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Abstract. In this paper we consider homeomorphisms of the torus R2/Z2,
homotopic to the identity, and their rotation sets. Let f be such a homeomor-

phism, ˜f : R2 → R2 be a fixed lift and ρ( ˜f) ⊂ R2 be its rotation set, which

we assume to have interior. We also assume that the frontier of ρ( ˜f) contains
a rational vector ρ ∈ Q2 and we want to understand how stable this situation
is. To be more precise, we want to know if it is possible to find two different
homeomorphisms f1 and f2, arbitrarily small C0-perturbations of f , in a way

that ρ does not belong to the rotation set of ˜f1 but belongs to the interior

of the rotation set of ˜f2, where ˜f1 and ˜f2 are the lifts of f1 and f2 that are

close to ˜f . We give two examples where this happens, supposing ρ = (0, 0).
The first one is a smooth diffeomorphism with a unique fixed point lifted to

a fixed point of ˜f . The second one is an area preserving version of the first
one, but in this conservative setting we only obtain a C0 example. We also
present two theorems in the opposite direction. The first one says that if f is
area preserving and analytic, we cannot find f1 and f2 as above. The second
result, more technical, implies that the same statement holds if f belongs to
a generic one parameter family (ft)t∈[0,1] of C

2-diffeomorphisms of T2 (in the

sense of Brunovsky). In particular, lifting our family to a family ( ˜ft)t∈[0,1] of
plane diffeomorphisms, one deduces that if there exists a rational vector ρ and

a parameter t∗ ∈ (0, 1) such that ρ( ˜ft∗ ) has non-empty interior, and ρ �∈ ρ( ˜ft)

for t < t∗ close to t∗, then ρ �∈ int(ρ( ˜ft)) for all t > t∗ close to t∗. This kind
of result reveals some sort of local stability of the rotation set near rational
vectors of its boundary.

1. Introduction and main results

The main motivation for this paper is to study how the rotation set of a homeo-
morphism of the two dimensional torus T2, homotopic to the identity, changes as the
homeomorphism changes. For instance, suppose we consider a one parameter con-

tinuous family ft : T
2 → T2 of such maps, a continuous family of lifts f̃t : R

2 → R2

and want to study how the parameterized family of rotation sets t �−→ ρ(f̃t) varies.
The rotation set is a non-empty compact convex subset of the plane (see definition
below), which varies continuously with the homeomorphism, at least in the special
situation when it has interior (see [13]). In particular, we are interested in the

Received by the editors October 20, 2016 and, in revised form, March 3, 2017.

2010 Mathematics Subject Classification. Primary 37E30, 37E45.
The first author was partially supported by CNPq grant 306348/2015-2.
The second author was partially supported by CAPES, Ciencia Sem Fronteiras, 160/2012.

c©2017 American Mathematical Society

1551

Licensed to Univ of Mass Amherst. Prepared on Wed May 30 17:41:49 EDT 2018 for download from IP 128.119.168.112.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13793


1552 SALVADOR ADDAS-ZANATA AND PATRICE LE CALVEZ

following problem: Suppose f : T2 → T2 is a homeomorphism homotopic to the

identity and its rotation set for a given lift f̃ , which is supposed to have interior,
has a point ρ in its boundary with both coordinates rational. Is it possible to find
two different arbitrarily small C0-perturbations of f, denoted f1 and f2, in a way

that ρ does not belong to the rotation set of the lift of f1 close to f̃ but is contained

in the interior of the rotation set of the lift of f2 close to f̃? In other words we
are asking if the rational mode locking found by Boyland, de Carvalho and Hall
[3] in their particular family of homeomorphisms is, in a certain sense, a general
phenomena or not. Our main theorems and examples will show that the answer
to this question depends on the hypotheses we have. In general, we can find such
maps f1 and f2 as described above, but if we assume certain hypotheses on f, then
this sort of “local mode locking” happens.

Even in the much simpler context of orientation preserving circle homeomor-
phisms, the only maps with rational rotation number which can be perturbed in an
arbitrarily C0-small way in order to decrease or increase their rotation numbers (the
analogous one dimensional version of our condition) are the ones conjugate to ratio-
nal rotations. In the context of degree one circle endomorphisms, if f : T1 → T1 is

such an endomorphism, f̃ : R → R is a fixed lift and ρ(f̃) is its rotation set (which
in this case is a compact interval), if we assume that the rotation set is not reduced
to a point and has a rational end ρ, then it is not possible to find C0 neighbors of

f̃ in the space of lifts, one whose rotation set does not contain ρ and the other with
ρ in the interior of its rotation set (see Theorem 5 below).

In order to make things precise and to present our main results, a few definitions
are necessary:

- We denote T2 = R2/Z2 the flat torus and π : R2 → T2 the universal covering
projection.

