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Abstract . We obtain adjustments to the profile likelihood function in Weibull regression models with and
without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed
by Cox and Reid (1987), and (ii) an approximation to the one proposed by Barndorff–Nielsen (1983), the
approximation having been obtained using the results by Fraser and Reid (1995) and by Fraser et al. (1999).
We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull
regression models. We derive some distributional properties of the different maximum likelihood estimators
and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to
Barndorff–Nielsen’s adjustment.
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1. INTRODUCTION

When the interest lies in the time to a given event, such as the failure of an electronic

component or the death of a patient, oftentimes there are censored observations. Two

common censoring forms are when n units are observed until the rth (r < n) failure takes

place (type II censoring) and when the experiment ends after a preassigned censoring time

(type I censoring). The Weibull distribution is commonly used to model such data, since

it generalizes the exponential distribution allowing for a power dependence of the hazard

function (i.e., the instant failure rate) on time. In particular, it is possible to obtain
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increasing, constant and decreasing hazard rates over time depending on the value of the

Weibull shape parameter, β (β > 1, β = 1 and β < 1, respectively). The exponential

distribution can only be used in situations where it is safe to assume a constant hazard

rate, unlike the more flexible Weibull model. For instance, the risk of death to a newborn

child is typically high in his/her first few days and quickly decreases thereafter, and remains

low and approximately constant for a long time. For some applications of survival and

reliability analyses, the reader is referred to Gross and Clark (1975), Lawless (1982), Mann

et al. (1974) and Klein and Moeschberger (1997).

In many applications, a regression structure is used to model the dependence of the

Weibull scale parameter, α, on covariates, which leads to what is known as the Weibull

regression model. More specifically, let t denote the time to failure, and assume that t is

Weibull distributed, i.e., t ∼ W (α(x), β), where x = (x1, x2, . . . , xp) is a set of covariates

and W (α, β) denotes the Weibull distribution with shape parameter β and scale parameter

α. It then follows that log t = y ∼ EV (η(x), σ), that is, y follows an extreme value

distribution with location parameter η(x) and scale parameter σ; here, σ = β−1 and η(x) =

log α(x). We then have that

y = log t = η(x) + σϑ, (1.1)

where ϑ ∼ EV (0, 1). The density function of y is given by

p(y; η(x), σ) =
1

σ
exp

{
y − η(x)

σ
− exp

(
y − η(x)

σ

)}
, −∞ < y < ∞.

The corresponding distribution function is F (y; η(x), σ) = 1− S(y; η(x), σ), where

S(y; η(x), σ) = exp

{
− exp

[
y − η(x)

σ

]}

is the survival function. In what follows, we shall assume that η(x) = xφ, where φ =

(φ1, φ2, . . . , φp)
>. From (1.1), one can easily note that t = tx = exp(xφ) × exp(σϑ) =

exp(xφ) × t0, where t0 = exp(σϑ); note that t0 is the time to failure under no regression

dependence. It is also noteworthy that if xφ < 0, then tx is shorter than t0, that is, the

covariates accelerate the time to failure. The model is then an accelerated time model.

The parameters that index the model can be estimated by maximum likelihood. How-

ever, in small samples the resulting estimators can be considerably biased and likelihood

ratio tests can be substantially size distorted. Profile likelihood adjustments for the Weibull

shape parameter with no covariates were obtained by Ferrari et al. (2005) and Yang and

Xie (2003). Their Monte Carlo results suggest that adjusted profile maximum likelihood

estimators are less biased and more efficient than the usual maximum likelihood estimator

in small samples both with and without censoring. The setup considered by these authors
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includes only one nuisance parameter; inference on β is expected to be even more unreli-

able in the regression case, where there are several nuisance parameters. Profile likelihood

adjustments are thus even more needed in the regression framework.

Our chief goal in this paper is to obtain two different adjustments to the profile likelihood

function when the parameter of interest is β (or, alternatively, σ) in Weibull regression

models. Specifically, we consider two different modified profile likelihoods: (i) the one

proposed by Cox and Reid (1987), and (ii) an approximation to the one proposed by

Barndorff–Nielsen (1983), the approximation having been obtained using the results by

Fraser and Reid (1995) and by Fraser et al. (1999). We focus on maximum likelihood

estimation and likelihood ratio test on σ. We show that, in the abscence of censoring or

under type II censoring, the distribution of the ratio between the estimator of σ and the true

parameter σ does not depend on (φ, σ), such a ratio thus being a pivot for this pair. This

result is proved for the profile (original) maximum likelihood estimator and for the modified

profile maximum likelihood estimators. It is also shown that the size properties of the usual

and adjusted profile likelihood ratio tests depend neither on φ nor on the value of σ set

at the null hypothesis. We generalize some of the results in Ferrari et al. (2005) and Yang

and Xie (2003); unlike their results, ours allow for regression dependence. We also report

numerical evidence on the finite-sample performance of the different inference strategies; it

favors the inference obtained following Fraser and Reid (1995), Fraser et al. (1999).

The remainder of the paper unfolds as follows. Section 2 introduces the profile likeli-

hood function, and Section 3 presents the Barndorff–Nielsen (1980, 1983) adjustment and

two alternative adjusted profile likelihoods. Section 4 derives the adjustments for inference

on the Weibull shape parameter and Monte Carlo results are presented in Section 5. Fi-

nally, Section 6 concludes the paper. Some of the distributional properties of the different

estimators and tests are derived in the Appendix.

2. PROFILE LIKELIHOOD

Let Y = (y1, . . . , yn)> be an n × 1 vector of independent random variables, each having a

distribution that is indexed by two (possibly vector-valued) parameters, namely µ and ν;

in what follows µ is the parameter of interest and ν is the nuisance parameter. Inference

on µ can sometimes be based on a marginal or a conditional likelihood function. However,

typically these functions cannot be derived. In such cases, the standard approach is to use

the profile likelihood function: Lp(µ) = L(ν̂µ, µ), where L(·) is the usual likelihood function

and ν̂µ is the maximum likelihood estimate of ν for a given, fixed µ. For instance, the usual

likelihood ratio statistic,

LR(µ) = 2[`(ν̂, µ̂)− `(ν̂µ, µ)] = 2[`p(µ̂)− `p(µ)],
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is based on the profile likelihood function. Here, µ̂ and ν̂ are the maximum likelihood

estimates of µ and ν respectively, `(·) is the log-likelihood function and `p(·) is the profile log-

likelihood function. It is important to note, however, that Lp(·) is not a genuine likelihood.

In particular, for θ = (ν>, µ>)>, properties such as

E(u(θ)) = 0 and E{u(θ)u(θ)>}+ E
{∂u(θ)

∂θ>
}

= 0

do not hold when up(µ) is used instead of u(θ). Here, u(θ) = ∂`(θ)/∂θ is the score function

and up(µ) = ∂`p(µ)/∂µ is the profile score function. Additionally, the profile score and

information biases are only guaranteed to be O(1).

