized for the event calculus by
compiling the }H~ axioms into its meta-clauses. The main
advantage of this compilation is to allow an extra level of
control to the planner. In particular, it allows us to define an
ordering in which subgoals can be achieved, improving effi-
ciency and giving special treatment to predicates that repre-
sent incomplete information. By incomplete information we
mean predicates for which we do not assume its closure, i.e.
we can not use negation as failure to prove their negations,
since they can be abduced. The solution to this problem is
to give a special treatment for negated literals with incom-
plete information at the meta-level. In the case of partial
order planning, we have incomplete information about the
predicate � 2K�V�#yK2

, allowing the representation of partial or-
der plans. Thus, when the meta-interpreter finds a literal+ � 2K�V�#y#2X$A�h6Y�H'

, it tries to prove it by adding � 2K�V�#yK2X$A�P69�Q'
to the plan (abductive residue) and checking its consistence.

In the abductive event calculus planner – AECP – a plan-
ning problem is given by a domain description represented
by a set of clauses

�������������M2Kx
,

�M2ay#z����*���M2Kx
and

yK2a� 2#�Xxa2Kx
,

an initial state description represented by a set of clauses�����������X�A�A! "
and

�����������X�A�A! Z
, and a goal description repre-

sented by a list of literals w �K� 4�xa�L�
. As solution, the planner

returns an abductive residue composed by literals w ��0%032a�Nx
and � 2K�V�#yK2

(the partial order plan) and a negative residue
composed of literals

-/���10�0[2#4
and

4%2#-/�A�10�032#4
(the causal links

of the partial order plan).

Classical planning in the event calculus
In order to perform a fair comparative analysis with STRIPS-
like planning algorithms, some modifications have to be
done in the AECP, which are related to the following as-
sumptions in classical planning: (i) atomic time, (ii) deter-
ministic effects and (iii) omniscience. From (i) follows that
we need to change the predicate w �a0%032a�Nx�$A�(6Y8(��6Y8:��'

to a
binary version. Thus, w �a0�032a�Nx�$A�H698:'

means that the action�
happens at time

8
and, by doing this change, the axiom

EC7 will be no longer necessary. From (ii) follows that there
is no need for the predicate

yK2#�A2#�>xa2Kx
and, finally, from (iii)

(remembering the fact that STRIPS’s action representation
does not allow negative preconditions), follows that there is

no need for predicate
�����������X�A�A!%Z

neither the axioms EC3,
EC4 and EC6. With these changes, we can specify a simpli-
fied axiomatization of the event calculus containing only its
relevant aspects to the classical planning:���������
	�������������pG�?FGn��GA;��1�_rF��L�FETSVUD�_G`<a<>=
�>������.���R�

(SEC1)���������
	���������������;/<#<>=
?3�#�	@�A� B �3E(G�?FGn��GA;K��=��#�	L���.��� B �FEg1� B Oh���*E
(SEC2)SVUD��GW<#<X=/�>1��BY�M�.���R�UD�_G`<a<>=
�>1� B �M�.��� C �Nb c�	@���@f ��;/<#<>=
?3�#�	@�A�R�3Ei1� B O�R�7E{1� O �3C
�*E
(SEC3)��=
\J]^G�?7;K��=J�#�	@� �.����� l

The ABP planning system
Based on this simplified axiomatization, we have imple-
mented the ABP planning system. This planner uses iter-
ative deepening search (IDS) and first-in, first-out (FIFO)
goal ordering, while AECP uses depth first search (DFS) and
last-in, last-out (LIFO) strategies. Using IDS, we turn out
the method complete and we increase the possibility to find
minimal explanations. It is important to notice that in the
original version of the AECP, both properties did not hold.
Following, we explain the details of the knowledge repre-
sentation and control knowledge decisions made in our im-
plementations that are relevant on the comparative analysis
presented in the next section.