- We denote Diffr
0(T

2) the space of Cr (for r = 0, 1, 2, . . . ,∞, ω) diffeomorphisms

(homeomorphisms if r = 0) of the torus homotopic to the identity and D̃iff
r

0(T
2)

the space of lifts of elements of Diffr
0(T

2) to the plane.

- We write p1 : (x, y) �→ x and p2 : (x, y) �→ y for the standard projections defined
on the plane.

- Given f ∈ Diff0
0(T

2) and a lift f̃ ∈ D̃iff
0

0(T
2) the rotation set ρ(f̃) of f̃ can be

defined following Misiurewicz and Ziemian [12] as:

ρ(f̃) =
⋂
i�1

⋃
n�i

{
f̃n(z̃)− z̃

n
, z̃ ∈ R2

}
.

This set is a compact convex subset of R2 (see [12]), and it was proved in [8] and
[12] that all points in its interior are realized by compact f -invariant subsets of T2,
which can be chosen as periodic orbits in the rational case. By saying that some

vector ρ ∈ ρ(f̃) is realized by a compact f -invariant set, we mean that there exists a
compact f -invariant subset K ⊂ T2 such that for all z ∈ K and any z̃ ∈ π−1({z}),
one has

lim
n→∞

f̃n(z̃)− z̃

n
= ρ.

Moreover, the above limit, whenever it exists, is called the rotation vector of z and
denoted ρ(z).
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RATIONAL MODE LOCKING FOR HOMEOMORPHISMS OF THE 2-TORUS 1553

As the rotation set is a compact convex subset of the plane, there are three
possibilities for its shape: it is a point, a linear segment or it has interior. In this
paper we only consider the situation when the rotation set has interior. The first
main result is:

Theorem 1. Let f̃ ∈ D̃iff
ω

0 (T
2) be an area preserving diffeomorphism such that

the interior of ρ(f̃) is non-empty and its frontier contains a rational vector ρ ∈ Q2.
Then, one of the following situations occurs:

- there exists a neighborhood U of f̃ in D̃iff
0

0(T
2) such that ρ ∈ ρ(f̃ ′) for every

f̃ ′ ∈ U ;
- there exists a neighborhood U of f̃ in D̃iff

0

0(T
2) such that ρ �∈ int(ρ(f̃ ′)) for every

f̃ ′ ∈ U .
The next result permits one to understand the behaviour of generic one param-

eter families. Fix ρ = (p/q, r/q) ∈ Q2, where q � 1 and g.c.d.(p, q, r) = 1. Suppose

that f̃ ∈ D̃iff
0

0(T
2) can be approximated arbitrarily close by f̃ ′ ∈ D̃iff

0

0(T
2) such

that ρ ∈ int(ρ(f̃ ′)). One deduces that the fixed point set of f̃q− (p, r) is not empty.
Suppose moreover that this set is discrete (which means that it projects onto a fi-

nite set of T2) and that f̃ may be approximated arbitrarily close by f̃ ′′ ∈ D̃iff
0

0(T
2)

such that ρ �∈ ρ(f̃ ′′). In that case, the Lefschetz index of every fixed point z̃ of

f̃q − (p, r) is equal to 0. In particular, if f̃ ∈ D̃iff
1

0(T
2), one knows that 1 is an

eigenvalue of Df̃q(z̃).

Let us say that a diffeomorphism f̃ ∈ Diff1
0(T

2) is not highly degenerate at ρ,

if the fixed point set of f̃q − (p, r) is discrete and if for every point z̃ in this set,
Dfq(z̃) has at least one eigenvalue different from 1.

Theorem 2. Let f̃ ∈ D̃iff
2

0(T
2) be such that the interior of ρ(f̃) is non-empty and

its frontier contains a rational vector ρ ∈ Q2. Suppose moreover that f̃ is not highly
degenerate at ρ. Then, one of the following situations occurs:

- there exists a neighborhood U of f̃ in D̃iff
0

0(T
2) such that ρ ∈ ρ(f̃ ′) for every

f̃ ′ ∈ U ;
- there exists a neighborhood U of f̃ in D̃iff

0

0(T
2) such that ρ �∈ int(ρ(f̃ ′)) for every

f̃ ′ ∈ U .
This result implies the statement about generic families explained in the abstract.

More precisely, for Cr-generic one parameter families of diffeomorphisms, r � 1,
Brunovský has shown, see [4], that the only bifurcations that create or destroy
periodic points are saddle-nodes and period doubling. Theorem 2 hypotheses imply
that the creation of the periodic orbits with rotation vector ρ = (p/q, r/q) had to be
through a saddle-node type of bifurcation because the map f has neighbors without
q-periodic points with rotation vector equal to ρ.

The next two results indicate the requirement of the hypotheses in the previous
theorems.