3. MODIFIED PROFILE LIKELIHOODS

Several authors have proposed adjustments to the profile likelihood function; for a review,

see Severini (2000, Chapter 9). Barndorff–Nielsen’s (1983) modified profile likelihood is

obtained as an approximation to a marginal or conditional likelihood for µ, if either exists.

His approach uses the p∗ formula (Barndorff–Nielsen, 1980, 1983), which yields an approxi-

mation to the probability density function of the maximum likelihood estimator conditional

on an ancillary statistic. His modified profile likelihood is

LBN (µ) =

∣∣∣∣
∂ν̂µ

∂ν̂

∣∣∣∣
−1

|jνν(ν̂µ, µ)|−1/2Lp(µ),

where jνν(ν, µ) = −∂2`/∂ν∂ν> is the observed information for ν. It is possible to show that

the resulting score and information biases are of order O(n−1) and that LBN (µ) is invariant

under reparameterization of the form (ν, µ) → (τ, ξ), where τ = τ(ν, µ) and ξ = ξ(µ).

In order to obtain Barndorff–Nielsen’s (1983) modified profile likelihood function one

needs to obtain |∂ν̂µ/∂ν̂|. An alternative expression for LBN (µ) that does not involve

|∂ν̂µ/∂ν̂| is available. However, it involves a sample space derivative of the log-likelihood

function and the specification of ancillary a such that (ν̂, µ̂, a) is a minimal sufficient statis-

tic. It can be shown that

∂ν̂µ

∂ν̂
= jνν(ν̂µ, µ; ν̂, µ̂, a)−1`

ν ;̂ν
(ν̂µ, µ; ν̂, µ̂, a),

where

`
ν ;̂ν

(ν̂µ, µ; ν̂, µ̂, a) =
∂

∂ν̂

(
∂`(ν̂µ, µ; ν̂, µ̂, a)

∂ν

)
.

Here, `(ν̂µ, µ; ν̂, µ̂, a) and jνν(ν̂µ, µ; ν̂, µ̂, a) are the log-likelihood function and the observed

information for ν, respectively; they depend on the data only through the minimal sufficient

statistic.
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An approximation to `
ν ;̂ν

(ν̂µ, µ; ν̂, µ̂, a) can be obtained through an approximately an-

cillary statistic (Fraser and Reid (1995) and Fraser et al. (1999); see also Severini (2000, p.

216)). The resulting log-likelihood function, ˜̀
BN , can be written as

˜̀
BN (µ) = `p(µ) +

1

2
log |jνν(ν̂µ, µ)| − log |`ν;Y(ν̂µ, µ)V̂ν |, (3.1)

where `ν;Y(ν, µ) = ∂`ν(ν, µ)/∂Y> and

V̂ν =
(
−∂F1(y1 ;̂ν,̂µ)/∂ν̂

p1(y1 ;̂ν,̂µ)
· · · −∂Fn(yn ;̂ν,̂µ)/∂ν̂

pn(yn ;̂ν,̂µ)

)>
,

pj(y;ν, µ) being the probability density function of yj and Fj(y;ν, µ) being the cumulative

distribution function of yj . The corresponding estimator shall be denoted as ̂̃µBN .

We shall now consider an alternative adjustment to the profile likelihood function.

Suppose that µ and ν are orthogonal, that is, that the components of the score vector,

∂`/∂µ and ∂`/∂ν, are uncorrelated. Cox and Reid (1987) proposed an adjustment that is

an approximation to a conditional probability density function of the observations given

the maximum likelihood estimator of ν. It can be written as

LCR(µ) = |jνν(ν̂µ, µ)|−1/2Lp(µ).

The Cox and Reid (1987) modified profile log-likelihood function is

`CR(µ) = `p(µ)− 1

2
log |jνν(ν̂µ, µ)|; (3.2)

the maximizer of `CR(µ) shall be denoted as µ̂CR. The score bias is O(n−1) but, in general,

the information bias remains O(1).

The Cox and Reid (1987) adjustment requires that µ and ν be orthogonal. However, it

is not always possible to find a parameterization that delivers orthogonality. Additionally,

unlike LBN (µ), their adjustment is not invariant under reparameterizations of the form

(ν, µ) → (τ, ξ), where τ = τ(ν, µ) and ξ = ξ(µ). Note that if ν̂µ = ν̂ for all µ, then

LBN (µ) = LCR(µ). In this case, µ and ν are orthogonal parameters (Cox and Reid, 1987).

It can be shown that `BN (µ)−`BN (µ̂) = `CR(µ)−`CR(µ̂)+Op(n
−1). Hence, the likelihood

ratio statistics obtained from `BN (µ) and `CR(µ) differ by a term of order Op(n
−1).

4. PROFILE LIKELIHOODS FOR THE WEIBULL SHAPE PARAMETER

Let y1, . . . , yn be a set of independent random variables such that yj ∼ EV (η(xj), σ),

j = 1, . . . , n, and let C and C denote the sets of censored and noncensored observations

indices, respectively. The log-likelihood function for (σ, φ) is

` = `(σ, φ) = −r log σ +
∑

j∈C

yj − xjφ

σ
−

n∑

j=1

exp

(
yj − xjφ

σ

)
, (4.1)
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where r is the observed number of failures, xj = (xj1, xj2, . . . , xjp) and xj1 = 1,∀j. For

complete data, r = n and C = {1, . . . , n}. For type II censored data, r is fixed and

observation ceases after the rth (r < n) failure. For type I censored data, r is random.

In this case, one observes yj = min(log tj , log c), where tj ∼ W (exp(xjφ), σ−1) and c is a

preassigned (fixed) censoring time.

Let zj = (yj − xjφ)/σ and note that (s, t = 1, . . . , p)

∂`(σ, φ)

∂φs
= − 1

σ

∑

j∈C

xjs +
1

σ

n∑

j=1

xjs exp(zj) and
∂2`(σ, φ)

∂φt∂φs
= − 1

σ2

n∑

j=1

xjsxjt exp(zj).

The restricted maximum likelihood estimator of φ, for fixed σ (β−1), does not have closed

form. It is not possible, thus, to obtain a closed form expression for `p(σ). It can be defined

as `(σ, φ) subject to the restrictions ∂`(σ, φ)/∂φs = 0, s = 1, . . . , p.

In what follows we shall obtain the adjusted profile likelihoods described in Section 3.

The adjustment proposed by Barndorff–Nielsen (1983) was not considered since it was not

possible to obtain |∂φ̂σ/∂φ̂|. We shall omit the derivation details in the interest of space.

