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Abstract . This paper presents several different adjusted profile likelihoods for the Weibull shape parameter.
These adjustments aim at reducing the impact of the nuisance parameter on the likelihood-based inference
regarding the parameter of interest. Both point estimation and hypothesis testing are considered. We also
show that the ratio between the estimators and the shape parameter are pivotal quantities and that the
size properties of the usual and adjusted profile likelihood ratio tests depend neither on the scale parameter
nor on the value of the shape parameter set at the null hypothesis. The numerical results suggest that the
adjustment obtained by Yang and Xie (2003) outperforms not only the profile likelihood inference but also
inference based on competing adjusted profile likelihoods.
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1. INTRODUCTION

The Weibull distribution is commonly used to model failure time data since it generalizes

the exponential distribution allowing for a power dependence of the hazard function on

time. This power dependence is controlled by the distribution shape parameter. It is thus

important to reliably perform inference on such a parameter. It is also noteworthy that the

Weibull distribution admits a closed-form expression for tail area probabilities and thereby

simple formulas for survival and hazard functions. For applications to industrial life testing

† Corresponding author.
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and biomedical data, see Mann et al. (1974) and Gross and Clark (1975). The reader is

also referred to Lawless (1982) and Klein and Moeschberger (1997).

Let y be a random variable that follows a Weibull distribution, denoted W (α, β). Its

density function is given by

p(y; α, β) =
β

α

( y

α

)β−1
exp

[
−

( y

α

)β]
, α, β, y > 0,

where β is the shape parameter and α is the scale parameter. The distribution function is

F (y; α, β) = 1− S(y; α, β), where

S(y; α, β) = exp
[
−

( y

α

)β]

is the survival function. The hazard function, Λ(y; α, β) = p(y; α, β)/S(y; α, β), is thus

given by (β/α)(y/α)β−1. Note that β < 1, β = 1 and β > 1 imply decreasing, constant and

increasing hazard functions, respectively. For example, after a major surgery the mortality

hazard is typically decreasing over time, at least in the short term. There are situations

where increasing and even constant hazard functions are plausible. They can all be obtained

when the modeling is done via the Weibull distribution.

Parameter estimation can be performed by maximum likelihood. However, the resulting

estimators may be considerably biased in small samples, including the shape parameter

maximum likelihood estimator. Some recent papers discussing the estimation of Weibull

shape parameters are Ageel (2002), Bar-Lev (2004), Lu et al. (2004) and Maswadah (2003).

Yang and Xie (2003) obtained the Cox and Reid (1987) adjustment to the Weibull shape

parameter profile likelihood function. Their Monte Carlo results suggest that the adjusted

profile likelihood estimator is nearly unbiased and is also more efficient than the usual

maximum likelihood estimator in small samples both with and without censoring.

The chief goal of this paper is to obtain several different adjustments to the profile

likelihood for the Weibull shape parameter, and to evaluate their finite-sample behavior.

We shall consider both estimation and hypothesis testing. We show that, for all estimators

of β considered in this paper and for all sampling schemes (complete samples and types

I and II censoring), the distribution of the ratio ‘estimator/β’ does not depend on (α, β),

i.e., this is a pivotal quantity. We also show that the size properties of the usual and

adjusted profile likelihood ratio tests depend neither on α nor on the value of β set at the

null hypothesis. The numerical results suggest that the Cox and Reid (1987) adjustment

derived by Yang and Xie (2003) outperforms competing inference strategies both with

noncensored and censored data.

The remainder of the paper unfolds as follows. Section 2 presents the profile likelihood

and its properties. Section 3 presents the Barndorff–Nielsen (1980, 1983) adjustment and

some alternative adjusted profile likelihoods, for example, the Cox and Reid (1987) adjust-

ment. Section 4 derives the adjustments for inference on the Weibull shape parameter.
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Monte Carlo results are presented in Section 5 and numerical examples with real data sets

are presented in Section 6. Finally, Section 7 concludes the paper. Some distributional

properties of the different estimators and test statistics are derived in the Appendix.

2. PROFILE LIKELIHOOD

Let Y = (y1, . . . , yn)> be an n-vector of independent random variables having a distribution

that is indexed by two (possibly vector-valued) parameters, namely α and β.1 Suppose that

the interest lies in performing inference on β in the presence of the nuisance parameter α.

In some situations, it is possible to perform inference on β using a marginal or a conditional

likelihood function. However, there are a number of situations where these functions cannot

be obtained. The standard approach is to use the profile likelihood function, which is defined

as Lp(β) = L(α̂β, β), where L(·) is the usual likelihood function and α̂β is the maximum

likelihood estimate of α for a given, fixed β. For instance, the usual likelihood ratio statistic,

LR(β) = 2[`(α̂, β̂)− `(α̂β, β)] = 2[`p(β̂)− `p(β)],

is based on the profile likelihood function. Here, β̂ and α̂ are the maximum likelihood

estimates of β and α respectively, `(·) is the log-likelihood function and `p(·) is the profile

log-likelihood function. It is noteworthy, however, that Lp(·) is not a genuine likelihood.

For example, for θ = (α>, β>)>, properties such as

E(u(θ)) = 0 and E{u(θ)u(θ)>}+ E
{∂u(θ)

∂θ>
}

= 0

do not hold when up(β) is used instead of u(θ). Here, u(θ) = ∂`(θ)/∂θ is the score function

and up(β) = ∂`p(β)/∂β is the profile score function. The profile score and information

biases are only guaranteed to be O(1).