Theorem 3. There exists f̃ ∈ D̃iff
∞
0 (T2) such that

- for every neighborhood U of f̃ in D̃iff
∞
0 (T2) there exists f̃ ′ ∈ U such that (0, 0) �∈

ρ(f̃ ′);
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1554 SALVADOR ADDAS-ZANATA AND PATRICE LE CALVEZ

- for every neighborhood U of f̃ in D̃iff
0

0(T
2) there exists f̃ ′ ∈ U such that (0, 0) ∈

int(ρ(f̃ ′));

- f̃ has a unique fixed point, up to translation by a vector of Z2.

The example in Theorem 3 is not area preserving. We can construct an area
preserving example, but it will not be differentiable.

Theorem 4. There exists f̃ ∈ D̃iff
0

0(T
2) such

- for every neighborhood U of f̃ in D̃iff
0

0(T
2) there exists f̃ ′ ∈ U such that (0, 0) �∈

ρ(f̃ ′);

- for every neighborhood U of f̃ in D̃iff
0

0(T
2) there exists f̃ ′ ∈ U such that (0, 0) ∈

int(ρ(f̃ ′));

- f̃ has a unique fixed point, up to translation by a vector of Z2;

- f̃ is area preserving.

To conclude, we present a simple theorem about endomorphisms of the circle,
which shows that in this situation, the conclusion of Theorem 1 holds in full gen-
erality. The proof we present is due to Andrés Koropecki. Write π : R → T for
the universal covering projection of T = R/Z. Denote End0(T

1) the space of con-

tinuous maps f : T → T homotopic to the identity and Ẽnd0(T) the space of lifts

of elements of End0(T) to the line. The rotation set ρ(f̃) of f̃ ∈ Ẽnd0(T) is a real
segment defined as:

ρ(f̃) =
⋂
i�1

⋃
n�i

{
f̃n(z̃)− z̃

n
, z̃ ∈ R

}
.

Let f̃ ∈ Ẽnd0(T) be such that ρ(f̃) is not reduced to a point and its frontier
contains a rational number ρ. We will prove that one of the following situations
occurs:

- there exists a neighborhood U of f̃ in Ẽnd0(T) such that ρ ∈ ρ(f̃ ′) for every

f̃ ′ ∈ U ;
- there exists a neighborhood U of f̃ in Ẽnd0(T) such that ρ �∈ int(ρ(f̃ ′)) for every

f̃ ′ ∈ U .
In fact we have the stronger following result:

Theorem 5. Let ρ = p/q be a rational number and f̃ ∈ Ẽnd0(T) such that f̃q−p �=
Id. Then, one of the following situations occurs:

- there exists a neighborhood U of f̃ in Ẽnd0(T) such that ρ ∈ ρ(f̃ ′) for every

f̃ ′ ∈ U ;
- there exists a neighborhood U of f̃ in Ẽnd0(T) such that ρ �∈ int(ρ(f̃ ′)) for every

f̃ ′ ∈ U .

Proof. If the map f̃q−p−Id takes a positive and a negative value, it will be the same

for f̃ ′q − p− Id if f̃ ′ ∈ Ẽnd0(T) is close to f . This implies that f̃ ′q − p has at least

one fixed point, so the first assertion is true. If f̃q−p−Id does not vanish, it will be

the same for f̃ ′q − p− Id if f̃ ′ ∈ Ẽnd0(T) is close to f . This implies that ρ does not

belong to ρ(f̃ ′), so the second assertion is true. As we suppose that f̃q−p−Id is not
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RATIONAL MODE LOCKING FOR HOMEOMORPHISMS OF THE 2-TORUS 1555

identically zero, it remains to study the case where it vanishes but has constant sign.

Suppose that there exists x0 such that g̃(x0) < x0, where g̃ = f̃q−p. By hypothesis
g̃(x) � x for every x ∈ R and so g̃([x0 − 1, x0]) ⊂ (−∞, x0). We deduce that there

exists a neighborhood U of f̃ in Ẽnd0(T) such that g̃′([x0 − 1, x0]) ⊂ (−∞, x0),

where g̃′ = f̃ ′q − p. Consequently, one gets g′((−∞, x0]) ⊂ (−∞, x0) and more
generally g̃′n((−∞, x0]) ⊂ (−∞, x0) for every n � 1. The fact that

x � x0 and n � 1 ⇒ gn(x) � x0

implies that the rotation set of f ′ in included in (−∞, p/q]. Similarly, if f̃q −p− Id

vanishes and is non-negative, there exists a neighborhood U of f̃ in Ẽnd0(T) such

that ρ(f̃ ′) ⊂ [p/q,+∞). �

This paper is organized as follows. In the next section we present a brief sum-
mary on the local dynamics near fixed points of area preserving analytic plane
diffeomorphisms. In the third section we prove a fundamental result necessary to
get Theorems 1 and 2. The precise proofs of Theorems 1, 2, 3 and 4 will be given
in the fourth section.

