
BETA REGRESSION FOR MODELLING RATES AND PROPORTIONS

SILVIA L.P. FERRARI

Departamento de Estat́ıstica/IME
Universidade de São Paulo

Caixa Postal 66281, São Paulo/SP, 05311–970, Brazil
email: sferrari@ime.usp.br

FRANCISCO CRIBARI–NETO

Departamento de Estat́ıstica, CCEN
Universidade Federal de Pernambuco
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Abstract. This paper proposes a regression model where the response is beta distributed
using a parameterization of the beta law that is indexed by mean and dispersion pa-
rameters. The proposed model is useful for situations where the variable of interest is
continuous and restricted to the interval (0, 1) and is related to other variables through
a regression structure. The regression parameters of the beta regression model are inter-
pretable in terms of the mean of the response and, when the logit link is used, of an odds
ratio, unlike the parameters of a linear regression that employs a transformed response.
Estimation is performed by maximum likelihood. We provide closed-form expressions for
the score function, for Fisher’s information matrix and its inverse. Hypothesis testing
is performed using approximations obtained from the asymptotic normality of the max-
imum likelihood estimator. Some diagnostic measures are introduced. Finally, practical
applications that employ real data are presented and discussed.
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1. Introduction

Practitioners commonly use regression models to analyze data that are perceived to be
related to other variables. The linear regression model, in particular, is commonly used in
applications. It is not, however, appropriate for situations where the response is restricted
to the interval (0, 1) since it may yield fitted values for the variable of interest that exceed
its lower and upper bounds. A possible solution is to transform the dependent variable
so that it assumes values on the real line, and then model the mean of the transformed
response as a linear predictor based on a set of exogenous variables. This approach,
however, has drawbacks, one of them being the fact that the model parameters cannot be
easily interpreted in terms of the original response. Another shortcoming is that measures
of proportions typically display asymmetry, and hence inference based on the normality
assumption can be misleading. Our goal is to propose a regression model that is tailored
for situations where the dependent variable (y) is measured continuously on the standard
unit interval, i.e. 0 < y < 1. The proposed model is based on the assumption that the
response is beta distributed. The beta distribution, as is well known, is very flexible for
modelling proportions since its density can have quite different shapes depending on the
values of the two parameters that index the distribution. The beta density is given by

π(y; p, q) =
Γ(p + q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1, (1)

where p > 0, q > 0 and Γ(·) is the gamma function. The mean and variance of y are,
respectively,

E(y) =
p

(p + q)
(2)

and

var(y) =
pq

(p + q)2(p + q + 1)
. (3)

The mode of the distribution exists when both p and q are greater than one: mode(y) =
(p− 1)/(p + q − 2). The uniform distribution is a particular case of (1) when p = q = 1.
Estimation of p and q by maximum likelihood and the application of small sample bias
adjustments to the maximum likelihood estimators of these parameters are discussed by
Cribari–Neto and Vasconcellos (2002).

“Beta distributions are very versatile and a variety of uncertanties can be usefully
modelled by them. This flexibility encourages its empirical use in a wide range of ap-
plications” (Johnson, Kotz and Balakrishnan, 1995, p. 235). Several applications of the
beta distribution are discussed by Bury (1999) and by Johnson, Kotz and Balakrish-
nan (1995). These applications, however, do not involve situations where the practitioner
is required to impose a regression structure for the variable of interest. Our interest lies
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in situations where the behaviour of the response can be modelled as a function of a
set of exogenous variables. To that end, we shall propose a beta regression model. We
shall also discuss the estimation of the unknown parameters by maximum likelihood and
some diagnostic techniques. Large sample inference is also considered. The modelling
and inferential procedures we propose are similar to those for generalized linear models
(McCullagh and Nelder, 1989), except that the distribution of the response is not a mem-
ber of the exponential family. An alternative to the model we propose is the simplex
model in Jørgensen (1997), which is defined by four parameters. Our model, on the other
hand, is defined by only two parameters, and is flexible enough to handle a wide range of
applications.

It is noteworthy that several empirical applications can be handled using the pro-
posed class of regression models. As a first illustration, consider the dataset collected by
Prater (1956). The dependent variable is the proportion of crude oil converted to gasoline
after distilation and fractionation, and the potential covariates are: the crude oil grav-
ity (degrees API), the vapor pressure of the crude oil (lbf/in2), the crude oil 10% point
ASTM (i.e., the temperature at which 10% of the crude oil has become vapor), and the
temperature (degrees F) at which all the gasoline is vaporized. The dataset contains 32
observations on the response and on the independent variables. It has been noted (Daniel
and Wood, 1971, Ch. 8) that there are only ten sets of values of the first three explanatory
variables which correspond to ten different crudes and were subjected to experimentally
controlled distilation conditions. This dataset was analyzed by Atkinson (1985), who used
the linear regression model and noted that there is “indication that the error distribution
is not quite symmetrical, giving rise to some unduly large and small residuals” (p. 60). He
proceeded to transform the response so that the transformed dependent variable assumed
values on the real line, and then used it in a linear regression analysis. Our approach will
be different: we shall analyze these data using the beta regression model proposed in the
next section.