Since φ̂σ does not have closed form, ˜̀
BN (σ) is equal to

`(σ, φ) +
1

2
log

∣∣jφφ(σ, φ)
∣∣− log

∣∣∣`φ;Y(σ, φ)V̂φ

∣∣∣

subject to restrictions of the form ∂`(σ, φ)/∂φs = 0, s = 1, . . . , p. We obtained

jφφ(σ, φ) =
1

σ2
X>ZX,

where Z = diag(exp(z1), . . . , exp(zn)), `φ;Y(σ, φ) = σ−2X>Z and V̂φ = (v>1 , . . . , v>n )>,

where vj = xj if j ∈ C and vj = 01×p if j ∈ C. Here, 0m×n denotes an m × n matrix of

zeros. For noncensored data sets, V̂φ = X. Therefore, the function ˜̀
BN (σ) is given by

`(σ, φ) + p log σ +
1

2
log

∣∣∣X>ZX
∣∣∣− log

∣∣∣X>ZV̂φ

∣∣∣ (4.2)

for pairs (σ, φ) that satisfy the restrictions ∂`(σ, φ)/∂φs = 0, s = 1, . . . , p.

The Cox and Reid (1987) adjustment requires parameter orthogonality. In order to

obtain λ = (λ1, . . . , λp)
> orthogonal to the parameter σ, it is necessary to solve a partial

differential equation (Cox and Reid, 1987). For complete data, such an equation is

iφσ + iφφ
∂φ(σ, λ)

∂σ
= 0,

where iφφ and iφσ are elements of Fisher’s information matrix I(σ, φ) (Lawless, 1982),

I(σ, φ) =
1

σ2




iφφ iφσ

iσφ iσσ


 =

1

σ2




X>X m

m> n[π2/6 + (1− γ)2]


 .
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Here, m is a p× 1 vector with tth element equal to (1− γ)
∑n

j=1 xjt. Thus,

1

σ2
m +

1

σ2
X>X

∂φ(σ, λ)

∂σ
= 0

or

(1− γ)X>1ln + X>X
∂φ(σ, λ)

∂σ
= 0.

Hence,
∂φ(σ, λ)

∂σ
= −(1− γ)(X>X)−1X>1ln

and a solution to this equation is

φ = −(1− γ)σ(X>X)−1X>1ln + log λ,

where γ is Euler’s constant, which is approximately equal to 0.5772.

Note that for identically distributed random variables, X = 1ln and, thus,

λ = exp(φ) exp[(1− γ)σ],

where 1ln is an n-vector of ones. From the Weibull regression model, σ = β−1 and

log α(xj) = xjφ (j = 1, . . . , n). Therefore,

λ = α exp[(1− γ)/β].

For independent and identically distributed Weibull random variables, Yang and Xie (2003)

proposed an orthogonal parameterization (β, λ∗), where λ∗ = log(λ)/β is a reparemeteriza-

tion of λ obtained following the proposal in Cox and Reid (1989). They used this parame-

terization under type II censoring and, for type I censoring, the distribution was indexed by

the pair (β, log λ). These parameterizations were obtained under noncensoring, thus it is

not possible to guarantee parameter orthogonality when observations were recorded under

either censoring scheme. The numerical evidences in Yang and Xie (2003) and in Ferrari

et al. (2005) on maximum likelihood estimation and likelihood ratio tests based on `CR(β)

showed that the resulting inference was reliable.

In order to evaluate the effectiveness of Cox and Reid’s (1987) adjustment to the Weibull

profile likelihood function in the regression case, we considered parameterizations that are

similar in nature to those of Yang and Xie (2003). Both for complete and censored data,

the numerical evidence showed that the parameterization similar to (β, log λ) outperformed

the parameterization (β, log(λ)/β). As a result, we shall focus on the former. For the pair

(σ, φ) that indexes the extreme value distribution, we obtained the following p-dimensional

parameter vector orthogonal to σ:

λ† = log λ = φ + (1− γ)σ(X>X)−1X>1ln.
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In order to obtain `CR(σ), one should index the extreme value distribution by (σ, λ†). It

is noteworthy that, unlike Ferrari et al. (2005) and Yang and Xie (2003), we consider the

case of vector-valued nuisance parameter.

The log-likelihood function for (σ, λ†) is

`(σ, λ†) = −r log σ +
∑

j∈C

(
yj − xjλ

†

σ

)
−

n∑

j=1

exp (wj) ,

where, for j = 1, . . . , n,

wj =
yj − xjλ

†

σ
+ (1− γ)xj(X

>X)−1X>1ln.

For complete data, r = n and C = {1, . . . , n}.
Similarly to the previous case, λ̂†σ does not have closed form. Thus, from (3.2) it is

possible to show that `CR(σ) is given by

`(σ, λ†) + p log σ − 1

2
log

∣∣∣X>WX
∣∣∣ , (4.3)

where W = diag(exp(w1), . . . , exp(wn)), for pairs (σ, λ†) that satisfy ∂`(σ, λ†)/∂λ†s = 0,

s = 1, . . . , p. For complete data, note that ˜̀
BN (σ) = `CR(σ).

5. MONTE CARLO RESULTS

This section presents Monte Carlo simulation results on the small sample behavior of esti-

mators and tests on the Weibull shape parameter (β = σ−1), i.e., on the parameter that

controls the form of the hazard rate, under both noncensoring and (types I and II) censoring.

The numerical exercise was based on two regression models, whose systematic components

are given by

η(x) = φ1 + φ2x2 and η(x) = φ1 + φ2x2 + φ3x3 + φ4x4.

(We shall refer to these two models as ‘model 1’ and ‘model 2’, respectively.) All simulations

were performed using the Ox matrix programming language (Doornik, 2001); they are all

based on 10,000 replications.

The sample size is n = 20. Under type II censoring, we considered samples with 10 and

15 failures, and under type I censoring we considered samples with 25% and 50% expected

censored data. The values of the nuisance parameters were set equal to one, i.e., φi = 1 ∀i.
The covariate values were chosen as random draws from a standard uniform distribution.
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We considered three different values for β: 0.5, 1.0, 5.0 (decreasing, constant and increasing

hazard rates, respectively).

The following measures are presented for all point estimators: mean, variance, bias,

mean squared error (MSE), relative bias (RB), skewness and kurtosis. Relative bias is

defined as 100 × (bias / true parameter value)%. For complete data, the results (relative

bias, skewness and kurtosis) are the same for the three values of β. A similar result is

proved for the case of type II censoring; see the Appendix. Thus, in these two cases, we

shall vary the dimension of X but only present results for β = 5.0 (increasing hazard rate).

For type I censored data, we have considered the three values for β.

We also report the null rejection rates of the likelihood ratio tests based on the pro-

file and the modified profile likelihoods. The null hypotheses under test are H0 : β =

0.5, 1.0, 5.0. The test of H0 : β = 1.0 is of particular interest since under the null hypothe-

sis the Weibull distribution reduces to the exponential distribution and the hazard function

becomes constant over time. The results for the three null hypotheses are identical without

censoring. A similar result is proved for the case of type II censoring; see the Appendix.

For type I censored data, we have considered the three null hypotheses.