Action representation. In the event calculus, the predi-
cates

�������������M2Kx
and

�M2ay#z{���*���M2Kx
are used to describe the

effects of an action. For instance, consider the predicate� �X���*$��h6��H'
representing the act of walking from � to

!
.

The effects of this action can be described as:G�?7G���G�;I��=J�K���;��	�7�
T���:�Y��;K�D��:�Y���R�*����������
	��Dn;K���
i�Y���R�7E
��� ���=
\J]^G�?7;K��=J�#��P;��	�7�
T��� �Y��;K�D�
 �Y���R�*����������
	��Dn;K���
i�Y���R�7E
��� �

In the AECP’s meta-level, the above clauses are repre-
sented by the predicate

� � ���#z $�� 6��^'
, where

�
is the head

of the clause and
�

is its body, that is:

axiom(initiates(walk(X,Y),at(Y),T),
[holdsAt(at(X),T),X\=Y]).

axiom(terminates(walk(X,Y),at(X),T),
[holdsAt(at(X),T),X\=Y]).

Similarly, the STRIPS representation of this action is:

oper(walk(X,Y),[at(X),X\=Y],[at(Y)],[at(X)]).

Note that, in the STRIPS representation, the first pa-
rameter of the predicate oper is the action’s name,
while in the }H~ representation, the first parameter of
the predicate axiom is initiates or terminates.
Since PROLOG’s indexing method uses the first parame-
ter as the searching key, finding an action with the pred-
icate oper would take constant time, while a search
with the predicate axiom would take time proportional
to the number of clauses for this predicate included in
the knowledge base. Thus, in order to establish a suit-
able correspondence between both approaches, in the

implementation of the ABP, the clauses of the form
axiom(initiates(� 6�� 698 '
6��

) are represented at the
meta-level as initiates(� 6�� 698@6��

). In analogous way,
the clauses axiom(terminates(� 6�� 6Y8:'
6��

) are repre-
sented as terminates(� 6�� 698@6��

).

Abducible and executable predicates. In the AECP
(Shanahan 2000), the meta-predicates abducible and
executable are used to establish which are the abducible
predicates and the executable actions, repectively. The dec-
laration of the abducible predicates is important to the plan-
ner, as it needs to know the predicates with incomplete in-
formation that can be added to the residue. By restricting the
facts that can be abduced, we make sure that only basic ex-
planations are computed (i.e. those explanations that can not
be formulated in terms of others effects). On the other hand,
the declaration of executable actions only makes sense in
HTN planners, where it is important to distinguish between
primitive and compound actions. Since in this work we only
want to compare the logical planner with partial order plan-
ners, we can assume that all the actions in the knowledge
base are executable and that the only abducible predicates
are happens and before (the same assumption is made
in the STRIPS-like partial order planners).

Codesignation constraints. Since the AECP uses the
PROLOG’s unification procedure as the method to add codes-
ignations constraints to the plan, it is difficult to compare it
with the STRIPS-like planning algorithms (which have a spe-
cial procedure implemented for this purpose). So, we have
implemented ABP as a propositional planner, as is com-
monly done in most of the performance analyses in the plan-
ning literature. As we will see, this change has positively
affected the verification of the consistency of the negative
residue.

Consistency of the negative residue. In the AECP, the
negative residue has to be checked for consistency every
time the positive residue

�
is modified. This behavior cor-

responds to an interval protection strategy for the predicate
clipped (in a way equivalent to book-keeping in partial
order planning). However, in the case of a propositional
planner, we have only to check for consistency a new literal
clipped (added to the negative residue) with respect to
the actions already in the positive residue, and a new literal
happens (added to the positive residue) with respect to the
intervals already in the negative residue. Thus, in contrast
with the performance presented by the AECP, the conflict
treatment in the ABP is incremental and has a time com-
plexity of � $ � � � ' . In addition, when an action in the plan is
selected as the establisher of a subgoal, only the new added
literal clipped has to be protected.