2. local study of analytic and area preserving

planar diffeomorphisms

The dynamics near isolated singularities of analytic vector fields in the plane
is very well understood, at least when the topological index of the singularity is
not 1 (see for instance Dumortier [5]). It can be proved that, if the singularity
is neither a focus nor a center (which have topological index equal to 1), then
the dynamics near it can be obtained from a finite number of sectors, glued in an
adequate way. Topologically, these sectors can be classified in four types: elliptic,
hyperbolic, expanding and attracting. Dumortier, Rodrigues and Roussarie studied
this problem for planar diffeomorphisms near fixed points in [7]. Let us recall a
fundamental notion in their study: a smooth planar vector field X, vanishing at the
origin has Lojasiewicz type of order k � 1 if there exist C > 0 and δ > 0 such that
‖x‖ < δ ⇒ ‖X(x)‖ � C‖x‖k. It can be easily seen that this notion depends only
on the k-jet Jk

X at (0, 0). In particular X has Lojasiewicz type of order k � 1 if and
only if it is the case for Jk

X and one can extend this notion to any formal vector field
by looking at the truncated series of order k. If X is a real analytic planar vector
field vanishing at the origin, it has Lojasiewicz type, which means that there exists
k � 1 such that X has Lojasiewicz type of order k � 1, (see Bierstone-Milman [2]).

The situation we want to understand in this subsection is the following: Is there
a topological picture of the dynamics near an index zero isolated fixed point of
an analytic area preserving planar diffeomorphism? It turns out that the area
preservation together with the zero index hypothesis imply that the eigenvalues of
the derivative of the diffeomorphism at the fixed point are both equal to 1. We will
suppose that the fixed point is the origin. The area preservation implies that the
infinite jet J∞

f of f at (0, 0) is the time one mapping of a unique formal vector field

X̃ (defined by a formal series); see [15] and Moser [14]. Let us fix a smooth vector

field X such that J∞
X = X̃ and consider the time one map g of the flow defined

by X. Let us prove by contradiction that X̃ has Lojasiewicz type. If not, by
Proposition 2 of Llibre-Saghin [10], one can choose X such that 0 is a non-isolated
zero of X and consequently a non-isolated fixed point of g. One deduces that J∞

g−Id
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1556 SALVADOR ADDAS-ZANATA AND PATRICE LE CALVEZ

has not Lojasiewitz type. On the other hand, J∞
f−Id has Lojasiewitz type because

f is analytic. So, we have a contradiction because f and g have the same infinite
jet at (0, 0).

Let us explain now why X and f − Id have the same index at 0. The fact that
f − Id and g− Id have the same index (which is equal to zero) at the origin is given
by Proposition 1 of [10]. It is a consequence of the fact that these vector fields
have the same infinite jet at 0 and that this jet has Lojasiewicz type. Write gt,
t ∈ (0, 1], for the time t map of the flow induced by X. There exists δ > 0 such that
the vector field X and the vector fields gt − Id, t ∈ (0, 1] have no zero satisfying
0 < ‖x‖ � δ. Otherwise, g = g1 has an invariant curve in any neighborhood of 0,
which implies that the index of g − Id is 1, in contradiction with the hypothesis.
By computing the indices on the circle of equation ‖x‖ = δ, one deduces that the
indices of the gt − Id are all the same. By letting t tend to 0, one deduces that this
common index is the index of X.

The fact that the index of X is not 1 implies, by [5], that X has at least one
characteristic orbit at 0, which means an integral curve γ of X or −X defined on
[0,∞) such that:

γ(t) �= 0, lim
t→+∞

γ(t) = 0, lim
t→+∞

γ(t)/‖γ(t)‖ exists.

The existence of a characteristic orbit only depends on a finite jet of X̃ and is

independent of the choice of X. The fact that X̃ has Lojasiewicz type and has a
characteristic orbit permits us to apply [7, Theorem D]: there exists a vector field

X ′ such that J∞
X′ = X̃ and such that f is weakly-C0-conjugated to the time-1 map

of the flow induced by X ′.
The definition of weakly-C0-conjugatation between two diffeomorphisms is rather

complicated, a considerable amount of things need to be defined a priori in order to
state it precisely. But, in our setting, as we have a fixed point of Lojasiewicz type
with both eigenvalues equal to 1, it is possible to prove that if h is a homeomorphism
between two neighborhoods of the origin, V1 and V2, h(0) = 0, then h is a weak-
C0-conjugation between f and the time-1 map of the flow induced by X ′, if:

- h sends a sector of a certain kind (elliptic, attracting, expanding, contracting
or hyperbolic) for f to a sector of the same kind for the time-1 map.