3. MODIFIED PROFILE LIKELIHOODS

3.1. BARNDORFF–NIELSEN’S MODIFIED PROFILE LIKELIHOOD

Several adjustments to the profile likelihood function have been proposed in the literature;

see, e.g., Severini (2000, Chapter 9). Barndorff–Nielsen’s (1983) modified profile likelihood

is obtained as an approximation to a marginal or conditional likelihood for β, if either exists.

In both cases, one uses the p∗ formula (Barndorff–Nielsen, 1980, 1983), which approximates

1 Throughout this section α and β are allowed to be vector-valued. However, in the model of interest in Section
4 these paramaters are scalars.
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the probability density function of the maximum likelihood estimator conditional on an

ancillary statistic. The modified profile likelihood proposed by the author is

LBN (β) =

∣∣∣∣
∂α̂β

∂α̂

∣∣∣∣
−1

|jαα(α̂β, β)|−1/2Lp(β),

where jαα(α, β) = −∂2`/∂α∂α> is the observed information for α. The corresponding

score and information biases are of order O(n−1). Additionally, LBN (β) is invariant under

reparameterization of the form (α, β) → (ν, ξ), where ν = ν(α, β) and ξ = ξ(β).

The main difficulty in computing the modified profile likelihood function LBN (β) lies

in obtaining |∂α̂β/∂α̂|. There is an alternative expression for LBN (β) that does not involve

this term, but it involves a sample space derivative of the log-likelihood function and the

specification of an ancillary a such that (α̂, β̂, a) is a minimal sufficient statistic.

3.2. AN APPROXIMATION BASED ON POPULATION COVARIANCES

Several approximations to Barndorff–Nielsen’s adjustment were proposed in order to sim-

plify its evaluation. Severini (1998) proposed the following approximation to the modified

profile log-likelihood function:

`BN (β) = `p(β) +
1

2
log

∣∣jαα(α̂β, β)
∣∣− log

∣∣∣Iα(α̂β, β; α̂, β̂)
∣∣∣, (3.1)

where

Iα(α, β; α0, β0) = E(α0,β0){`α(α, β)`α(α0, β0)
>}, (3.2)

with `α(α, β) = ∂`/∂α. Note that Iα(α̂β, β; α̂, β̂) does not depend on the ancillary statistic

a and that Iα(α, β; α0, β0) is the covariance between `α(α, β) and `α(α0, β0). The corre-

sponding maximum likelihood estimator shall be denoted as β̂BN .

3.3. AN APPROXIMATION BASED ON EMPIRICAL COVARIANCES

An alternative approximation to Barndorff–Nielsen’s (1983) modified profile likelihood func-

tion, say ˘̀
BN , was proposed by Severini (1999); it was obtained replacing I(α, β; α0, β0)

by

Ĭ(α, β; α0, β0) =
∑n

j=1 `
(j)
α (α, β)`

(j)
α (α0, β0)

>, (3.3)

where `
(j)
θ (θ) = (`

(j)
α (θ), `

(j)
β (θ)) is the score function for the jth observation. This ap-

proximation is particularly useful when the computation of expected values of products of

log-likelihood derivatives is cumbersome. The corresponding estimator shall be denoted as
̂̆
βBN .
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3.4. AN APPROXIMATION BASED ON AN ANCILLARY STATISTIC

A third approximation to Barndorff–Nielsen’s (1983) modified profile log-likelihood function

is (Fraser and Reid (1995), and Fraser et al. (1999))

˜̀
BN (β) = `p(β) +

1

2
log |jαα(α̂β, β)| − log |`α;Y(α̂β, β)V̂α|, (3.4)

where `α;Y(α, β) = ∂`α(α, β)/∂Y> and

V̂α =
(
−∂F1(y1;α̂,̂β)/∂α̂

p1(y1;α̂,̂β)
· · · −∂Fn(yn;α̂,̂β)/∂α̂

pn(yn;α̂,̂β)

)>
,

pj(y;α, β) being the probability density function of yj and Fj(y;α, β) being the cumula-

tive distribution function of yj . The corresponding estimator shall be denoted as ̂̃βBN .

The construction of the matrix V̂α is based on an approximately ancillary statistic; see

Severini (2000, p. 216).

3.4. AN APPROXIMATION BASED ON ORTHOGONAL PARAMETERS

We shall now consider a different adjustment to the profile likelihood function. Suppose

that the parameters that index the model are orthogonal, that is, that the elements of

the score vector, ∂`/∂β and ∂`/∂α, are uncorrelated. Cox and Reid (1987) proposed an

adjustment that can be applied to the profile likelihood function in this setting. It is an

approximation to a conditional probability density function of the observations given the

maximum likelihood estimator of α and can be written as

LCR(β) = |jαα(α̂β, β)|−1/2Lp(β).

Their modified profile log-likelihood function is

`CR(β) = `p(β)− 1

2
log |jαα(α̂β, β)|; (3.5)

the maximizer of `CR(β) shall be denoted as β̂CR. The corresponding score bias is O(n−1)

but, in general, the information bias remains O(1).