The paper unfolds as follows. Section 2 presents the beta regression model, and
discusses maximum likelihood estimation and large sample inference. Diagnostic measures
are discussed in Section 3. Section 4 contains applications of the proposed regression
model, including an analysis of Prater’s gasoline data. Concluding remarks are given in
Section 5. Technical details are presented in two separate appendices.

2. The model, estimation and testing

Our goal is to define a regression model for beta distributed random variables. The
density of the beta distribution is given in equation (1), where it is indexed by p and
q. However, for regression analysis it is typically more useful to model the mean of the
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response. It is also typical to define the model so that it contains a precision (or dispersion)
parameter. In order to obtain a regression structure for the mean of the response along
with a precision parameter, we shall work with a different parameterization of the beta
density. Let µ = p/(p + q) and φ = p + q, i.e. p = µφ and q = (1− µ)φ. It follows from
(2) and (3) that

E(y) = µ

and

var(y) =
V (µ)

1 + φ
,

where V (µ) = µ(1 − µ), so that µ is the mean of the response variable and φ can be
interpreted as a precision parameter in the sense that, for fixed µ, the larger the value of φ,
the smaller the variance of y. The density of y can be written, in the new parameterization,
as

f(y; µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (4)

where 0 < µ < 1 and φ > 0. Figure 1 shows a few different beta densities along with
the corresponding values of (µ, φ). It is noteworthy that the densities can display quite
different shapes depending on the values of the two parameters. In particular, it can
be symmetric (when µ = 1/2) or asymmetric (when µ 6= 1/2). Additionally, we note
that the dispersion of the distribution, for fixed µ, decreases as φ increases. It is also
interesting to note that in the two upper panels, two densities have ‘J shapes’ and two
others have inverted ‘J shapes’. Although we did not plot the uniform case, we note that
when µ = 1/2 and φ = 2 the density reduces to that of a standard uniform distribution.
The beta density can also be ‘U shaped’ (skewed or not), and this situation is also not
displayed in Figure 1.

Throughout the paper we shall assume that the response is constrained to the standard
unit interval (0, 1). The model we shall propose, however, is still useful for situations where
the response is restricted to the interval (a, b), where a and b are known scalars, a < b.
In this case, one would model (y − a)/(b− a) instead of modelling y directly.

Let y1, . . . , yn be independent random variables, where each yt, t = 1, . . . , n, follows
the density in (4) with mean µt and unknown precision φ. The model is obtained by
assuming that the mean of yt can be written as

g(µt) =
k∑

i=1

xtiβi = ηt, (5)

where β = (β1, . . . , βk)
> is a vector of unknown regression parameters (β ∈ IRk) and

xt1, . . . , xtk are observations on k covariates (k < n), which are assumed fixed and known.
Finally, g(·) is a strictly monotonic and twice differentiable link function that maps (0, 1)
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Figure 1. Beta densities for different combinations of (µ, φ).
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into IR. Note that the variance of yt is a function of µt and, as a consequence, of the
covariate values. Hence, non-constant response variances are naturally accomodated into
the model.

There are several possible choices for the link function g(·). For instance, one can
use the logit specification g(µ) = log{µ/(1 − µ)}, the probit function g(µ) = Φ−1(µ),
where Φ(·) is the cumulative distribution function of a standard normal random vari-
able, the complementary log-log link g(µ) = log{− log(1 − µ)}, the log-log link g(µ) =
− log{− log(µ)}, among others. For a comparison of these link functions, see McCullagh
and Nelder (1989, §4.3.1), and for other transformations, see Atkinson (1985, Ch. 7).

A particularly useful link function is the logit link, in which case we can write

µt =
ex>t β

1 + ex>t β
,

where x>t = (xt1, . . . , xtk), t = 1, . . . , n. Here, the regression parameters have an important
interpretation. Suppose that the value of ith regressor is increased by c units and all other

independent variables remain unchanged, and let µ† denote the mean of y under the new
covariate values, whereas µ denotes the mean of y under the original covariate values.
Then, it is easy to show that

ec βi =
µ†/(1− µ†)
µ/(1− µ)

,

that is, exp{c βi} equals the odds ratio. Consider, for instance, Prater’s gasoline example
introduced in the previous section, and define the odds of converting crude oil into gasoline
as the number of units of crude oil, out of ten units, that are, on average, converted into
gasoline divided by the number of units that are not converted. As an illustration, if, on
average, 20% of the crude oil is transformed into gasoline, then the odds of conversion
equals 2/8. Suppose that the temperature at which all the gasoline is vaporized increases
by fifty degrees F, then fifty times the regression parameter associated to this covariate
can be interpreted as the log of the ratio between the chance of converting crude oil into
gasoline under the new setting relative to the old setting, all other variables remaining
constant.