Table 5.1. Point estimation, noncensoring, n = 20, β = σ−1 = 5.

model 1

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 5.569 1.210 0.569 1.534 11.380 0.918 4.555
̂̃βBN 5.217 1.057 0.217 1.104 4.333 0.911 4.538

model 2

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 6.024 1.667 1.024 2.716 20.484 1.041 5.155
̂̃βBN 5.251 1.259 0.251 1.322 5.023 1.032 5.118

Table 5.1 contains results for estimation of the shape parameter under noncensoring. We

consider the estimators obtained by maximizing the likelihoods given in Section 4: β̂ (4.1),
̂̃βBN (4.2) and β̂CR (4.3). In this case, ̂̃βBN = β̂CR. For model 1 (two nuisance parameters),

the estimator that displayed the smallest relative absolute bias was ̂̃βBN (4.333%). Note

that the relative bias of the usual maximum likelihood estimator β̂ is nearly three times

larger than that of β̂
∗

CR. It is also noteworthy that ̂̃βBN has the smallest mean squared

error (1.104). The figures in the table show that the two estimators have nearly the same

skewness and kurtosis (0.9 and 4.5, respectively; the corresponding asymptotic values are

0 and 3). For model 2 (four nuisance parameters), the best performing estimator was also
̂̃βBN , whose relative bias and mean squared error were 5.023% and 1.322, respectively. It
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is noteworthy that as the number of nuisance parameters increased, so did the relative

absolute biases of the different estimators. The estimator obtained from modified profile

likelihood performed considerably better than the usual maximum likelihood estimator.

Table 5.2 gives the null rejection rates of the likelihood ratio test and of the correspond-

ing test from the adjusted likelihood. More precisely, the tests are based on ` (4.1) and ˜̀
BN

(4.2). In this case, ˜̀
BN = `CR. Here H0 : β = 5; other null hypotheses are not tested since

the rejection rates do not depend on the value of β under test, as shown in the Appendix.

For instance, for model 2 and at the 10% nominal level, the null rejection rates of the tests

based on ` and ˜̀
BN were, respectively, equal to 22.300% and 10.410%. The modified profile

likelihood yielded more reliable inference than the usual profile likelihood function. Unlike

the test based on `, its size performance did not deteriorate when the number of nuisance

parameters increased from two to four.

Table 5.2. Null rejection rates, noncensoring, n = 20.

model 1 model 2

nominal level ` ˜̀
BN ` ˜̀

BN

10% 14.170 10.420 22.300 10.410
5% 7.910 5.210 14.280 5.350
1% 2.050 0.880 4.850 1.090
0.1% 0.250 0.070 0.980 0.100

Figure 5.1. Relative quantile discrepancies plot, model 2, noncensoring,
n = 20.
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Figure 5.1 plots the relative quantile discrepancies versus the corresponding asymptotic

quantiles. Relative quantile discrepancy is defined as the difference between exact (esti-

mated by simulation) and asymptotic quantiles divided by the latter. The closer to zero

the relative quantile discrepancy, the better the approximation of the exact null distribution

of the test statistic by the limiting χ2
1 distribution. The relative discrepancy curve based

on ˜̀
BN (BN) is closer to a horizontal line at zero. It is also clear that the null distribution

of the usual likelihood ratio statistic is poorly approximated by the limiting distribution.

Consider now type II censoring with n = 20 and r = 10 (number of failures). The

results are given in Table 5.3. As expected, under censoring the small sample behavior of

the estimators worsened. The estimator with smallest absolute bias was β̂CR. For instance,

for model 2 the relative absolute biases of β̂, ̂̃βBN and β̂CR were 40.295%, 4.923% and

2.543%, respectively. The relative bias of β̂CR was nearly two times smaller than that of
̂̃βBN and about sixteen times smaller than that of the usual maximum likelihood estimator.

β̂CR displayed the smallest mean squared error in model 1; for model 2, the smallest mean

squared error was that of ̂̃βBN . For model 1 (two nuisance parameters), the mean squared

errors of β̂, ̂̃βBN and β̂CR were, respectively, 5.311, 3.148 and 3.128; the corresponding

figures for model 2 were 10.313, 3.443 and 3.509.

Table 5.3. Point estimation, type II censoring, β = σ−1 = 5, (n, r) = (20, 10).

model 1

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 6.196 3.880 1.196 5.311 23.920 1.562 8.901
̂̃βBN 5.445 2.949 0.445 3.148 8.910 1.519 8.473

β̂CR 5.354 3.002 0.354 3.128 7.085 1.558 8.802

model 2

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 7.015 6.253 2.015 10.313 40.295 1.778 9.794
̂̃βBN 5.246 3.383 0.246 3.443 4.923 1.708 9.246

β̂CR 5.127 3.493 0.127 3.509 2.543 1.672 8.814

We have also considered type II censoring with (n, r) = (20, 15). For brevity, the

results are not shown. For model 1, the relative absolute biases of β̂CR and ̂̃βBN were

5.711% and 5.786%, respectively, the corresponding figure for the usual maximum likelihood

estimator being 15.121%. For model 2, these relative absolute biases were 4.566%, 4.933%

and 25.971%, respectively.

Overall, the results indicate that the usual maximum likelihood estimator can display

poor small sample behavior, that the β̂CR was the overall winner, followed by approximate

11



Barndorff–Nielsen estimator.

Results on hypothesis testing derived from ` (4.1), ˜̀
BN (4.2) and `CR (4.3) are given in

Table 5.4. Here (n, r) = (20, 10). For both models, the test based on ˜̀
BN displayed the best

size behavior. For instance, for model 2 and at the 1% nominal level, the corresponding

null rejection rates of the tests based on `, ˜̀
BN and `CR were 7.350%, 0.950% and 1.430%.

It is noteworthy that the finite sample behavior of the test based on ` deteriorate as the

number of nuisance parameters increase.

Table 5.4. Null rejection rates, type II censoring, (n, r) = (20, 10).

model 1 model 2
H0 : β = 1 H0 : β = 5

nominal level ` ˜̀
BN `CR ` ˜̀

BN `CR

10% 14.600 9.220 10.040 27.760 9.420 11.460
5% 8.050 4.610 5.010 18.810 4.470 5.990
1% 2.250 0.930 1.050 7.350 0.950 1.430
0.1% 0.400 0.130 0.140 1.840 0.090 0.160

The relative quantile discrepancy plot under type II censoring and for model 2 is pre-

sented in Figure 5.2. Visual inspection of this figure shows that the best performing test is

that based on ˜̀
BN (BN), followed by test based on `CR (CR), and that the test based on

` (original) has the poorest small sample performance.

Figure 5.2. Relative quantile discrepancies plot, H0 : β = σ−1 = 5,
model 2, type II censoring, (n, r) = (20, 10).
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We shall now move to type I censoring. The censoring time was set at

c =
[
(1/n)

n∑

j=1

α(xj)
]
(− log p)1/β

which yielded the desired probability of censoring p. Here, p = 0.25, 0.50. Tables 5.5 and

5.6 present results on estimation and testing for model 2 with p = 0.25. The likelihood

ratio tests are derived from ` (4.1), ˜̀
BN (4.2) and `CR (4.3).