The Cox and Reid (1987) adjustment has been proposed under the assumption of

orthogonality of β and α. It is not always possible, however, to find a parameterization

that delivers orthogonality.2 Additionally, the Cox and Reid adjustment is not invariant

2 We were not able to obtain an orthogonal parameterization under types I and II censoring (Section 3) when
performing inference on the Weibull shape parameter. Following Yang and Xie (2003), we have used orthogonal
parameterizations obtained under noncensoring and they delivered reliable inference in small samples; see the
numerical results in Section 5.
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under reparameterizations of the form (α, β) → (ν, ξ), where ν = ν(α, β) and ξ = ξ(β)

unlike LBN (β), for which the invariance property is guaranteed by the term |∂α̂β/∂α̂|.
Note that if α̂β = α̂ for all β, then LBN (β) = LCR(β). In this case, β and α are orthogonal

parameters (Cox and Reid, 1987). Also, it is possible to show that `BN (β) − `BN (β̂) =

`CR(β)− `CR(β̂)+Op(n
−1). As a consequence, the likelihood ratio statistics obtained from

`BN (β) and `CR(β) differ by a term of order Op(n
−1).

4. PROFILE LIKELIHOODS FOR THE WEIBULL SHAPE PARAMETER

4.1. UNCENSORED DATA

At the outset, consider noncensored data. Let y1, . . . , yn be independent and identically

distributed (i.i.d.) Weibull random variables. The log-likelihood function for the (α, β)

parameters is given by

`(α, β) = n log
(

β
α

)
+ (β − 1)

∑n
j=1 log

(
yj

α

)
−∑n

j=1

(
yj

α

)β
. (4.1)

The restricted maximum likelihood estimator of α, for fixed β (parameter of interest), is

α̂β =

(
1
n

∑n
j=1 yβ

j

)1/β

.

Plugging this expression into the expression for `(α, β) we obtain

`p(β) = n log β − n log
∑n

j=1 yβ
j + β

∑n
j=1 log yj .

The observed information jαα(α, β) evaluated at (α̂β, β) can be written as

jαα(α̂β, β) = β2
( ∑n

j=1 yβ
j

)−2/β
n1+2/β .

In what follows we shall obtain the adjusted profile likelihoods described in Section 3.

We shall omit the derivation details in the interest of space. From (3.2), we obtain

Iα(α̂β, β; α̂, β̂) =
nβ2α̂β−1

α̂β+1
β

Γ
(β

β̂
+ 1

)
.

Thus, from (3.1),

`BN (β) = (n− 1) log (β/
∑n

j=1 yβ
j )− β

(
log α̂−∑n

j=1 log yj

)
− log Γ(1 + β/β̂), (4.2)

where α̂ and β̂ are the maximum likelihood estimators; these estimators do not have closed-

form.

Using (3.3) it follows that
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Ĭα(α̂β, β; α̂, β̂) = β

α̂β

(
β̂

α̂β̂+1

∑n

j=1
yβ+β̂
j

α̂β
β

− nβ̂

α̂

)
,

and, hence,

˘̀
BN (β) = n log β − (n− 1) log

∑n
j=1 yβ

j +
∑n

j=1 log yβ
j − log

[ ∑n
j=1 yβ

j

(
yβ̂
j − α̂β̂

)]
. (4.3)

Additionally, the jth components (j = 1, . . . , n) of the vectors `α;y(α̂β, β) (row vector)

and V̂α (column vector) are, respectively, β2yβ−1
j /α̂β+1

β and yj/α̂, and, thus, the adjusted

profile likelihood given in (3.4) can be written as

˜̀
BN (β) = (n− 1) log β − n log

∑n
j=1 yβ

j + β
∑n

j=1 log yj . (4.4)

From (3.5), under an orthogonal parameterization (λ, β), Yang and Xie (2003) showed

that

`CR(β) = `p(β)− 2 log β = (n− 2) log β − n log
∑n

j=1 yβ
j + β

∑n
j=1 log yj , (4.5)

where λ = log(α)/β + (1− γ)/β2 e γ = 0.577215 . . . is Euler’s constant.

4.2. TYPE II CENSORED DATA

We shall now consider type II censored data, where observation ceases after the rth (r < n)

failure. Let y(1), . . . , y(r) be the smallest r order statistics from a sample of size n of a

Weibull distribution W (α, β). The likelihood function is

L(α, β) =
∏r

j=1 p(y(j); α, β)
∏n

j=r+1 S(y(r); α, β) =
[
S(y(r); α, β)

]n−r ∏r
j=1 p(y(j); α, β).

Hence,

`(α, β) = r log β − βr log α + β
∑r

j=1 log y(j) − 1
αβ

[∑r
j=1 yβ

(j)
− (n− r)yβ

(r)

]
. (4.6)

The restricted maximum likelihood estimator of α can be written as

α̂β =
[

1
r

( ∑r
j=1 yβ

(j)
+ (n− r)yβ

(r)

)]1/β
.

Note that under no censoring (r = n), this estimator reduces to the one given previously.

Therefore, we obtain

`p(β) = `(α̂β, β) = r log β − r log
( ∑r

j=1 yβ
(j)

+ (n− r)yβ
(r)

)
+ β

∑r
j=1 log y(j).

Here,

jαα(α̂β, β) = β2
( ∑r

j=1 yβ
(j)

+ (n− r)yβ
(r)

)−2/β
r1+2/β .