Systematicity and redundancy
In order to analyse the performance of the abductive event
calculus planner, we have implemented three different plan-
ning strategies:

� ABP: abductive planner (equivalent to POP);
� SABP: systematic version of ABP (equivalent to SNLP);
� RABP: redundant version of ABP (equivalent to TWEAK).

Systematicity. A systematic version of the ABP, called
SABP, can be obtained by modifying the event calculus ax-
iom SEC3 to consider as a ”threat” to a fluent

&
not only an

action that terminates it, but also an action that initiates it:UD�_G`<a<>=
�>1��BD�M�.���3CD�Nb c�	@���@f ��;/<#<>=
?3�#�	@�A�R�3Ei1��B�O�R�7E{1� O �3C
�*E
(SEC3’)

f ��=
\J]^G�?7;I��=J�K�	L���.���R�7kHG�?7Gn��G�;K��=J�#�	@�M�.���R� lWl
With this simple change, we expect that SABP will have
the same performance of systematic planners, like SNLP
(MacAllester & Rosenblitt 1991), and the same trade-off
performance with the corresponding redundant version of
the ABP planner.

Redundancy. A redundant version of the ABP, called
RABP, does not require any modification in the }H~ axioms.
The only change that we have to make is in the goal selection
strategy. In the ABP, as well in the SABP, subgoals are se-
lected and then eliminated from the list of subgoals as soon
as they are satisfied. This can be safely done because those
planners apply a causal link protection strategy.

A MTC – modal truth criterion – strategy for goal selec-
tion can be easily implemented in the RABP by performing
a temporal projection. This is done by making the meta-
interpreter to “execute” the current plan, without allowing
any modification on it. This process returns as output the
first subgoal which is not necessarily true.

Another modification is on the negative residue: the
RABP does not need to check the consistency of negative
residues every time the plan has been modified. So, in the
RABP, the negative literals of the predicate clipped does
not have a special treatment by the meta-interpreter. As in
TWEAK (Chapman 1987), this will make the RABP to select
the same subgoal more than once but, on the other hand, it
can plan for more than one subgoal with a single goal estab-
lishment.

The comparative analysis
In order to show the correspondence between abductive
planning and partial order planning, we have implemented
the abductive planners (ABP, SABP and RABP) and three
well known partial order planning algorithms (POP, SNLP
and TWEAK). All these planners have been implemented in
PROLOG and all the cares necessary to guarantee the valid-
ity of the comparisons have been taken (e.g. all the planners
shared common data structures and procedures). A complete
analysis of these results is presented in (Pereira & Barros
2001) and (Pereira 2002).

We have performed two experiments with these six plan-
ners: (i) evaluation of the correspondence between abductive
planning in the event calculus and partial order planning and
(ii) evaluation of systematicity/redundancy obtained with
different goal protection strategies.

Experiment I: correspondence between POP and ABP

In order to evaluate the relative performance of the planners
POP and ABP, we have used the artificial domains family����� Z

(Barrett & Weld 1994). With this, we ensure that the
empirical results we have obtained were independent of the
idiosyncrasies of a particular domain.

Based on these domains, we have performed two tests: in
the first, we observe how the size of the search space ex-
plored by the systems increases as we increase the number
of subgoals in the problems; in the second, we observe how
the average CPU-time consumed by the systems increases as
we increase the number of subgoals in the problems.

0

5

10

15

20

25

1 2 3 4 5 6

p
la

n
s

subgoals in DmS1

POP
ABP

0

10

20

30

40

50

60

1 2 3 4 5 6

p
la

n
s

subgoals in DmS2

POP
ABP

Figure 1: Search space size to solve problems in ���
	
t

In figure 1, we can observe that the ABP and POP explore
identical search spaces. Therefore, we can conclude that
they implement the same planning strategies (i.e. they ex-
amine the same number of plans, independently of the fact
that they implement different approaches). This result ex-
tends the work presented in (Shanahan 2000), which verifies
the correspondence between abductive planning in the event
calculus (AECP) and partial order planning (POP) only in an
informal way, by inspecting the code. In figure 2, we can
observe that, for all problems solved, the average CPU-time
consumed by both planners is approximately the same. This
proves that the necessary inferences in the logical planners
do not increase the time complexity of the planning task.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6