The results in Table 5.5 show that, for β = 0.5 and β = 1.0, the estimator ̂̃βBN

outperformed all others in terms of relative bias, whereas for β = 5.0, β̂CR was the best

performing estimator. For instance, for β = 0.5, the relative absolute biases of β̂, ̂̃βBN and

β̂CR were, respectively, equal to 17.906%, 0.882% and 4.971%. That is, the relative absolute

bias of β̂ was nearly twenty times larger than that of ̂̃βBN . The modified profile maximum

likelihood estimators outperformed the usual unmodified estimator as far as mean squared

error is concerned.

Table 5.5. Point estimation, type I censoring with p = 0.25, n = 20, model 2.

parameter estimator mean variance bias MSE RB(%) skewness kurtosis

β = 0.5
β̂ 0.590 0.022 0.090 0.030 17.906 1.084 5.441

̂̃
βBN 0.504 0.017 0.004 0.017 0.882 1.034 5.204
β̂CR 0.475 0.016 −0.025 0.017 −4.971 1.024 5.201

β = 1.0
β̂ 1.189 0.091 0.189 0.127 18.851 1.114 5.592

̂̃
βBN 1.012 0.067 0.012 0.067 1.240 1.071 5.392
β̂CR 0.963 0.066 −0.037 0.067 −3.696 1.070 5.420

β = 5.0
β̂ 6.259 2.895 1.259 4.479 25.172 1.299 6.165

̂̃
βBN 5.147 1.919 0.147 1.940 2.945 1.243 6.012
β̂CR 5.078 1.952 0.078 1.958 1.553 1.217 5.836

The figures in Table 5.6 show that the likelihood ratio test based on ˜̀
BN displayed the

smallest size distortions, followed by the test based on `CR. The usual profile likelihood

ratio test was considerably oversized. For example, for the test of H0 : β = 1.0 in model

2 and at the 5% nominal level, the null rejection rates of the tests based on `, ˜̀
BN and

`CR were equal to 10.710%, 4.920% and 6.790%, respectively. For a higher censoring level

(p = 0.50), the test based on ˜̀
BN was slightly conservative and displayed the smallest size

distortions (model 1 and model 2), and, except for the test of H0 : β = 5.0, the usual

likelihood ratio test outperformed the Cox and Reid test. (Results not shown for brevity.)

The relative quantile discrepancy plot under type I censoring corresponding to H0 :

β = 1, p = 0.25, n = 20 and η(x) = φ1 + φ2x2 + φ3x3 + φ4x4 (model 2) is presented in
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Figure 5.3. Visual inspection of this figure shows that the best performing test is the one

based on ˜̀
BN (BN), followed by the Cox and Reid test (CR). We have also considered type

I censoring with p = 0.50. For brevity, the figure is not shown. The Cox and Reid test

was now outperformed by the usual likelihood ratio test; the test based on ˜̀
BN remained

reliable.

Table 5.6. Null rejection rates, type I censoring with p = 0.25, n = 20,
model 2.

H0 : nominal level ` ˜̀
BN `CR

β = 0.5

10% 16.750 9.250 13.110
5% 9.810 4.590 7.150
1% 2.830 0.960 1.740
0.1% 0.570 0.100 0.140

β = 1.0

10% 17.490 9.570 12.560
5% 10.710 4.920 6.790
1% 3.180 0.900 1.590
0.1% 0.630 0.070 0.130

β = 5.0

10% 21.750 9.950 11.130
5% 14.070 5.010 5.630
1% 5.110 1.020 1.280
0.1% 0.940 0.100 0.110

Figure 5.3. Relative quantile plot, H0 : β = 1, type I censoring with
p = 0.25, n = 20, model 2.
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6. CONCLUDING REMARKS

The maximum likelihood estimator of the shape parameter in Weibull regression models

can be considerably biased in small samples. In this paper, we have obtained two modified

profile likelihood functions whose associated maximum likelihood estimators are expected to

deliver more reliable inference in finite samples. They followed from proposals made by Cox

and Reid (1987) and an approximated form of Barndorff–Nielsen’s (1983) modified profile

likelihood obtained from Fraser and Reid (1995) and Fraser et al. (1999). The numerical

evidence presented in the previous section showed that the usual profile likelihood inference

can be quite unreliable in small samples, for both point estimation and likelihood ratio

testing. In particular, such tests can be extremely liberal. The Cox and Reid adjustment

yielded encouraging results, for both point estimation and likelihood ratio testing. However,

for critical levels of type I censoring, the usual likelihood ratio test outperformed the Cox

and Reid test in some cases. This may be due to the fact that the adjusted test is based on

an orthogonal parameterization obtained under independent random variates and carried to

the situation where there is censoring. It is interesting to note that in the nonregression case,

where there is only one nuisance parameter, this adjusted profile likelihood delivers reliable

inference, as shown by Ferrari et al. (2005). However, in Weibull regression models the Cox

and Reid adjustment should be used carefully, since it may deliver inference that is even less

reliable than that obtained from the usual profile likelihood function. The modified profile

likelihood function obtained as the approximation to Barndorff–Nielsen’s (1983) function,

on the other hand, delivered estimators that were nearly unbiased and associated tests

with virtually no size distortions. Overall, this proved to be the best inference strategy. An

advantage of this approach is that it does not require the interest and nuisance parameters

to be orthogonal, nor does it require the specification of an ancillary statistic.

APPENDIX

As before, Y = (y1, . . . , yn)> is a vector of independent random variables such that yj ∼ EV (xjφ, σ)
(j = 1, . . . , n). Note that

zj =
yj − xjφ

σ
∼ EV (0, 1),

j = 1, . . . , n, and that z1, . . . , zn are i.i.d.. Let Z = (z1, . . . , zn)>.

Type II Censoring

Here, we shall consider type II censoring, r denoting the preassigned number of failures at which observation
ceases; r does not depend on the pair (σ, φ). (Recall that under noncensuring, r = n.) Let y(1), . . . , y(r)
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and z(1), . . . , z(r) are the first r order statistics of Y and Z, respectively.

RESULT 1: (φ̂− φ)/σ, σ̂/σ, (yj − xj φ̂)/σ̂, (φ̂σ − φ)/σ and (yj − xj φ̂σ)/σ are distributed independently
of the pair (σ, φ).

Proof:

The likelihood function for the Weibull regression model is given by

LY(σ, φ) =
∏

j∈C

1
σ

exp
[
yj − xjφ

σ
− exp

(
yj − xjφ

σ

)] ∏

j∈C

exp
[
− exp

(
y(r) − xjφ

σ

)]
.