It has not been possible to derive `BN (β) under type II censoring. It can be shown that

˘̀
BN (β) = r log β − (r − 1) log

[∑r
j=1 yβ

(j)
+ (n− r)yβ

(r)

]
+ β

∑r
j=1 log y(j)

− log
[
r
( ∑r

j=1 yβ+β̂
(j)

+ (n− r)yβ+β̂
(r)

)
+ (n− r)2yβ+β̂

(r)
−

( ∑r
j=1 yβ̂

(j)

)( ∑r
j=1 yβ

(j)

)]
, (4.7)
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where β̂ is the maximum likelihood estimator of β under type II censoring. We also obtain

˜̀
BN (β) = (r − 1) log

[
β/(

∑r
j=1 yβ

(j)
+ (n− r)yβ

(r)
)
]

+
∑r

j=1 log yβ
(j)
− log

∑r
j=1 yβ

(j)
. (4.8)

Under the same orthogonal parameterization used under noncensoring, Yang and Xie

(2003) obtained

`CR(β) = (r − 2) log β − r log
[ ∑r

j=1 yβ
(j)

+ (n− r)yβ
(r)

]
+ β

∑r
j=1 log y(j). (4.9)

4.3. TYPE I CENSORED DATA

We shall now move to the situation where there is type I censoring, that is, one observes

yj = min(tj , c), where tj ∼ W (α, β) (j = 1, . . . , n) and c is a preassigned (fixed) censoring

time. Here the data can be represented by n independent pairs of random variables (yj , δj),

where

yj = min(tj , c) and δj =

{
1, tj ≤ c,
0, tj > c.

The likelihood function is

L(α, β) =
∏n

j=1 p(yj ; α, β)δj S(c; α, β)1−δj .

Thus,

L(α, β) =
(

β
α

)r
exp

[
−∑n

j=1

(
yj

α

)β]∏
j∈C

(
yj

α

)β−1
,

where C denotes the set of noncensored observation indices and r is the number of censored

cases. (Note that here, unlike type II censoring, r is random.) The log-likelihood function

is

`(α, β) = r log β − r log α−∑n
j=1

(
yj

α

)β
+ (β − 1)

∑
j∈C log

(
yj

α

)
, (4.10)

where r =
∑

δj is the observed number of failures.

The restricted maximum likelihood estimator of α, for fixed β, is

α̂β =

(
1
r

∑n
j=1 yβ

j

)1/β

,

and it thus follows that the profile log-likelihood function can be written as

`p(β) = r log β − r log
∑n

j=1 yβ
j + β

∑
j∈C log yj .

Here,

jαα(α̂β, β) = β2

( ∑n
j=1 yβ

j

)−2/β

r1+2/β.

As with type II censoring, it has not been possible to derive `BN (β). However, we have

obtained the following two adjusted log-likelihood functions:
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˘̀
BN (β) = r log β − (r − 1) log

∑n
j=1 yβ

j + β
∑

j∈C log yj

− log
[
r
( ∑

j∈C yβ+β̂
j + (n− r)cβ+β̂

)
+ (n− r)2cβ+β̂ −

( ∑
j∈C yβ̂

j

)( ∑
j∈C yβ

j

)]
(4.11)

and

˜̀
BN (β) = (r − 1)

[
log β − log

∑n
j=1 yβ

j

]
+ β

∑
j∈C log yj − log

∑
j∈C yβ

j , (4.12)

where β̂ is the maximum likelihood estimator of β under type I censoring.

Following Yang and Xie (2003), we now use the parameterization (λ, β) with λ =

log(α) + (1− γ)/β, which is orthogonal under noncensoring. They have shown that

`CR(β) = `p(β)− log β = (r − 1) log β − r log
∑n

j=1 yβ
j + β

∑
j∈C log yj . (4.13)

It is important to note that the two orthogonal parameterizations obtained under non-

censoring were also used, both by Yang and Xie (2003) and by us, under censoring, although

it is not possible to guarantee parameter orthogonality when observations were recorded

under either censoring scheme.

5. MONTE CARLO RESULTS

This section presents Monte Carlo results on the finite-sample inference regarding the

Weibull shape parameter under both noncensoring and (types I and II) censoring. The

sample size is n = 20. Under type II censoring, we considered samples with 10 and 15

failures, and under type I censoring we considered samples with 25% and 50% expected cen-

sored data. The true value of α was set at 100, and the following values for the parameter

of interest were considered: β = 0.5, 1.0, 5.0; these correspond, respectively, to decreasing,

constant and increasing hazard functions. All simulations were performed using the Ox

matrix programming language (Doornik, 2001) and are based on 100,000 replications.

The following measures are presented for all point estimators: mean, variance, bias,

mean squared error (MSE), relative bias (RB), skewness and kurtosis. Relative bias is

defined as 100 × (bias / true parameter value)%. Since the results (relative bias, skewness

and kurtosis) are the same for the three values of β, we shall only present them for β = 5.0

(increasing hazard rate). Also, the null rejection rates of the likelihood ratio tests based on

the profile and the modified profile likelihoods are presented. The null hypotheses under

test are H0 : β = 0.5, 1.0, 5.0. The test of H0 : β = 1.0 is of particular interest since under

the null hypothesis the Weibull distribution reduces to the exponential distribution and the

hazard function becomes constant over time. The results for the three null hypotheses were

identical both without and with censoring.