- h is a C0-conjugation on the union of parabolic and elliptic sectors.
- In the hyperbolic sectors, the orbit of a point under f or under the time-1 map

spends a finite number of positive or negative iterates inside V1 or V2.
So, the above theorem implies, see [7, pages 39-40], that the dynamics of f in a

neighborhood of the origin is obtained by gluing a finite number of sectors, which
can be attracting, expanding, elliptic or hyperbolic and moreover, in our situation,
as we are supposing that f preserves the area, there cannot be elliptic, expanding
and attracting sectors. As the topological index of the fixed point is 0, there must
be exactly two invariant hyperbolic sectors and the dynamics is topologically as in
Figure 1.

3. Fundamental proposition

We introduce in this section an important notion for our problem. Let f be a
homeomorphism of a surface M . A fixed point z0 of f will be called trivializable
if there exists a continuous chart h : U ⊂ M → V ⊂ R2 at z0 such that for every
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Figure 1

z ∈ U ∩f−1(U), one has p1◦h◦f(z) > p1◦h(z) if z �= z0. Let us give two categories
of trivializable fixed points.

Proposition 6. Let f be a C2-diffeomorphism of a surface M and z0 a fixed point
that is a saddle-node, meaning that one of the eigenvalues of Df(z0) is 1 and the
other one is not and the Lefschetz index is zero. Then z0 is trivializable.

Proof. By considering f−1 if necessary, we can assume that det(Df(z0)) < 1. This
proposition follows from the following lemma (for example, see Carr [6, Theorem
1, page 16 and Lemma 1, page 20], where the results are proved for vector fields,
analogous proofs holding for maps, as stated in pages 33-35):

Lemma 7. Assume f : R2 → R2 is a C2-diffeomorphism which fixes the origin
and Df(0, 0) has 1 and λ ∈ (0, 1) as eigenvalues. If we write f in coordinates
such that f(x, y) = (x + u(x, y), λy + v(x, y)), where the functions u, v and their
first derivatives vanish at the origin, then there exists a C2-function h defined for
|x| sufficiently small such that h(0) = h′(0) = 0, whose graph is invariant under
iterates of f , a neighborhood U of (0, 0) and C > 0 such that for any segment of
orbit (xk, yk)0�k�n included in U , one has |yn − h(xn)| � C.λn. |y0 − h(x0)|.

As we are assuming that the origin is an isolated fixed point, which is a saddle-
node, without loss of generality we can suppose that points in the center manifold
with negative x coordinate converge to the origin under positive iterates of f and
points in the center manifold, with positive x coordinate converge to the origin
under negative iterates of f.

So, from Lemma 7 the dynamics in a neighborhood of the origin can be obtained
by gluing exactly three sectors, two adjacent hyperbolic sectors and one attracting
one. Thus, under a C0-coordinate change, it is easy to see that the fixed point
is trivializable: the vertical foliation in this system of coordinates is topologically
transverse to the natural foliation by locally invariant leaves defined by the saddle-
node (see Figure 2). �

Proposition 8. Let f be an area preserving and analytic diffeomorphism of a
surface M . Every isolated fixed point z0 of f of Lefschetz index 0 is trivializable.
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Figure 2

Proof. The proposition is an immediate consequence of the results stated in the
previous section. Note that in this case, there exists a continuous chart h : U ⊂
M → V ⊂ R2 at z0 such for every z ∈ U ∩ f−1(U), one has p1 ◦h ◦ f(z) > p1 ◦h(z)
and p2 ◦ h ◦ f(z) = p2 ◦ h(z) if z �= z0. �

Let us state now the fundamental proposition:

Proposition 9. Suppose that f̃ ∈ D̃iff
0

0(T
2) has only trivializable fixed points.

Then, there exists a neighborhood U of f̃ in ∈ D̃iff
0

0(T
2) such that (0, 0) �∈ int(ρ(f̃ ′))

for every f̃ ′ ∈ U .

Proof. By hypothesis, fix(f̃) is discrete and projects onto a finite set of T2. Fix

ε0 > 0 and set R0(z̃) = z̃ + [−ε0, ε0]
2 for every z̃ ∈ fix(f̃). Conjugating f̃ in

D̃iff
0

0(T
2) if necessary and choosing ε0 > 0 small enough, one can suppose that the

rectangles R0(z̃), z̃ ∈ fix(f̃), are pairwise disjoint and that for every z̃ ∈ fix(f̃) and

every z′ ∈ R0(z̃) \ {z̃}, one has p1 ◦ f̃−1(z̃′) < p1(z̃
′) < p1 ◦ f̃(z̃′).