Let
y′j = dyj + xjk, φ′ = dφ + k and σ′ = dσ,

j = 1, . . . , n, where d is a positive scalar and k is a p-vector. Let Y ′ = (y′1, . . . , y
′
n)>. Note that

LY(σ, φ) = drLY′(σ′, φ′).

Hence, if LY(σ, φ) is maximized at

φ̂ = φ̂(y(1), . . . , y(r)) and σ̂ = σ̂(y(1), . . . , y(r)),

then LY′(σ, φ) is maximized at

φ̂(y′(1), . . . , y
′
(r)) = dφ̂ + k and σ̂(y′(1), . . . , y

′
(r)) = dσ̂. (A0)

Note that Z = Y ′ if we let d = 1/σ and k = −(1/σ)φ. Thus,

φ̂(z(1), . . . , z(r)) =
φ̂− φ

σ
and σ̂(z(1), . . . , z(r)) =

σ̂

σ
. (A1)

Hence, (φ̂− φ)/σ and σ̂/σ are pivots for (σ, φ), since the joint distribution of (z(1), . . . , z(r)) does not depend
on the pair of unknown parameters. (Note that the distribution of β̂/β does not depend on the unknown
parameters either.)

Note that
yj − xj φ̂

σ̂
=

1
σ̂(z(1), . . . , z(r))

[
zj − xj φ̂(z(1), . . . , z(r))

]
. (A2)

Similarly to the result in (A0), assuming that σ is known,

φ̂(y′(1), . . . , y
′
(r);σ

′) = dφ̂(y(1), . . . , y(r); σ) + k,

where φ̂(y′(1), . . . , y
′
(r);σ

′) and φ̂(y(1), . . . , y(r);σ) are the maximizers of LY′(σ, φ) = LY′(φ) and LY(σ, φ) =
LY(φ), respectively. Again, note that Z = Y ′ if we let d = 1/σ and k = −(1/σ)φ. Hence,

φ̂(z(1), . . . , z(r); 1) =
φ̂(y(1), . . . , y(r);σ)− φ

σ
.

Therefore, (φ̂σ − φ)/σ is a pivot for (σ, φ), where φ̂σ = φ̂(y(1), . . . , y(r); σ).
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Notice that
yj − xj φ̂σ

σ
= zj − xj φ̂(z(1), . . . , z(r)), (A3)

where φ̂(z(1), . . . , z(r)) = φ̂(z(1), . . . , z(r); 1).

RESULT 2: The distribution of the ratio σ̂/σ depends on the design matrix X.

Proof:

The maximum likelihood estimators σ̂ and φ̂ are the roots of the system

−r − 1
σ̂

∑

j∈C

(
yj − xj φ̂

)
+

1
σ̂

n∑

j=1

(
yj − xj φ̂

)
exp

(yj − xj φ̂

σ̂

)
= 0 (A4)

and

− 1
σ̂

∑

j∈C

xj +
1
σ̂

n∑

j=1

xj exp
(yj − xj φ̂

σ̂

)
= 01×p. (A5)

If we right multiply (A5) by the vector φ̂ and add the result to (A4), we obtain

−r − 1
σ̂

∑

j∈C

yj +
1
σ̂

n∑

j=1

yj exp
(yj − xj φ̂

σ̂

)
= 0,

which can be written as

−r − 1
σ̂

∑

j∈C

yj +
1
σ̂

n∑

j=1

(
xjφ + σzj

)
exp

(yj − xj φ̂

σ̂

)
= 0. (A6)

Now, if we right multiply (A5) by the vector φ, we obtain

1
σ̂

∑

j∈C

xjφ =
1
σ̂

n∑

j=1

xjφ exp
(yj − xj φ̂

σ̂

)
.

Thus we can now rewrite (A6) as

−r − 1
σ̂/σ

∑

j∈C

zj +
1

σ̂/σ

n∑

j=1

zj exp
(yj − xj φ̂

σ̂

)
= 0

or as

−r − 1
σ̂/σ

∑

j∈C

zj +
1

σ̂/σ

n∑

j=1

zj exp
{

1
σ̂(z(1), . . . , z(r))

[
zj − xj φ̂(z(1), . . . , z(r))

]}
= 0.

If we let σ̂/σ be the unknown of the above equation, then its root will only depend on z(1), . . . , z(r) and X.

RESULT 3: For uncensored and type II censored data, Pr(σ,φ)

(
LR(σ) ≤ q

)
depends neither on φ nor on

the value of σ set at the null hypothesis, it only depends on X.
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Proof:

Note that from (A5) we have that
n∑

j=1

exp
(yj − xj φ̂

σ̂

)
= r.

(Recall that xj1 = 1, j = 1, . . . , n.) Analogously, for σ fixed, it is possible to show that

n∑

j=1

exp
(yj − xj φ̂σ

σ

)
= r.

The likelihood ratio statistic is defined as

LR(σ) = 2
{

`(σ̂, φ̂)− `(σ, φ̂σ)
}

.

Thus,

LR(σ) = 2

{
− r log

(
σ̂

σ

)
+

∑

j∈C

(yj − xj φ̂

σ̂

)
−

∑

j∈C

(yj − xj φ̂σ

σ

)}
.

Using (A1), (A2) and (A3), we obtain

LR(σ) = 2

{
− r log σ̂(z(1), . . . , z(r)) +

[
1

σ̂(z(1), . . . , z(r))
− 1

] ∑

j∈C

[
zj − xj φ̂(z(1), . . . , z(r))

] }
.

Therefore, for uncensored and type II censored data, Pr(σ,φ)

(
LR(σ) ≤ q

)
depends neither on φ nor on the

value of σ set at the null hypothesis. Since LR(σ) depends on xj , its null distribution depends on X.

RESULT 4: (̂̃φBN −φ)/σ, ̂̃σBN/σ, (̂̃φBN −φ)/̂̃σBN and (yj−xj
̂̃
φBN )/̂̃σBN are distributed independently

of the pair (σ, φ).

Proof:

Consider the adjusted profile log-likelihood function ˜̀
BN (σ) given in (4.2), i.e.,

˜̀
BN, Y(σ, φ) = −(r − p) log σ +

∑

j∈C

(yj − xjφ

σ

)
−

n∑

j=1

exp
(yj − xjφ

σ

)
+ log

( ∣∣X>ZX
∣∣1/2

∣∣X>ZV̂φ

∣∣

)
,

subject to restrictions of the form ∂`Y(σ, φ)/∂φs = −(1/σ)
∑

j∈C xjs +(1/σ)
∑n

j=1 xjs exp
[
(yj−xjφ)/σ

]
=

0, where s = 1, . . . , p.
Let

y′j = dyj + xjk, φ′ = dφ + k and σ′ = dσ,

j = 1, . . . , n, where d is a positive scalar and k is a p-vector. Let Y ′ = (y′1, . . . , y
′
n)>. Note that

˜̀
BN, Y(σ, φ) = (r − p) log d + ˜̀

BN, Y′(σ′, φ′) ⇐⇒ L̃BN, Y(σ, φ) = dr−pL̃BN, Y′(σ′, φ′).