9



5.1. UNCENSORED DATA

Table 1 contains results for estimation of the Weibull shape parameter in the noncensoring

case. We consider the estimators obtained by maximizing the profile likelihoods given in

Section 4.1: β̂ (4.1), β̂BN (4.2),
̂̆
βBN (4.3), ̂̃βBN (4.4) e β̂CR (4.5). The figures in the table

show that the different estimators have approximately the same skewness and kurtosis (0.9

and 4.7, respectively; the corresponding asymptotic values are 0 and 3). The estimator

with smallest relative bias was β̂CR (0.726%), followed by β̂BN (4.136%), ̂̃βBN (4.152%),
̂̆
βBN (4.587%) and β̂ (7.529%). Note that the relative bias of β̂ is nearly ten times larger

than that of β̂CR. It is also noteworthy that the Cox and Reid estimator has the smallest

mean squared error (0.920).

Table 1. Point estimation, noncensoring, n = 20.

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 5.376 1.049 0.376 1.191 7.529 0.928 4.708

β̂BN 5.207 0.983 0.207 1.025 4.136 0.922 4.694
̂̆
βBN 5.229 0.993 0.229 1.046 4.587 0.930 4.710
̂̃
βBN 5.208 0.983 0.208 1.026 4.152 0.924 4.699
β̂CR 5.036 0.919 0.036 0.920 0.726 0.920 4.689

Table 2 gives the null rejection rates of the likelihood ratio test and of the corresponding

tests from the adjusted likelihoods. More precisely, such tests are based on ` (4.1), `BN

(4.2), ˘̀
BN (4.3), ˜̀

BN (4.4) and `CR (4.5). The figures in this table show that the tests

derived from adjusted profile likelihoods (`BN , ˘̀
BN , ˜̀

BN e `CR) displayed smaller size

distortions than the profile likelihood ratio test. No adjusted test clearly outperformed the

others.

Table 2. Null rejection rates, noncensoring, n = 20.

nominal level ` `BN
˘̀
BN

˜̀
BN `CR

15% 16.575 15.003 14.949 14.987 14.747
10% 11.353 10.122 10.115 10.105 9.800
5% 6.020 5.113 5.105 5.090 4.937
1% 1.390 1.058 1.040 1.047 0.997
0.1% 0.164 0.099 0.097 0.097 0.087
0.05% 0.078 0.049 0.048 0.048 0.048

Figure 1 plots the relative quantile discrepancies versus the corresponding asymptotic

quantiles. Relative quantile discrepancy is defined as the difference between exact (esti-
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Figure 1. Relative quantile discrepancies plot, H0 : β = 1, noncensoring, n = 20.
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mated by simulation) and asymptotic quantiles divided by the latter. The closer to zero

the relative quantile discrepancy, the better the approximation of the exact null distribu-

tion of the test statistic by the limiting χ2
1 distribution. The tests based on `BN (approx

BN1), ˘̀
BN (approx BN2) and ˜̀

BN (approx BN3) display similar finite-sample behavior;

their relative discrepancy curves are all close to a horizontal line at zero. It is also clear

that the null distribution of the usual likelihood ratio statistic is poorly approximated by

the limiting distribution.

5.2. TYPE II CENSORED DATA

Consider now type II censoring with n = 20 and r = 15 (number of failures). The figures in

Table 3 correspond to the estimators obtained by maximizing the profile likelihoods derived

in Section 4.2: β̂ (4.6),
̂̆
βBN (4.7), ̂̃βBN (4.8) e β̂CR (4.9). The figures show that the merits

of β̂CR relative to the remaining estimators are even more pronounced here than in the

noncensoring case both in terms of relative bias and mean squared error. For instance, the

relative bias and mean squared errors of β̂ are 12.204% and 2.358, respectively, whereas for
̂̆
βBN , 10.201% and 2.176, and for ̂̃βBN , 7.951% and 1.993. The relative bias of β̂ is nearly

20 times larger than that of β̂CR (0.600%).

Results on hypothesis testing derived from ` (4.6), ˘̀
BN (4.7), ˜̀

BN (4.8) and `CR (4.9)

11



Table 3. Point estimation, type II censoring, β = 5, (n, r) = (20, 15).

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 5.610 1.985 0.610 2.358 12.204 1.146 5.658
̂̆
βBN 5.510 1.916 0.510 2.176 10.201 1.147 5.660
̂̃
βBN 5.398 1.835 0.398 1.993 7.951 1.143 5.646
β̂CR 5.030 1.593 0.030 1.594 0.600 1.143 5.644

are given in Table 4. All tests based on adjusted profile likelihoods (˘̀BN , ˜̀
BN and `CR)

outperform the usual likelihood ratio test, the one based on `CR displaying superior small

sample behavior. Indeed, at the 5% nominal level the size distortion of the best performing

test is nearly 40 times smaller than that of the worst performing one.

Table 4. Null rejection rates, type II censoring, (n, r) = (20, 15).

nominal level ` ˘̀
BN

˜̀
BN `CR

15% 17.649 16.463 15.385 14.894
10% 12.259 11.279 10.348 9.971
5% 6.500 5.845 5.248 5.040
1% 1.591 1.352 1.097 1.019
0.1% 0.193 0.155 0.116 0.110
0.05% 0.097 0.083 0.062 0.060

The relative quantile discrepancy plot under type II censoring is presented in Figure 2.

Visual inspection of this figure shows that the best performing tests are the ones based on

`CR and ˜̀
BN (approx BN3), with slight advantage for the former.