Fix 0 < ε′1 < ε1 < ε0 and set

R+
0 (z̃) = z̃ + (ε′1, ε0)× (−ε0, ε0),

R−
0 (z̃) = z̃ + (−ε0,−ε′1)× (−ε0, ε0),

R1(z̃) = z̃ + [−ε′1, ε
′
1]× [−ε1, ε1],

R∗
1(z̃) = z̃ + [−ε′1, ε

′
1]× (−ε1, ε1).

We will suppose ε1 small enough to ensure that for every z̃ ∈ fix(f̃), one has

f(z̃ + [ε1, ε1]
2) ∪ f−1(z̃ + [ε1, ε1]

2) ⊂ int(R0(z̃)).

This implies that if ε′1 is small enough, then for every z̃ ∈ fix(f̃) one has

z̃′ ∈ R1(z̃) and f̃(z̃′) �∈ R∗
1(z̃) ⇒ f(z̃′) ∈ R+

0 (z̃)

and

z̃′ ∈ R1(z̃) and f̃−1(z̃′) �∈ R∗
1(z̃) ⇒ f−1(z̃′) ∈ R−

0 (z̃).

We will suppose that this is the case.
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Figure 3

Now fix ε2 ∈ (0, ε′1) and set R2(z̃) = z̃ + [−ε2, ε2]
2. We will suppose ε2 small

enough to ensure that for every z̃ ∈ fix(f̃) one has

f̃(R2(z̃)) ∪ f̃−1(R2(z̃)) ⊂ int(R1(z̃)).

We will say that f̃ ′ ∈ Diff0
0(T

2) is a positive perturbation of f̃ if

(1) fix(f̃ ′) ⊂
⋃

z̃∈fix( ˜f) int(R2(z̃));

(2) for all z̃ ∈ fix(f̃) and z̃′ ∈ R0(z̃)\ int(R2(z̃)), the following inequality holds:

p1 ◦ f̃ ′−1(z̃′) < p1(z̃
′) < p1 ◦ f̃ ′(z̃′);

(3) for all z̃ ∈ fix(f̃) and z̃′ ∈ R1(z̃) such that f̃ ′(z̃′) �∈ R∗
1(z̃), then f̃ ′(z̃′) ∈

R+
0 (z̃);

(4) for all z̃ ∈ fix(f̃) and z̃′ ∈ R1(z̃) such that f̃ ′−1(z̃′) �∈ R∗
1(z̃), then f̃ ′−1(z̃′) ∈

R−
0 (z̃);

(5) for every z̃ ∈ fix(f̃), one has f̃ ′(R2(z̃)) ∪ f̃ ′−1(R2(z̃2)) ⊂ int(R1(z̃)).

Note that the set U of positive perturbations of f̃ is an open neighborhood of f̃

in Diff0
0(T

2). Of course, it contains f̃ . The fact that it is open follows from the fact
that the properties (1), (2) and (5) are open, and that the set of maps satisfying
(2), (3) and (5) is open, as is the set of maps satisfying (2), (4) and (5).

To get the proposition, we will prove that (0, 0) �∈ int(ρ(f̃ ′)) if f̃ ′ is a positive

perturbation of f̃ .

We will argue by contradiction, supposing that (0, 0) ∈ int(ρ(f̃ ′)), for a positive

perturbation f̃ ′ of f̃ . In that case, using a result of Franks [8], one knows that there
exists three periodic orbits Oi, 1 � i � 3, of the homeomorphism f ′ of T2 lifted by

f̃ ′ such that (0, 0) belongs to the interior of the convex hull of the ρ(Oi), 1 � i � 3.

For every z ∈ π(fix(f̃)), we set R0(z) = π(R0(z̃)) if z = π(z̃), and define similarly
R+

0 (z), R
−
0 (z), R1(z), R

∗
1(z) and R2(z).

Lemma 10. If the orbit O1 meets a rectangle R1(z), z ∈ π(fix(f)), then there

exists a positive perturbation f̃ ′′ of f̃ such that O2 and O3 are periodic orbits of

the homeomorphism f ′′ of T2 lifted by f̃ ′′, with unchanged rotation vectors and a
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periodic orbit O′
1 ⊂ O1 whose rotation vector is a multiple of ρ(O1) by a factor

larger than 1, such that

• 	(O′
1 ∩R1(z)) < 	(O1 ∩R1(z)).

• O′
1 ∩R1(z

′) = O1 ∩R1(z
′) for every z′ ∈ π(fix(f)) \ {z}.

Proof. Suppose that z1 ∈ O1 ∩R1(z). The fact that the rotation vector of O1 does
not vanish implies that there exist k− < 0 < k+ such that

f ′k−
(z1) �∈ R1(z), f ′k+

(z1) �∈ R1(z) and f ′k(z1) ∈ R1(z) if k
− < k < k+.