C
P

U
-t

im
e

 (
se

c)

subgoals in DmS1

POP
ABP

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6

C
P

U
-t

im
e

 (
se

c)

subgoals in DmS2

POP
ABP

Figure 2: Average CPU-time to solve problems in ����	
t

Therefore, through this first experiment, we have corrob-
orated the conjecture that abductive planning in the event
calculus is isomorphic to partial order planning (Shanahan
2000). Also, we have showed that, using abduction as infer-
ence rule and event calculus as formalism to reasoning about
actions and chance, a logical planning system can be as effi-
cient as a partial order planning system, with the advantage
that its specification is “directly executable”.

Experiment II: trade-off between systematicity and
redundancy

There was a belief that by decreasing redundancy it would
be possible to improve planning efficiency. So, a system-
atic planner, which never visits the same plan twice in its
search space, would be more efficient than a redundant plan-
ner (MacAllester & Rosenblitt 1991). However, (Kambham-
pati 1993) has shown that there is a trade-off between re-
dundancy elimination and least commitment: redundancy is
eliminated at the expense of increasing commitment in the
planner. Therefore, the performance of a partial order plan-
ner is better predicted based on the way it deals with the
trade-off between redundancy and commitment than on the
systematicity of its search.

In order to show the effects of this trade-off, Kambham-
pati chose two well known planning algorithms: TWEAK
and SNLP.TWEAK does not keep track of which goals were
already achieved and which remains to be achieved. There-
fore, TWEAK may achieve and clobber a subgoal arbitrarily
many times, having a lot of redundancy on its search space.
On the other hand, SNLP achieves systematicity by keeping
track of the causal links of the plans generated during search,
and ensuring that each branch of the search space commits
to and protects mutually exclusive causal links for the partial
plans, i.e. it protects already established goals from negative
or positive threats. Such protection corresponds to a strong
form of premature commitment (by imposing ordering con-
straints on positive threats) which can increase the amount
of backtracking as well as the solution depth, having an ad-
verse effect on the performance of the planner.

Kambhampati’s experimental analyses show that there is
a spectrum of solutions to the trade-off between redundancy
and commitment in partial order planning, in which the
SNLP and TWEAK planners fall into opposite extremes. To
confirm this result, and to show that it is valid to abductive
planners too, we created a new family of artificial domains,
called

	�� � � 	 C
(Pereira 2002), through which we can ac-

curately control the ratio between the number of positive
threats � (i.e. distinct actions that contribute with one same
effect) and negative threats

!
(i.e. distinct actions that con-

tribute with opposing effects) in each domain. To observe
the behavior of the compared planners, as we vary the ratio
between the number of positive and negative threats in the
domains, we keep constant the number of subgoals in the
solved problems. Then, as a consequence of this fact and
of the characteristics of the domains in the family

��� ��� ���
,

the number of steps in all solutions stays always the same.
The results of this second experiment (figure 3), show that

the systematic and redundant versions of the abductive plan-
ner (SABP and RABP) have the same behavior of its corre-
sponding algorithmic planners (SNLP and TWEAK).

So, we have extended the results of the previous experi-
ment and show that the isomorphism between abductive rea-
soning in the event calculus and partial order planning can
be preserved for systematic and redundant methods of plan-
ning. Moreover, we also corroborate the conjecture that the
performance of a systematic or redundant planner is strongly
related to the ratio between the number of positive and neg-

0

100

200

300

400

500

600

700

800

9:0 8:1 7:2 6:3 5:4 4:5 3:6 2:7 1:8 0:9

C
P

U
-t

im
e

(s
ec

)

ratio between positive and negative threats

AxDyS2

POP
SNLP

TWEAK
ABP

SABP
RABP

Figure 3: Average CPU-time to solve problems in
		� � � 	 C

ative threats in the considered domain (Knoblock & Yang
1994) and that this conjecture remains valid to abductive
planning in the event calculus.