We have also considered type II censoring with increased level of censoring: (n, r) =

(20, 10). For brevity, the results are not shown. The merits of the estimator obtained from

β̂CR and of the corresponding test relative to the competitors are even more pronounced

under heavier censoring. For example, the relative biases of
̂̆
βBN and β̂ were 19.248% and

21.000%, respectively; they are more than 500 times larger than the relative bias of β̂CR

(0.037%). The corresponding measure for ̂̃βBN was 14.133%; this was the second best

performing estimator. As for hypothesis testing, the best test was again the one based on

`CR, followed by the tests obtained from ˜̀
BN , ˘̀

BN and `p. For instance, at the 5% nominal

level the respective null rejection rates were 4.932%, 5.260%, 6.662% and 7.199%.

5.3. TYPE I CENSORED DATA

We shall now move to type I censoring. The censoring time was set at c = α(− log p)1/β

12



Figure 2. Relative quantile discrepancies plot, H0 : β = 1, type II censoring, (n, r) = (20, 15).
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which yielded the desired probability of censoring p. Here, p = 0.25, 0.50. Tables 5 and

6 present results on estimation and testing for p = 0.25. The likelihood ratio tests are

derived from ` (4.10), ˘̀
BN (4.11), ˜̀

BN (4.12) and `CR (4.13). As before, the estimators

obtained by maximizing these functions are denoted as β̂,
̂̆
βBN , ̂̃βBN and β̂CR, respectively.

Again, the estimator β̂CR outperformed all others in terms of relative bias: 6.792% for β̂,

4.722% for
̂̆
βBN , 3.097% for ̂̃βBN and 1.301% for β̂CR. That is, the relative bias of the

profile maximum likelihood estimator was over five times larger than that of the Cox and

Reid estimator, and over twice that of ̂̃βBN . Additionally, the figures in Table 6 show that

the usual likelihood ratio test has reliable small sample behavior, with little room left for

improvement. The adjusted tests display slightly superior behavior. Overall, the results in

Table 6 and in Figure 3 slightly favor the test obtained from ˘̀
BN .

Table 5. Point estimation, type I censoring with p = 0.25, β = 5.0, n = 20.

estimator mean variance bias MSE RB(%) skewness kurtosis

β̂ 5.340 1.625 0.340 1.740 6.792 0.914 4.707
̂̆
βBN 5.236 1.556 0.236 1.612 4.722 0.916 4.715
̂̃
βBN 5.155 1.526 0.155 1.550 3.097 0.907 4.674
β̂CR 5.065 1.498 0.065 1.502 1.301 0.899 4.643
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Table 6. Null rejection rates, type I censoring with p = 0.25, n = 20.

nominal level ` ˘̀
BN

˜̀
BN `CR

15% 15.687 14.867 14.603 15.170
10% 10.465 9.899 9.684 10.254
5% 5.499 5.069 4.892 5.146
1% 1.226 1.073 1.033 1.104
0.1% 0.145 0.110 0.095 0.128
0.05% 0.072 0.055 0.053 0.057

Figure 3. Relative quantile plot, H0 : β = 1, type I censoring with p = 0.25, n = 20.
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Under type I censoring with p = 0.50 (results not shown), the relative advantage of the

Cox and Reid estimator was even more noticeable. The usual likelihood ratio test proved

reliable, again leaving little room for improvement. For instance, at the 5% nominal level

the null rejection rates of the tests based on `p, ˘̀
BN , ˜̀

BN and `CR were 5.066%, 4.830%,

4.422% and 4.883%, respectively. It is noteworthy that the test with poorest small sample

behavior was the one obtained from ˜̀
BN , which was conservative.

5.4. DISCUSSION

We shall now compare some of our results to those presented by Yang and Xie (2003). We
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note that the empirical relative biases of β̂ and β̂CR obtained by these authors seem to

depend on the true β value in contrast with our results. For example, for type II censored

samples with n = 20 and r = 10 (see Table I in their paper), Yang and Xie (2003) obtained

empirical relative biases of β̂ equal to 22.21% for β = 5.0 and 21.27% for β = 0.5; the

corresponding figures for β̂CR were 1.03% and 0.52%, respectively. We obtained 21.000%

and 0.037% for β̂ and β̂CR, respectively, regardless of the value of β. A more pronounced

difference in the empirical relative biases of β̂CR depending on the value of β is observed

for n = 30 and r = 15 in Yang and Xie’s (2003) simulations (−0.17% for β = 3.0 and 0.66%

for β = 4.0). As another example, consider the type I censoring scheme with n = 20 and

p = 0.5. Yang and Xie (2003; Table II) obtained empirical relative biases of β̂ equal to

10.87% for β = 0.5 and 10.37% for β = 1.0, the correspondig figures for β̂CR being 0.81%

and 0.35%, respectively. We obtained 10.536% and 0.481% for β̂ and β̂CR, respectively,

regardless of the value of β. In fact, the results we obtained are expected since it can be

shown that the distributions of β̂/β and β̂CR/β do not depend on (α, β). The same holds

for the other estimators (see Appendix).3 We noticed that Yang and Xie (2003) do not

mention the number of replications they used in their simulations. Perhaps the unexpected

differences in the relative biases they report are due to a not large enough number of

replications; as mentioned previously, our simulations are based on 100,000 replications.

We note, however, that their simulation study is in line with ours in the sense that both

lead to the conclusion that estimation of β based on the Cox and Reid adjusted profile

likelihood is more accurate than the usual maximum likelihood estimation. Finally, it is

noteworthy that our simulations include results on hypothesis testing while their numerical

results only cover parameter estimation.