Notice that ∂`Y(σ, φ)/∂φs = 0 ⇐⇒ ∂`Y′(σ′, φ′)/∂φ′s = 0, where s = 1, . . . , p.
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Let ̂̃
φBN and ̂̃σBN be, respectively, the maximum likelihood estimators of φ and σ obtained from the

maximization of ˜̀
BN, Y(σ, φ) subject to the p restrictions given above. If ˜̀

BN, Y(σ, φ) is maximized at

̂̃
φBN = ̂̃

φBN (y(1), . . . , y(r)) and ̂̃σBN = ̂̃σBN (y(1), . . . , y(r)),

then ˜̀
BN, Y′(σ, φ) is maximized at

̂̃
φBN (y′(1), . . . , y

′
(r)) = d

̂̃
φBN (y(1), . . . , y(r)) + k and ̂̃σBN (y′(1), . . . , y

′
(r)) = d̂̃σBN (y(1), . . . , y(r)).

Letting d = 1/σ and k = −(1/σ)φ, similarly to what has been done in the proof of Result 1, it can be
shown that

1
σ

[̂̃
φBN − φ

]
,

̂̃σBN

σ
,

1
̂̃σBN

[̂̃
φBN − φ

]
and

yj − xj
̂̃
φBN

̂̃σBN

are distributed independently of the pair (σ, φ).

RESULT 5: The distribution of the ratio ̂̃σBN/σ depends on the design matrix X.

Proof:

From ∂ ˜̀
BN (̂̃σBN ,

̂̃
φBN )/∂σ = 0 and the restriction ∂`(̂̃σBN ,

̂̃
φBN )/∂φ> = 01×p, it follows that

−r + p− 1
̂̃σBN

∑

j∈C

yj +
1

̂̃σBN

n∑

j=1

yj exp
(yj − xj

̂̃
φBN

̂̃σBN

)

−1
2
tr

{[
X>Z(̂̃σBN ,

̂̃
φBN )X

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
X

}
(A7)

+tr
{[

X>Z(̂̃σBN ,
̂̃
φBN )V̂φ

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
V̂φ

}
= 0,

where:

i) Z(̂̃σBN ,
̂̃
φBN ) is the matrix Z = diag(exp(z1), . . . , exp(zn)) evaluated at (̂̃σBN ,

̂̃
φBN ),

ii) log Z(̂̃σBN ,
̂̃
φBN ) is the matrix log Z = diag(z1, . . . , zn) evaluated at (̂̃σBN ,

̂̃
φBN ), and

iii) V̂φ is an n× p matrix formed out of rows of X.

In order to obtain the above result, we used the following property of matrix differentiation:

∂

∂θ
log |A(θ)| = tr

{
A(θ)−1 ∂

∂θ
A(θ)

}
,

where A(θ) is a square matrix whose elements depend on θ; see Magnus and Neudecker (1988).
Note that the matrices

[
X>Z(̂̃σBN ,

̂̃
φBN )X

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
X

and [
X>Z(̂̃σBN ,

̂̃
φBN )V̂φ

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
V̂φ
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are an ancillary statistic for (σ, φ) and the distributions of their traces depend on the design matrix X.

Using the restriction ∂`(̂̃σBN ,
̂̃
φBN )/∂φ> = 01×p together with the fact that yj = xjφ + σzj (j =

1, . . . , n), equation (A7) becomes

−r + p− 1
̂̃σBN/σ

∑

j∈C

zj +
1

̂̃σBN/σ

n∑

j=1

zj exp
[ zj

̂̃σBN/σ
− xj

1
̂̃σBN

(̂̃φBN − φ)
]

−1
2
tr

{[
X>Z(̂̃σBN ,

̂̃
φBN )X

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
X

}

+tr
{[

X>Z(̂̃σBN ,
̂̃
φBN )V̂φ

]−1

X>
(

Z(̂̃σBN ,
̂̃
φBN ) log Z(̂̃σBN ,

̂̃
φBN )

)
V̂φ

}
= 0.

Let ̂̃σBN/σ be the unknown of this equation, and note that the root depends only on X and on ancillary
statistics and pivots for (σ, φ). For complete data, r = #C = n.

RESULT 6: For uncensored and type II censored data, Pr(σ,φ)

(
LRB̃N (σ) ≤ q

)
depends neither on φ nor

on the value of σ set at the null hypothesis, it only depends on X.

Proof:

The likelihood ratio statistic based on ˜̀
BN (σ) is defined as

LRB̃N (σ) = 2
{

˜̀
BN (̂̃σBN ,

̂̃
φBN )− ˜̀

BN (σ,
̂̃
φBN,σ)

}
,

where ̂̃
φBN,σ is the maximum likelihood estimator of φ under the null hypothesis. If we fix σ in ˜̀

BN (σ, φ),
such an estimator is obtained by maximizing this function subject to the restrictions ∂`(σ, φ)/∂φs = 0, where

s = 1, . . . , p. Note that ̂̃
φBN,σ is different from ̂̃

φBN , since the latter is obtained from the maximization of
˜̀
BN (σ, φ) under the p restrictions corresponding to the pair (σ, φ).

The test statistic is given by

LRB̃N (σ) = 2

{
− (r − p) log

(̂̃σBN

σ

)
+

∑

j∈C

(yj − xj
̂̃
φBN

̂̃σBN

)
−

n∑

j=1

exp
(yj − xj

̂̃
φBN

̂̃σBN

)

+
1
2

log
∣∣∣∣X>Z(̂̃σBN ,

̂̃
φBN )X

∣∣∣∣− log
∣∣∣∣X>Z(̂̃σBN ,

̂̃
φBN )V̂φ

∣∣∣∣−
∑

j∈C

(yj − xj
̂̃
φBN,σ

σ

)

+
n∑

j=1

exp
(yj − xj

̂̃
φBN,σ

σ

)
− 1

2
log

∣∣∣∣X>Z(σ,
̂̃
φBN,σ)X

∣∣∣∣ + log
∣∣∣∣X>Z(σ,

̂̃
φBN,σ)V̂φ

∣∣∣∣
}

.

Similarly to what has been established in the proof of Result 3,

∑

j∈C

(yj − xj
̂̃
φBN

̂̃σBN

)
and

∑

j∈C

(yj − xj
̂̃
φBN,σ

σ

)
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are distributed independently of the pair (σ, φ). The determinants of the quadratic forms are also distributed
independently of such a pair. Additionally, from one of the p restrictions (s = 1) we obtain

n∑

j=1

exp
(yj − xj

̂̃
φBN

̂̃σBN

)
= r and

n∑

j=1

exp
(yj − xj

̂̃
φBN,σ

σ

)
= r.