One deduces that f ′k−
(z1) ∈ R−

0 (z) and f ′k+

(z1) ∈ R+
0 (z) because f̃ ′ is a positive

perturbation of f̃ . One can find a horizontal graph Γ in int(R0(z)) \R1(z) joining

f ′k−
(z1) to f ′k+

(z1), which means a simple path that projects injectively onto
the first factor of T2, then a neighborhood U ⊂ int(R0(z)) \ R1(z) of Γ. The
graph and the neighborhood can be chosen to meet O1 ∪ O2 ∪ O3 only at the

points f ′k−
(z1) and f ′k+

(z1). One can find a homeomorphism h supported on

U such that h(f ′k−
(z1)) = f ′k+

(z1). Moreover h may be chosen such that it is

lifted to a homeomorphism h̃ ∈ D̃iff
0

0(T
2) supported on π−1(U) and satisfying

p1 ◦ h̃(z̃′) � p1(z̃
′) for every z̃′ ∈ R2.

Γ

U

Figure 4

Let us explain why f̃ ′′ = h̃ ◦ f̃ ′ is a positive pertubation of f̃ by verifying that

the five properties of the definition of positive perturbation are satisfied by f̃ ′′.

(2) If there exists z̃ ∈ fix(f̃) such that z̃′ ∈ R0(z̃) \ int(R2(z̃)), then h̃−1(z̃′) ∈
R0(z̃) \ int(R2(z̃)) and so

p1 ◦ f̃ ′−1 ◦ h̃−1(z̃′) < p1 ◦ h̃−1(z̃′) � p1(z̃
′) < p1 ◦ f̃ ′(z̃′) � p1 ◦ h̃ ◦ f̃ ′(z̃′).

(1) The maps f̃ ′′−1 and f̃ ′−1 coincide on the complement of
⋃

z̃∈fix(˜f) R0(z̃) and

the last one has no fixed point in this complement, so the fixed point set of f̃ ′′ is

included in
⋃

z̃∈fix( ˜f) R0(z̃). The map f̃ ′′ satisfying 2, its fixed point set is included

in
⋃

z̃∈fix( ˜f) int(R2(z̃)).

(3) If there exists z̃ ∈ fix(f̃) such that z̃′ ∈ R1(z̃) and f̃ ′′(z̃′) �∈ R∗
1(z̃), then

f̃ ′(z̃′) �∈ R∗
1(z̃) (otherwise f̃ ′′(z̃′) = f̃ ′(z̃′)) and so f̃ ′(z̃′) ∈ R+

0 (z̃), which implies

that f̃ ′′(z̃′) ∈ R+
0 (z̃), because h̃(R+

0 (z̃)) ⊂ R+
0 (z̃).
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(4) If there exists z̃ ∈ fix(f̃) such that z̃′ ∈ R1(z̃) and f̃ ′′−1(z̃′) �∈ R∗
1(z̃), then

f̃ ′−1(z̃′) = f̃ ′′−1(z̃′) �∈ R∗
1(z̃), and so f̃ ′′−1(z̃′) = f̃ ′−1(z̃′) ∈ R−

0 (z̃).

(5) For every z̃ ∈ fix(f̃), one has f̃ ′(R2(z̃))∪ f̃ ′−1(R2(z̃2)) ⊂ int(R1(z̃)). It implies

that f̃ ′′(R2(z̃)) = f̃ ′(R2(z̃)) and f̃ ′′−1(R2(z̃2)) = f̃ ′−1(R2(z̃2)) and consequently

that f̃ ′′(R2(z̃)) ∪ f̃ ′′−1(R2(z̃2)) ⊂ int(R1(z̃)).

Observe now that f ′ and f ′′ coincide on O2 and O3 and that f̃ ′ and f̃ ′′ coincide
on π−1(O2) and π−1(O3). So, O2 and O3 are periodic orbits of f ′′ with rotation
vectors unchanged. The orbit O1 has been replaced by a periodic orbit O′

1 ⊂ O1 of

shorter period whose rotation vector (for the lift f̃ ′′) is a multiple of the rotation

vector of O1 (for f̃ ′) by a factor larger than 1. �

Note that (0, 0) is still in the interior of the convex hull of the new rotation
vectors, the old ones multiplied by numbers greater than 1. Applying the lemma
finitely many times to each orbit Oi and each rectangle R1(z), one can always

suppose that the orbitsOi of f
′ do not meet the rectanglesR1(z), z ∈ π(fix(f̃)). One

can find h̃ ∈ Diff0
0(T

2) supported on
⋃

z̃∈fix(˜f) R1(z̃), that satisfies p1◦h̃(z̃′) � p1(z̃
′)

for every z̃′ ∈ R2 and such that h̃ ◦ f̃ ′(R2(z̃)) ∩R2(z̃) = ∅ for every z̃ ∈ fix(f̃).