6. NUMERICAL EXAMPLES

We shall now consider two well know data sets obtained from Lawless (1982). In both cases,

we assume that the data are independent and follow a Weibull distribution. We perform

inference on the shape parameter β using the profile and the modified profile likelihoods

derived in Section 4.

The following data are times between successive failures of air conditioning equipment

in a Boeing 720 airplane (Proschan, 1963, Lawless, p. 134): 74, 57, 48, 29, 502, 12, 70,

21, 29, 386, 59, 27, 153, 26 and 326. Here, n = 15 and there is no censoring. The null

hypothesis of interest is H0 : β = 1. The likelihood ratio statistics based on ` (4.1), `BN

(4.2), ˘̀
BN (4.3), ˜̀

BN (4.4) and `CR (4.5) are, respectively, 0.409, 0.658, 0.655, 0.682 and

3 In the Appendix, we also show that the size properties of the usual and the adjusted profile likelihood ratio
tests depend neither on α nor on the value of β set at the null hypothesis.
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1.033. At the 10% significance level, none of the tests reject the null hypothesis. That is,

all five tests point to the same conclusion, namely that the exponential model cannot be

rejected as the data generating mechanism. The maximum likelihood estimates obtained

by maximizing the profile and modified profile likelihods are β̂ = 0.888, β̂BN = 0.858,
̂̆
βBN = 0.857, ̂̃βBN = 0.856 and β̂CR = 0.823.

We shall now turn to our second numerical example. Mann and Fertig (1973) — see

also Lawless (1982, p. 86) — present failure times of airplane components subjected to

a life test. The data are type II censored: 13 components were placed under test until

the tenth failure took place. The observed failure times (in hours) are 0.22, 0.50, 0.88,

1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00. Here, the likelihood ratio statistics for the test of

H0 : β = 1 obtained from ` (4.6), ˘̀
BN (4.7), ˜̀

BN (4.8) and `CR (4.9) are 1.435, 1.160, 0.960

and 0.354, respectively. Regardless of the statistic chosen for the test, the null hypothesis

is not rejected at the usual significance levels, that is, one cannot reject the exponential

model. Consider, however, the null hypothesis H0 : β = 2. The tests based on `, ˘̀
BN and

˜̀
BN do not reject H0 at the 10% significance level, unlike the test based on the Cox and

Reid (1987) modified profile likelihood `CR. The Cox and Reid (1987) test is the only that

distinguishes between β = 1 and β = 2. The parameter estimates obtained by maximizing

the profile and modified profile likelihoods are β̂ = 1.417,
̂̆
βBN = 1.374, ̂̃βBN = 1.343 and

β̂CR = 1.204.

7. CONCLUDING REMARKS

Inference on the Weibull shape parameter is particularly important when modeling failure

data, since the dependence of the hazard function on time is controled by such a parameter.

Yang and Xie (2003) obtained an adjustment to the profile likelihood function using the

approach developed by Cox and Reid (1987, 1989). Their numerical results showed that

estimation was considerably more precise when performed via the Cox and Reid likelihood

function both without and with (types I and II) censoring. We have derived alternative

adjustments to the Weibull shape parameter profile likelihood function. Our numerical

results, which cover both estimation and testing under noncensoring and (types I and

II) censoring, show that inference based on the adjusted profile likelihood of Cox and

Reid outperforms not only the usual profile likelihood inference, as suggested by Yang

and Xie (2003), but also inference yielded by alternative adjusted profile likelihoods. The

relative advantage of the Cox and Reid approach is more pronounced when used for point

estimation than for hypothesis testing; it is also more pronounced under noncensoring and

type II censoring than under type I censoring. Overall, the results in this paper strengthen

those in Yang and Xie (2003). Indeed, the results in our paper and in theirs taken together
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strongly suggest that practitioners should base inference on the Weibull shape parameter

on the Cox and Reid adjusted profile likelihood functions obtained through the orthogonal

parameterizations presented in Section 4. In future research, we shall derive some of the

adjusted profile likelihoods described in this paper in Weibull regression models. Also, it will

be interesting to extend our results to extensions of the traditional two-parameter Weibull

distribution. Lai et al. (2004) describe in a unified manner some of these extensions; see

also Murthy et al. (2003), Xie et al. (2003) and Xie et al. (2002).

APPENDIX

In this appendix we show that, for all estimators of β considered in this paper and for

all sampling schemes (complete samples and types I and II censoring), the distribution of

the ratio ‘estimator/β’ does not depend on (α, β), i.e., it is a pivotal quantity. We also

show that the size properties of the usual and the adjusted profile likelihood ratio tests

depend neither on α nor on the value of β set at the null hypothesis. We thus generalize

the results obtained by Thoman et al. (1969) which are confined to maximum likelihood

estimation in complete samples. In what follows we shall use the fact that if y1, . . . , yn are

i.i.d. random variables having a W (α, β) distribution, then xj = xj(yj , α, β) = (yj/α)β,

for j = 1, . . . , n, are independently distributed with a standard exponential distribution.

Note that (x(1), . . . , x(n)), the vector of order statistics relative to (x1, . . . , xn), is a pivotal

quantity.