Recall that xj1 = 1 for j = 1, . . . , n.
Therefore, for complete data and for type II censored data, Pr(σ,φ)

(
LRB̃N (σ) ≤ q

)
does not depend

on φ nor on the value of σ set at the null hypothesis. This happens because under the null hypothesis,
LRB̃N (σ) depends only on ancillary statistics and on pivots for (σ, φ). Note also that the null distribution
of this test statistic depends on the model matrix X.

RESULT 7: (λ̂†CR−λ†)/σ, σ̂CR/σ, (λ̂†CR−λ†)/σ̂CR and (yj−xj λ̂†CR)/σ̂CR are distributed independently
of the pair (σ, φ).

Proof:

Consider the adjusted profile log-likelihood function `CR(σ) given in (4.3),

`CR, Y(σ, λ†) = −(r − p) log σ +
∑

j∈C

(yj − xjλ
†

σ

)
−

n∑

j=1

exp(wj)− 1
2

log
∣∣∣X>WX

∣∣∣,

subject to the restrictions of the form ∂`Y(σ, λ†)/∂λ†s = −(1/σ)
∑

j∈C xjs + (1/σ)
∑n

j=1 xjs exp(wj) = 0,

where s = 1, . . . , p and wj = (yj−xjλ
†)/σ+(1−γ)xj(X>X)−1X>1ln, j = 1, . . . , n. Since λ̂†σ does not have

closed form, `CR(σ) is written as a function of the pair (σ, λ†). Here, `CR(σ) = `CR(σ, λ†) = `CR, Y(σ, λ†).
Let

y′j = dyj + xjk, λ†′ = dλ† + k and σ′ = dσ,

j = 1, . . . , n, where d is a positive scalar and k is a p-vector. Let Y ′ = (y′1, . . . , y
′
n)>. Note that

`CR, Y(σ, λ†) = (r − p) log d + `CR, Y′(σ′, λ†
′
) ⇐⇒ LCR, Y(σ, λ†) = dr−pLCR, Y′(σ′, λ†′).

Note that ∂`Y(σ, λ†)/∂λ†s = 0 ⇐⇒ ∂`Y′(σ′, λ†′)/∂λ†
′
s = 0, where s = 1, . . . , p.

Let λ̂†CR and σ̂CR be the maximum likelihood estimators of λ† and σ obtained from the maximization
of `CR(σ, λ†) subject to the p restrictions, respectively. Hence, if `CR, Y(σ, λ†) is maximized at

λ̂†CR = λ̂†CR(y(1), . . . , y(r)) and σ̂CR = σ̂CR(y(1), . . . , y(r)),

then `CR, Y′(σ, λ†) is maximized at

λ̂†CR(y′(1), . . . , y
′
(r)) = dλ̂†CR(y(1), . . . , y(r)) + k

and
σ̂CR(y′(1), . . . , y

′
(r)) = dσ̂CR(y(1), . . . , y(r)).

Letting d = 1/σ and k = −(1/σ)λ†, similarly to what has been done in the proof of Result 1, it is
possible to show that

1
σ

[
λ̂†CR − λ†

]
,

σ̂CR

σ
,

1
σ̂CR

[
λ̂†CR − λ†

]
and

yj − xj λ̂†CR

σ̂CR
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are distributed independently of the pair (σ, λ†), since (j = 1, . . . , n)

yj − xjλ
†

σ
= zj − (1− γ)xj(X>X)−1X>1ln

is a pivot for (σ, λ†).

RESULT 8: The distribution of the ratio σ̂CR/σ depends on the model matrix X. Additionally, for
complete and type II censored data, Pr(σ,φ)

(
LRB̃N (σ) ≤ q

)
depends neither on φ nor on the value of σ set

at the null hypothesis; it only depends on X.

Proof:

The expressions for `CR(σ, λ†) and ˜̀
BN (σ, φ) are similar, and, hence, in a similar fashion to Result 5, it is

possible to show that the distribution of the ratio σ̂CR/σ depends only on the design matrix X.
Additionally, similarly to Result 6, it can be shown that Pr(σ,λ†)

(
LRCR(σ) ≤ q

)
does not depend on

λ† not on the value of σ set at the null hypothesis.

Type I Censoring

We shall consider type I censoring: yj = log
[
min(tj , c)

]
, where tj ∼ WB(α(xj), β) (j = 1, . . . , n) and c is

a given positive constant, the censoring time. In Section 5 such a constant was

c =
[ 1
n

n∑

j=1

α(xj)
](− log p

)1/β
,

where p is the desired censored proportion. The data can then be conveniently represented by n pairs of
random variables (yj , δj), where

yj = log
[
min(tj , c)

]
and δj =

{
1, tj ≤ c,
0, tj > c.

RESULT 9: (φ̂− φ)/σ and σ̂/σ are not distributed indepently of the pair (σ, φ), where φ̂ and σ̂ are the
maximum likelihood estimators of φ and σ, respectively.

Proof:

Note that δ1, . . . , δn are independent random variables, with δj ∼ Bernoulli[Pr(δj = 1)], j = 1, . . . , n.
Thus,

Pr(δj = 1) = Pr(tj ≤ c) = Pr

(
tj ≤

[ 1
n

n∑

j=1

α(xj)
](− log p

)1/β

)
.

Recall that if uj ∼ Exp(1), then tj = α(xj)u
1/β
j ∼ WB(α(xj), β) para j = 1, . . . , n. Using this relation, we

obtain

Pr(δj = 1) = Pr

(
uj ≤

[∑n
j=1 α(xj)
nα(xj)

]β(− log p
)
)

= 1− exp





[∑n
j=1 α(xj)
nα(xj)

]β

log p



 .
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That is,

Pr(δj = 1) = 1− p

{[∑n

j=1
α(xj)

]/[
nα(xj)

]}β

.

Hence,

δj ∼ Bernoulli
(
1− p

{[∑n

j=1
α(xj)

]/[
nα(xj)

]}β )

and, thus,

ψj(t) =
(
1− p

{[∑n

j=1
α(xj)

]/[
nα(xj)

]}β )
exp(it) + p

{[∑n

j=1
α(xj)

]/[
nα(xj)

]}β

is the characteristic function of δj , for j = 1, . . . , n, where i =
√−1.

Since β = σ−1 and α(xj) = exp(xjφ), then δj is not an ancillary statistic for (σ, φ). Given that
δ1, . . . , δn are independent random variables, the characteristic function of r =

∑n
j=1 δj is the product of

the individual characteristic functions, and hence depends on the pair (σ, φ). As a consequence, the joint
distribution of the random vector (z(1), . . . , z(r)) depends on such a pair. Therefore, using (A1), when the
variates are independent but not necessarily identically distributed and are subject to type I censoring, the
quantities

1
σ

[
φ̂− φ

]
and

σ̂

σ

are not pivots for (σ, φ). Note that

xj = x, ∀j =⇒ δj ∼ Bernoulli(1− p), ∀j.

Thus, r ∼ Binomial(n, 1− p). This holds for i.i.d. variates in the presence of type I censoring.
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