The log-likelihood function based on a sample of n independent observations is

`(β, φ) =
n∑

t=1

`t(µt, φ), (6)

where

`t(µt, φ) = log Γ(φ)− log Γ(µtφ)− log Γ((1− µt)φ) + (µtφ− 1) log yt

+ {(1− µt)φ− 1} log(1− yt),
(7)
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with µt defined so that (5) holds. Let y∗t = log{yt/(1−yt)} and µ∗t = ψ(µtφ)−ψ((1−µt)φ).
The score function, obtained by differentiating the log-likelihood function with respect to
the unknown parameters (see Appendix A), is given by (Uβ(β, φ)>, Uφ(β, φ))>, where

Uβ(β, φ) = φX>T (y∗ − µ∗), (8)

with X being an n × k matrix whose tth row is x>t , T = diag{1/g′(µ1) . . . , 1/g′(µn)},
y∗ = (y∗1, . . . , y

∗
n)> and µ∗ = (µ∗1, . . . , µ

∗
n)>, and

Uφ(β, φ) =
n∑

t=1

{µt(y
∗
t − µ∗t ) + log(1− yt)− ψ((1− µt)φ) + ψ(φ)}. (9)

The next step is to obtain an expression for Fisher’s information matrix. The notation
can be described as follows. Let W = diag{w1, . . . , wn}, with

wt = φ
{
ψ′(µtφ) + ψ′((1− µt)φ)

} 1

{g′(µt)}2
,

c = (c1, . . . , cn)>, with ct = φ {ψ′(µtφ)µt − ψ′((1− µt)φ)(1− µt)}, where ψ′(·) is the
trigamma function. Also, let D = diag{d1, . . . , dn}, with dt = ψ′(µtφ)µ2

t + ψ′((1 −
µt)φ)(1 − µt)

2 − ψ′(φ). It is shown in Appendix A that Fisher’s information matrix is
given by

K = K(β, φ) =

(
Kββ Kβφ

Kφβ Kφφ

)
, (10)

where Kββ = φX>WX, Kβφ = K>
φβ = X>Tc, and Kφφ = tr(D). Note that the parame-

ters β and φ are not orthogonal, in contrast to what is verified in the class of generalized
linear regression models (McCullagh and Nelder, 1989).

Under the usual regularity conditions for maximum likelihood estimation, when the
sample size is large, (

β̂

φ̂

)
∼ Nk+1

((
β
φ

)
, K−1

)
,

approximately, where β̂ and φ̂ are the maximum likelihood estimators of β and φ, respec-
tively. It is thus useful to obtain an expression for K−1, which can be used to obtain
asymptotic standard errors for the maximum liikelihood estimates. Using standard ex-
pressions for the inverse of partitioned matrices (e.g., Rao, 1973, p. 33), we obtain

K−1 = K−1(β, φ) =

(
Kββ Kβφ

Kφβ Kφφ

)
, (11)

where

Kββ =
1

φ
(X>WX)−1

{
Ik +

X>Tcc>T>X(X>WX)−1

γφ

}
,
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with γ = tr(D)− φ−1c>T>X(X>WX)−1X>Tc,

Kβφ = (Kφβ)> = − 1

γφ
(X>WX)−1X>Tc,

and Kφφ = γ−1. Here, Ik is the k × k identity matrix.
The maximum likelihood estimators of β and φ are obtained from the equations

Uβ(β, φ) = 0 and Uφ(β, φ) = 0, and do not have closed-form. Hence, they need to be
obtained by numerically maximizing the log-likelihood function using a nonlinear opti-
mization algorithm, such as a Newton algorithm or a quasi-Newton algorithm; for details,
see Nocedal and Wright (1999). The optimization algorithms require the specification of
initial values to be used in the iterative scheme. Our suggestion is to use as an initial point
estimate for β the ordinary least squares estimate of this parameter vector obtained from a
linear regression of the transformed responses g(y1), . . . , g(yn) on X, i.e. (X>X)−1X>z,
where z = (g(y1), . . . , g(yn))>. We also need an initial guess for φ. As noted earlier,
var(yt) = µt(1− µt)/(1 + φ) which implies that φ = µt(1− µt)/var(yt)− 1. Note that

var(g(yt)) ≈ var{g(µt) + (yt − µt)g
′(µt)} = var(yt){g′(µt)}2,

that is, var(yt) ≈ var{g(yt)}{g′(µt)}−2. Hence, the initial guess for φ we suggest is