Consider the type II censoring scheme with n observations and r failures (for noncen-

sored samples, let n = r). The profile score function for β is

up(β) =
r

β
− r

∑r
j=1 yβ

(j)
log y(j) + (n− r)yβ

(r)
log y(r)

∑r
j=1 yβ

(j)
+ (n− r)yβ

(r)

+
r∑

j=1

log y(j).

The maximum likelihood estimator of β satisfies up(β) = 0, i.e.

r

β̂
− r

∑r
j=1 yβ̂

(j)
log y(j) + (n− r)yβ̂

(r)
log y(r)

∑r
j=1 yβ̂

(j)
+ (n− r)yβ̂

(r)

+
r∑

j=1

log y(j) = 0.

Since yj = αx
1/β
j , for j = 1, . . . , n, then y(j) = αx

1/β
(j)

and log y(j) = log α + (1/β) log x(j).

Replacing these relations in the above equation and multiplying both sides by β, we get

r

β̂/β
− r

∑r
j=1 x

β̂/β
(j)

log x(j) + (n− r)x
β̂/β
(r)

log x(r)

∑r
j=1 x

β̂/β
(j)

+ (n− r)x
β̂/β
(r)

+
r∑

j=1

log x(j) = 0. (A.1)

17



The solution of (A.1) for β̂/β depends on the data and the parameters only through the

vector (x(1), . . . , x(n)), a pivotal quantity, and hence the distribution of β̂/β does not depend

on (α, β). Analogously, the likelihood ratio statistic may be written as

LR(β) = 2

{
r log(β̂/β)− r log

[ r∑

j=1

x
β̂/β
(j)

+ (n− r)x
β̂/β
(r)

]
+

(
β̂

β
− 1

) r∑

j=1

log x(j) (A.2)

+r log

[ r∑

j=1

x(j) + (n− r)x(r)

]}
,

and it is then clear that Pr(α,β)(LR(β) ≤ q) is the same for all (α, β). Notice that this

result implies that the null distribution of the likelihood ratio statistic does not depend on

α and is the same regardless the value of β set at the null hypothesis.

For the Cox and Reid adjusted profile likelihood inference the estimating equation is

given by (A.1) with r replaced by r− 2 in the first term and β̂ replaced by β̂CR. Also, the

corresponding likelihood ratio statistic is given by (A.2) with r replaced by r−2 in the first

term between braces and β̂ replaced by β̂CR. Hence, β̂CR/β is distributed independently

of (α, β). Also, the null distribution of the Cox and Reid adjusted profile likelihood ratio

statistic does not depend on α and does not change with changes in the value of the shape

parameter set at the null hypothesis.

The same results can be proved for the other estimators and statistics considered in this

paper under type II censoring in a similar way. In the case of the adjusted profile likelihood

`BN (noncensored data) the corresponding likelihood ratio statistic involves β̂ log(α̂/α).

It can be shown, however, that it is distributed independently of (α, β) (see Thoman et

al. 1969, Theorem B). To save space we omit the proofs, but they may be obtained from

the authors upon request.

We now move to type I censoring. The profile score function for β is

up(β) =
r

β
− r

∑n
j=1 yβ

j log yj∑n
j=1 yβ

j

+
n∑

j=1

δj log yj .

The maximum likelihood estimator of β is the solution of up(β) = 0, and hence satisfies

r

β̂
− r

∑n
j=1 yβ̂

j log yj

∑n
j=1 yβ̂

j

+
n∑

j=1

δj log yj = 0,

which can be rewritten as

r

β̂
− r

∑n
j=1 δjt

β̂
j log tj + (n− r)cβ̂ log c

∑n
j=1 δjt

β̂
j + (n− r)cβ̂

+
n∑

j=1

δj log tj = 0.
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Note that if δj = 1, then tj = αx
1/β
j , and recall that we set c = α(− log p)1/β in our

simulations. Replacing these relations in the above equation and multiplying both sides by

β, we have

r

β̂/β
− r

∑n
j=1 δjx

β̂/β
j log xj + (n− r)(− log p)β̂/β log(− log p)

∑n
j=1 δjx

β̂/β
j + (n− r)(− log p)β̂/β

+
n∑

j=1

δj log xj = 0. (A.3)

In (A.3), n and p are fixed constants, δ1, . . . , δn are i.i.d. random variables having a Bernoulli

distribution with parameter 1 − p and r =
∑n

j=1 δj . Also, as mentioned before, the

distribution of (x1, . . . , xn) does not depend on (α, β). Hence, the solution of (A.3) for β̂/β

is distributed independently of such parameters.

Analogously, the likelihood ratio statistic can be written as

LR(β) = 2

{
r log(β̂/β)− r log

[ n∑

j=1

δjx
β̂/β
j + (n− r)(− log p)β̂/β

]
(A.4)

+r log

[ n∑

j=1

δjxj + (n− r)(− log p)

]
+

(
β̂

β
− 1

) n∑

j=1

δj log xj

}
.

Using the same arguments as before, it can be seen that Pr(α,β)(LR(β) ≤ q) does not

change with changes in (α, β)

The results for the other adjusted profile likelihoods can be obtained in a similar fashion.

For instance, for the Cox and Reid adjusted profile likelihood, the results follow by showing

that the corresponding estimating equation is given by (A.3) with r replaced by r − 1 in

the first term and β̂ by β̂CR. Moreover, the resulting likelihood ratio statistic is given by

(A.4) with r replaced by r−1 in the first term between braces and β̂ replaced by β̂CR. The

omitted proofs may be obtained from the authors upon request.
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