Conclusion
The main contribution of this work is: (i) to propose a formal
specification of different well-known algorithms of classical
planning and (ii) to show how a planner based on theorem
proving can have similar behavior and performance to those
observed in partial order planners based on the STRIPS. One
extra advantage of our formal specification is its close re-
lationship with a PROLOG implementation, which can pro-
vide a good framework to test extensions to the classical ap-
proach, as well to the integration of knowledge-based ap-
proaches for planning.

It is important to notice that the original version of the
AECP proposed by (Shanahan 2000) does not guarantee
completeness neither minimal plan solution. However, the
abductive planners we have specified and implemented guar-
antee these properties by using IDS (iterative deepening
search) and FIFO goal ordering strategies.

We are currently working on the idea proposed in (Barros
& Pereira 2002) which aims to build, on the top of our ab-
ductive planners, a high-level robot programming language
for applications in cognitive robotics. First, we have im-
plemented a HTN version of the abductive event calculus
planner to cope with the idea of high-level specifications of
robotic tasks. Further, we intend to work with planning and
execution with incomplete information.

References
Barrett, A., and Weld, D. S. 1994. Partial-order planning:
Evaluating possible efficiency gains. Artificial Intelligence
67(1):71–112.

Barros, L. N., and Pereira, S. L. 2002. High-level robot
programs based on abductive event calculus. In Proceed-
ings of 3rd International Cognitive Robotics Workshop.

Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333–377.

Cox, P. T., and Pietrzykowski, T. 1986. Causes for events:
their computation and applications. In Proc. of the 8th in-
ternational conference on Automated deduction, 608–621.
Springer-Verlag New York, Inc.
Eshghi, K. 1988. Abductive planning with event calcu-
lus. In Proc.of the 5th International Conference on Logic
Programming. 562–579.
Green, C. 1969. Application of theorem proving to prob-
lem solving. In IJCAI. 219–240.
Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1992. Abduc-
tive logic programming. Journal of Logic and Computation
2(6):719–770.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning. Arti-
ficial Intelligence 76(1-2):167–238.
Kambhampati, S. 1993. On the utility of systematicity:
Understanding tradeoffs between redundancy and commit-
ment in partial-ordering planning. In Foundations of Auto-
matic Planning: The Classical Approach and Beyond: Pa-
pers from the 1993 AAAI Spring Symposium, 67–72. AAAI
Press, Menlo Park, California.
Knoblock, C., and Yang, Q. 1994. Evaluating the tradeoffs
in partial-order planning algorithms.
Kowalski, R. A., and Sergot, M. J. 1986. A logic-based
calculus of events. In New Generation Computing 4. 67–
95.
MacAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. 9th National Conference on Arti-
ficial Intelligence. 634–639.
Missiaen, L.; Bruynooghe, M.; and Denecker, M. 1994.
Chica, an abductive planning system based on event calcu-
lus.
Peirce, C. S. 1931-1958. Collected Papers of Charles
Sanders Peirce. Harvard University Press.
Pereira, S. L., and Barros, L. N. 2001. Efficiency in ab-
ductive planning. In Proceedings of 2nd Congress of Logic
Applied to Technology. 213–222.
Pereira, S. L. 2002. Abductive Planning in the Event Cal-
culus. Master Thesis, Institute of Mathematics and Statis-
tics - University of Sao Paulo.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach (second edition). Prentice-Hall, Engle-
wood Cliffs, NJ.
Santos, P. E. 1998. Formalising the common sense of a
mobile robot.
Shanahan, M. 1995. A circumscriptive calculus of events.
Artificial Intelligence 77(2):249–284.
Shanahan, M. P. 1997. Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law of
Inertia. MIT Press.
Shanahan, M. P. 2000. An abductive event calculus plan-
ner. In The Journal of Logic Programming. 44:207–239.