1

n

n∑

t=1

µ̌t(1− µ̌t)

σ̌2
t

− 1,

where µ̌t is obtained by applying g−1(·) to the tth fitted value from the linear regression of
g(y1), . . . , g(yn) on X, i.e. µ̌t = g−1(x>t (X>X)−1X>z), and σ̌2

t = ě>ě/[(n− k){g′(µ̌t)}2];
here, ě = z −X(X>X)−1X>z is the vector of ordinary least squares residuals from the
linear regression that employs the transformed response. These initial guesses worked
well in the applications described in Section 4.

Large sample inference is considered in Appendix B. We have developed likelihood
ratio, score and Wald tests for the regression parameters. Also, we have obtained confi-
dence intervals for the precision and the regression parameters, for the odds ratio when
the logit link is used, and for the mean response.

3. Diagnostic measures

After the fit of the model, it is important to perform diagnostic analyses in order to
check the goodness-of-fit of the estimated model. We shall introduce a global measure
of explained variation and graphical tools for detecting departures from the postulated
model and influential observations.
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At the outset, a global measure of explained variation can be obtained by computing
the pseudo R2 (R2

p) defined as the square of the sample correlation coefficient between η̂

and g(y). Note that 0 ≤ R2
p ≤ 1 and a perfect agreement between η̂ and g(y), and hence

between µ̂ and y, yields R2
p = 1.

The discrepancy of a fit can be measured as twice the difference between the maxi-
mum log-likelihood achievable (saturated model) and that achieved by the model under
investigation. Let D(y; µ, φ) =

∑n
t=1 2(`t(µ̃t, φ) − `t(µt, φ)), where µ̃t is the value of µt

that solves ∂`t/∂µt = 0, i.e., φ(y∗t −µ∗t ) = 0. When φ is large, µ∗t ≈ log{µt/(1−µt)}, and
it then follows that µ̃t ≈ yt; see Appendix B. For known φ, this discrepancy measure is
D(y; µ, φ), where µ is the maximum likelihood estimator of µ under the model being in-
vestigated. When φ is unknown, an approximation to this quantity is D(y; µ̂, φ̂); it can be
named, as usual, the deviance for the current model. Note that D(y; µ̂, φ̂) =

∑n
t=1(r

d
t )

2,
where

rd
t = sign(yt − µ̂t)

{
2(`t(µ̃t, φ̂)− `t(µ̂t, φ̂))

}1/2
.

Now note that the tth observation contributes a quantity (rd
t )

2 to the deviance, and thus
an observation with a large absolute value of rd

t can be viewed as discrepant. We shall
call rd

t the tth deviance residual.
It is also possible to define the standardized residuals:

rt =
yt − µ̂t√
v̂ar(yt)

,

where µ̂t = g−1(x>t β̂) and v̂ar(yt) = {µ̂t(1− µ̂t)}/(1+ φ̂). A plot of these residuals against
the index of the observations (t) should show no detectable pattern. Also, a detectable
trend in the plot of rt against η̂t could be suggestive of link function misspecification.

Since the distribution of the residuals is not known, half-normal plots with simulated
envelopes are a helpful diagnostic tool (Atkinson, 1985, §4.2; Neter et al., 1996, §14.6).
The main idea is to enhance the usual half-normal plot by adding a simulated envelope
which can be used to decide whether the observed residuals are consistent with the fitted
model. Half-normal plots with a simulated envelope can be produced as follows:

(i) fit the model and generate a simulated sample of n independent observations using
the fitted model as if it were the true model;

(ii) fit the model to the generated sample, and compute the ordered absolute values of
the residuals;

(iii) repeat steps (i) and (ii) k times;
(iv) consider the n sets of the k order statistics; for each set compute its average, minimum

and maximum values;
(v) plot these values and the ordered residuals of the original sample against the half-

normal scores Φ−1((t + n− 1/8)/(2n + 1/2)).
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The minimum and maximum values of the k order statistics yield the envelope. Atkin-
son (1985, p. 36) suggests using k = 19, so that the probability that a given absolute
residual will fall beyond the upper band provided by envelope is approximately equal to
1/20 = 0.05. Observations corresponding to absolute residuals outside the limits provided
by the simulated envelope are worthy of further investigation. Additionally, if a consid-
erable proportion of points falls outside the envelope, then one has evidence against the
adequacy of the fitted model.

Next, we shall be concerned with the identification of influential observations and
residual analysis. In what follows we shall use the generalized leverage proposed by Wei,
Hu and Fung (1998), which is defined as

GL(θ̃) =
∂ỹ

∂y>
,

where θ is an s-vector such that E(y) = µ(θ) and θ̃ is an estimator of θ, with ỹ = µ(θ̃).
Here, the (t, u) element of GL(θ̃), i.e. the generalized leverage of the estimator θ̃ at
(t, u), is the instantaneous rate of change in tth predicted value with respect to the uth
response value. As noted by the authors, the generalized leverage is invariant under
reparameterization and observations with large GLtu are leverage points. Let θ̂ be the
maximum likelihood estimator of θ, assumed to exist and be unique, and assume that
the log-likelihood function has second-order continuous derivatives with respect to θ and
y. Wei, Hu and Fung (1998) have shown that the generalized leverage is obtained by
evaluating

GL(θ) = Dθ

(
− ∂2`

∂θ∂θ>

)−1
∂2`

∂θ∂y>

at θ̂, where Dθ = ∂µ/∂θ>.
As a first step, we shall obtain a closed-form expression for GL(β) in the beta regres-

sion model proposed in the previous section under the assumption that φ is known. It is
easy to show that Dβ = TX. The expression for the elements of −∂2`/∂β∂β> is given in
Appendix A, and it follows that

− ∂2`

∂β∂β>
= φX>QX,

where Q = diag{q1, . . . , qn} with

qt =

[
φ{ψ′(µtφ) + ψ′((1− µt)φ)}+ (y∗t − µ∗t )

g′′(µt)

g′(µt)

]
1

{g′(µt)}2
, t = 1, . . . , n.

Additionally, it can be shown that ∂2`/∂β∂y> = φX>TM , where M = diag{m1, . . . , mn}
with mt = 1/{yt(1− yt)}, t = 1, . . . , n. Therefore, we obtain

GL(β) = TX(X>QX)−1X>TM. (12)
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We note that if we replace the observed information, −∂2`/∂β∂β>, by the expected
information, E(−∂2`/∂β∂β>), the expression for GL(β) is as given in (12) but with Q

replaced by W ; we shall call this matrix GL∗(β). It is noteworthy that the diagonal
elements of GL∗(β) are the same as those of M1/2TX(X>WX)−1X>M1/2, and that
M1/2T is a diagonal matrix whose tth diagonal element is given by {g′(µt)V (yt)

1/2}−1.
It is important to note that there is a close connection between the diagonal elements of
GL∗(β) and those of the usual ‘hat matrix’,

H = W 1/2X(X>WX)−1X>W 1/2,

when φ is large. The relationship stems from the fact that when the precision parameter
is large, the tth diagonal element of W 1/2 is approximately equal to {g′(µt)V (µt)

1/2}−1;
see Appendix C.

Let now φ be unknown, and hence θ> = (β>, φ). Here, Dθ = [TX 0], where 0 is
an n-vector of zeros. Also, −∂2`/∂θ∂θ> is given by (10) with W replaced by Q and c

replaced by f , where f = (f1, . . . , fn)> with ft = {ct− (y∗t − µ∗t )}, t = 1, . . . , n. It is thus
clear that the inverse of −∂2`/∂θ∂θ> will be given by (11) with W and c replaced by Q

and f , respectively. Additionally,

∂2`

∂θ∂y>
=

(
φX>TM

b>

)
,

where b = (b1, . . . , bn)> with bt = −(yt − µt)/{yt(1 − yt)}, t = 1, . . . , n. It can now be
shown that

GL(β, φ) = GL(β) +
1

γφ
TX(X>QX)−1X>Tf

(
f>TX(X>QX)−1X>TM − b>

)
,

where GL(β) is given in (12). When φ is large, GL(β, φ) ≈ GL(β).

A measure of the influence of each observation on the regression parameter estimates
is Cook’s distance (Cook, 1977) given by k−1(β̂ − β̂(t))

>X>WX(β̂ − β̂(t)), where β̂(t) is
the parameter estimate without the tth observation. It measures the squared distance
between β̂ and β̂(t). To avoid fitting the model n + 1 times, we shall use the usual
approximation to Cook’s distance given by

Ct =
htt r2

t

k(1− htt)2
;

it combines leverage and residuals. It is common practice to plot Ct against t.

Finally, we note that other diagnostic measures can be considered, such as local
influence measures (Cook, 1986).

11



4. Applications

This section contains two applications of the beta regression model proposed in Sec-
tion 2. All computations were carried out using the matrix programming language Ox

(Doornik, 2001). The computer code and dataset used in the first application are avail-
able at http://www.de.ufpe.br/~cribari/betareg_example.zip. Estimation was per-
formed using the quasi-Newton optimization algorithm known as BFGS with analytic first
derivatives. The choice of starting values for the unknown parameters followed the sug-
gestion made in Section 2.

Consider initially Prater’s gasoline data described in the Introduction. The interest
lies in modelling the proportion of crude oil converted to gasoline after distilation and
fractionation. As noted earlier, there are only ten sets of values of three of the explanatory
variables which correspond to ten different crudes subjected to experimentally controlled
distilation conditions. The data were ordered according to the ascending order of the
covariate that measures the temperature at which 10% of the crude oil has become vapor.
This variable assumes ten different values and they are used to define the ten batches of
crude oil. The model specification for the mean of the response uses an intercept (x1 = 1),
nine dummy variables for the first nine batches of crude oil (x2, . . . , x10) and the covariate
that measures the temperature (degrees F) at which all the gasoline is vaporized (x11).
Estimation results using the logit link function are given in Table 1.

Table 1. Parameter estimates using Prater’s gasoline data.

parameter estimate std. error z stat p-value

β1 −6.15957 0.18232 −33.78 0.0000
β2 1.72773 0.10123 17.07 0.0000
β3 1.32260 0.11790 11.22 0.0000
β4 1.57231 0.11610 13.54 0.0000
β5 1.05971 0.10236 10.35 0.0000
β6 1.13375 0.10352 10.95 0.0000
β7 1.04016 0.10604 9.81 0.0000
β8 0.54369 0.10913 4.98 0.0000
β9 0.49590 0.10893 4.55 0.0000
β10 0.38579 0.11859 3.25 0.0011
β11 0.01097 0.00041 26.58 0.0000
φ 440.27838 110.02562

The pseudo R2 of the estimated regression was 0.9617. Diagnostic plots are given in
Figure 2. An inspection of Figure 2 reveals that the largest standardized and deviance
residuals in absolute value correspond to observation 4. Also, C4 is much larger than
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Figure 2. Six diagnostic plots for Prater’s gasoline data. The upper left panel plots the standardized residuals
against t, the upper right panel plots the deviance residuals versus t, the middle left panel displays the half-normal
plot of absolute deviance residuals with a simulated envelope, the middle right panel plots standardized residuals
against η̂t, the lower left panel presents a plot of Ct versus t, and the lower right panel plots the diagonal elements
of GL(β̂, φ̂) against µ̂t.

the remaining Cook’s measures, thus suggesting that the fourth observation is the most
influential. Additionally, observation 4 deviates from the pattern shown in the lower right
panel (plot of the diagonal elements of GL(β̂, φ̂) v. µ̂t; observation 29, the one with largest
generalized leverage, also displays deviation from the main pattern). On the other hand,
it is noteworthy that the generalized leverage for this observation is not large relative to
the remaining ones. We note, however, that y4 is the largest value of the response; its
observed value is 0.457 and the corresponding fitted value equals 0.508. The analysis of
these data carried out by Atkinson (1985, Ch. 7) using a linear regression specification
for transformations of the response also single out observation 4 as influential.

We fitted the beta regression model without the fourth observation and noted that
the point estimates of the β’s were not significantly altered, but that the estimate of the
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precision parameter jumped from 440.3 to 577.8; despite that, however, the reduction in
the asymptotic standard errors of the regression parameter estimates was negligible.

The next application uses data on food expenditure, income, and number of persons in
each household from a random sample of 38 households in a large U.S. city; the source of
the data is Griffiths et al. (1993, Table 15.4). The interest lies in modelling the proportion
of income spent on food (y) as a function of the level of income (x2) and the number of
persons in the household (x3). At the outset, consider a linear regression of the response
on the covariates. The estimated regression displayed evidence of heteroskedasticity; the
p-value for Koenker’s (1981) homoskedasticity test was 0.0514. If we consider instead the
regression of log{y/(1 − y)} on the two covariates, the evidence of heteroskedasticity is
attenuated, but the residuals become highly asymmetric to the left.

We shall now consider the beta regression model proposed in Section 2. As previously
mentioned, this model accommodates naturally non-constant variances and skewness. The
model is specified as

g(µt) = β1 + β2xt2 + β3xt3.

The link function used was logit. The parameter estimates are given in Table 2. The
pseudo R2 of the estimated regression was 0.3878.

Table 2. Parameter estimates using data on food expenditure.

parameter estimate std. error z stat p-value

β1 −0.62255 0.22385 −2.78 0.0054
β2 −0.01230 0.00304 −4.05 0.0001
β3 0.11846 0.03534 3.35 0.0008
φ 35.60975 8.07960

The figures in Table 2 show that both covariates are statistically significant at the
usual nominal levels. We also note that there is a negative relationship between the mean
response (proportion of income spent on food) and the level of income, and that there
is a positive relationship between the mean response and the number of persons in the
household. Diagnostic plots similar to those presented in Figure 2 were also produced but
are not presented for brevity.

5. Concluding remarks

This paper proposed a regression model tailored for responses that are measured
continuously on the standard unit interval, i.e. y ∈ (0, 1), which is the situation that
practitioners encounter when modelling rates and proportions. The underlying assump-
tion is that the response follows a beta law. As is well known, the beta distribution is
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very flexible for modelling data on the standard unit interval, since the beta density can
display quite different shapes depending on the values of the parameters that index the
distribution. We use a parameterization in which a function of the mean of the dependent
variable is given by a linear predictor that is defined by regression parameters and ex-
planatory variables. The proposed parameterization also allows for a precision parameter.
When the logit link function is used to transform the mean response, the regression pa-
rameters can be interpreted in terms of the odds ratio. Parameter estimation is performed
by maximum likelihood, and we provide closed-form expressions for the score function, for
Fisher’s information matrix and its inverse. Interval estimation for different population
quantities (such as regression parameters, precision parameter, mean response, odds ra-
tio) is discussed. Tests of hypotheses on the regression parameters can be performed using
asymptotic tests, and three tests are presented: likelihood ratio, score and Wald. We also
consider a set of diagnostic techniques that can be employed to identify departures from
the postulated model and influential observations. These include a measure of the degree
of leverage of the different observations, and a half normal plot of residuals with envelopes
obtained from a simulation scheme. Applications using real data sets were presented and
discussed.

Appendix A

In this appendix we obtain the score function and the Fisher information matrix for (β, φ). The
notation used here is defined in Section 2. From (6) we get, for i = 1, . . . , k,

∂`(β, φ)
∂βi

=
n∑

t=1

∂`t(µt, φ)
∂µt

dµt

dηt

∂ηt

∂βi
. (A1)

Note that dµt/dηt = 1/g′(µt). Also, from (7)

∂`t(µt, φ)
∂µt

= φ

[
log

yt

1− yt
− {ψ(µtφ)− ψ((1− µt)φ)}

]
, (A2)

where ψ(·) is the digamma function, i.e., ψ(z) = d log Γ(z)/dz for z > 0. From regularity conditions, it
is known that the expected value of the derivative in (7) equals zero, so that µ∗t = E(y∗t ), where y∗t and
µ∗t are defined in Section 2. Hence,

∂`(β, φ)
∂βi

= φ

n∑
t=1

(y∗t − µ∗t )
1

g′(µt)
xti. (A3)

We then arrive at the matrix expression for the score function for β given in (8). Similarly, it can be
shown that the score function for φ can be written as in (9).

From (A1), the second derivative of `(β, φ) with respect to the β’s is given by

∂2`(β, φ)
∂βi∂βj

=
n∑

t=1

∂

∂µt

(
∂`t(µt, φ)

∂µt

dµt

dηt

)
dµt

dηt

∂ηt

∂βj
xti

=
n∑

t=1

(
∂2`t(µt, φ)

∂µ2
t

dµt

dηt
+

∂`t(µt, φ)
∂µt

∂

∂µt

dµt

dηt

)
dµt

dηt
xtixtj .
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Since E(∂`t(µt, φ)/∂µt) = 0, we have

E
(

∂2`(β, φ)
∂βi∂βj

)
=

n∑
t=1

E
(

∂2`t(µt, φ)
∂µ2

t

)(
dµt

dηt

)2

xtixtj .

Now, from (A2) we have
∂2`t(µt, φ)

∂µ2
t

= −φ2{ψ′(µtφ) + ψ′((1− µt)φ)},

and hence

E
(

∂2`(β, φ)
∂βi∂βj

)
= −φ

n∑
t=1

wtxtixtj .

In matrix form, we have that

E
(

∂2`(β, φ)
∂β∂β>

)
− φX>WX.

From (A3), the second derivative of `(β, φ) with respect to βi and φ can be written as

∂2`(β, φ)
∂βi∂φ

=
n∑

t=1

[
(y∗t − µ∗t )− φ

∂µ∗t
∂φ

]
1

g′(µt)
xti.

Since E(y∗t ) = µ∗t and ∂µ∗t /∂φ = ψ′(µtφ)µt − ψ′((1− µt)φ)(1− µt), we arrive at

E
(

∂2`(β, φ)
∂βi∂φ

)
= −

n∑
t=1

ct
1

g′(µt)
xti.

In matrix notation, we then have

E
(

∂2`(β, φ)
∂β∂φ

)
= −X>Tc.

Finally, ∂2`(β, φ)/∂φ2 comes by differentiating the expression in (9) with respect to φ. We arrive at
E

(
∂2`(β, φ)/∂φ2

)
= −∑n

t=1 dt, which, in matrix notation, can be written as

E
(

∂2`(β, φ)
∂φ2

)
= −tr(D).

It is now easy to obtain the Fisher information matrix for (β, φ) given in (10).

Appendix B

In this Appendix, we show how to perform large sample inference in the beta regression model we
propose. Consider, for instance, the test of the null hypothesis H0 : β1 = β

(0)
1 versus H1 : β1 6= β

(0)
1 ,

where β1 = (β1, . . . , βm)> and β
(0)
1 = (β(0)

1 , . . . , β
(0)
m )>, for m < k, and β

(0)
1 given. The log-likelihood

ratio statistic is
ω1 = 2

{
`(β̂, φ̂)− `( β̃, φ̃)

}
,

where `(β, φ) is the log-likelihood function and (β̃
>

, φ̃)> is the restricted maximum likelihood estimator
of (β>, φ)> obtained by imposing the null hypothesis. Under the usual regularity conditions and under
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H0, ω1
D−→ χ2

m, so that a test can be performed using approximate critical values from the asymptotic
χ2

m distribution.
In order to describe the score test, let U1β denote the m-vector containing the first m elements of

the score function for β and let Kββ
11 be the m ×m matrix formed out of the first m rows and the first

m columns of K−1. It can be shown, using (8), that U1β = φX>1 T (y∗ − µ∗), where X is partitioned as
[X1 X2] following the partition of β. Rao’s score statistic can be written as

ω2 = Ũ>1βK̃ββ
11 Ũ1β ,

where tildes indicate that the quantities are evaluated at the restricted maximum likelihood estimator.
Under the usual regularity conditions and under H0, ω2

D−→ χ2
m.

Asymptotic inference can also be performed using Wald’s test. The test statistic for the test of
H0 : β1 = β

(0)
1 is

ω3 = (β̂1 − β
(0)
1 )>

(
K̂ββ

11

)−1

(β̂1 − β
(0)
1 ),

where K̂ββ
11 equals Kββ

11 evaluated at the unrestricted maximum likelihood estimator, and β̂1 is the
maximum likelihood estimator of β1. Under mild regularity conditions and under H0, ω3

D−→ χ2
m. In

particular, for testing the significance of the ith regression parameter (βi), i = 1, . . . , k, one can use the
signed square root of Wald’s statistic, i.e., β̂i/se(β̂i), where se(β̂i) is the asymptotic standard error of the
maximum likelihood estimator of β̂i obtained from the inverse of Fisher’s information matrix evaluated at
the maximum likelihood estimates. The limiting null distribution of the test statistic is standard normal.

An approximate (1− α)× 100% confidence interval for βi, i = 1, . . . , k and 0 < α < 1/2, has limits
given by β̂i ± Φ−1(1 − α/2) se(β̂i). Additionally, approximate confidence regions for sets of regression
parameters can be obtained by inverting one of the three large sample tests described above. Similarly, an
asymptotic (1−α)×100% confidence interval for φ has limits φ̂±Φ−1(1−α/2) se(φ̂), where se(φ̂) = γ̂−1/2.
Additionally, an approximate (1 − α) × 100% confidence interval for the odds ratio ecβi , when the logit
link is used, is

[
exp{c(β̂i − Φ−1(1− α/2) se(β̂i))}, exp{c(β̂i + Φ−1(1− α/2) se(β̂i))}

]
.

Finally, an approximate (1 − α) × 100% confidence interval for µ, the mean of the response, for a given
vector of covariate values x can be computed as

[
g−1(η̂ − Φ−1(1− α/2) se(η̂)), g−1(η̂ + Φ−1(1− α/2) se(η̂))

]
,

where η̂ = x>β̂ and se(η̂) =
√

x>ĉov(β̂)x; here, ĉov(β̂) is obtained from the inverse of Fisher’s information
matrix evaluated at the maximum likelihood estimates by excluding the row and column of this matrix
corresponding to the precision parameter. The above interval is valid for strictly increasing link functions.

Appendix C

Here we shall obtain approximations for wt and µ∗t , t = 1, . . . , n, when µtφ and (1− µt)φ are large.
At the outset, note that (Abramowitz & Stegun, 1965, p. 259), as z →∞,

ψ(z) = log(z)− 1
2z
− 1

12z2
+

1
120z4

+ · · · (C1)

ψ′(z) =
1
z

+
1

2z2
+

1
6z3

− 1
30z5

+ · · · (C2)
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In what follows, we shall drop the subscript t (that indexes observations). When µφ and (1 − µ)φ are
large, it follows from (C2) that

w ≈ φ

{
1

µφ
+

1
(1− µ)φ

}
1

g′(µ)2
=

1
µ(1− µ)

1
g′(µ)2

.

Also, from (C1) we obtain

µ∗ ≈ log(µφ)− log((1− µ)φ) = log
(

µ

1− µ

)
.
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