Note that g̃ = h̃ ◦ f̃ ′ is fixed point free. Indeed:

• g̃−1 and f̃ ′−1 coincide on the complement of
⋃

z̃∈fix( ˜f) R1(z̃) and f̃ ′−1 has

no fixed point in this complement, so it is the same for g̃−1;

• if there exists z̃ ∈ fix(f̃) such that z̃′ ∈ R1(z̃) \ int(R2(z̃)), then p1 ◦ h̃ ◦
f̃ ′(z̃′) � p1 ◦ f̃ ′(z̃′) > p1(z̃

′);

• g̃(R2(z̃)) ∩R2(z̃) = ∅ for every z̃ ∈ fix(f̃).

On the other hand, each Oi is a periodic orbit of the homeomorphism
g of T2 lifted by g̃, with unchanged rotation vector because Oi is disjoint from⋃

z̃∈fix(˜f) R1(z̃). In particular (0, 0) belongs to the interior of ρ(g̃). This contradicts

Franks’ result. �

4. Proofs of the theorems

4.1. Proof of Theorem 1. Set ρ = (p1/q, p2/q), where p1, p2 and q are relatively

prime. Replacing f̃ by f̃q−(p1, p2), it is sufficient to study the case where ρ = (0, 0).

Denote f the homeomorphism of T2 lifted by f̃ .
The function

g̃ : z̃ �→ (p1 ◦ f̃(z̃)− p1(z̃))
2 + (p2 ◦ f̃(z̃)− p2(z̃))

2

lifts an analytic function g on T2 that vanishes exactly on π(fix(f̃)). If this set is
not finite, it contains a simple closed curve (see [1] or [11]). Such a curve must be

homotopically trivial because the rotation set of f̃ has interior. This means that

fix(f̃) contains a simple closed curve Γ. This curve bounds a topological open disk

D invariant by f̃ . Moreover f̃ is not the identity on this disk because it is analytic
and not equal to the identity on the whole plane (its rotation set is not trivial).

The fact that f̃ |D is area preserving implies, by a classical consequence of Brouwer’s
theory (see Franks [9] for example) that there exists a closed curve C ⊂ D such that

the Lefschetz index of f̃ on C is 1. Such a property, and consequently the existence

of a fixed point is still satisfied for all C0-perturbations of f̃ . In particular, there
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exists a neighborhood U of f̃ in D̃iff
0

0(T
2) such that every f̃ ′ ∈ U has a fixed point

and consequently one has (0, 0) ∈ ρ(f̃ ′). Suppose now that π(fix(f̃)) is finite. If the

Lefchetz index of one fixed point of f̃ is non-zero, then there exists a neighborhood

U of f̃ in D̃iff
0

0(T
2) such that every f̃ ′ ∈ U has a fixed point and consequently one

has (0, 0) ∈ ρ(f̃ ′). It remains to study the case where all indices are equal to zero.
Proposition 8 tells us that every fixed point is trivializable. Applying Proposition

9, one deduces that there exists a neighborhood U of f̃ in ∈ D̃iff
0

0(T
2) such that

(0, 0) �∈ int(ρ(f̃ ′)) for all f̃ ′ ∈ U .

4.2. Proof of Theorem 2. Suppose that f̃ is not highly degenerate at ρ =
(p/q, r/q) and that there exists a periodic point z of period q and rotation vec-
tor ρ such that its Lefschetz index is not zero. In that case one can conclude that

there exists a neighborhood U of f̃ in D̃iff
0

0(T
2) such that ρ ∈ ρ(f̃ ′) for every f̃ ′ ∈ U .

If 1 is an eigenvalue of Dfq(z), for every point z of period q and rotation vector
ρ and all these points have zero Lefschetz indices, then every such point is trivial-
izable by Propoistion 6. Applying Proposition 9, one deduces that there exists a

neighborhood U of f̃ in D̃iff
0

0(T
2) such that ρ �∈ int(ρ(f̃ ′)) for every f̃ ′ ∈ U .

4.3. Proof of Theorem 3. The main properties of the map f̃ ∈ D̃iff
∞
0 (T2) that

we want to construct are the following:

• the rotation set of f̃ is included in the non-negative cone [0,+∞)2 and
contains the vectors (0, 0), (0, 1) and (1, 0);

• each vector (0, 0), (0, 1) and (1, 0) is the rotation vector of a fixed point of

the diffeomorphism f ∈ Diff∞
0 (T2) lifted by f̃ ;

• the unique fixed point of rotation vector (0, 0) is (0, 0)+Z2, it has a homo-
clinic point lifted to a heteroclinic point from (0, 1) to (0, 0) and a homo-
clinic point lifted to a heteroclinic point from (1, 0) to (0, 0);

• the vector field z̃ �→ f̃(z̃)− z̃ has no values in the negative cone (−∞, 0)2;

• each vertical line {k}×R, k ∈ Z, is sent on its right by f̃ and each horizontal
line R× {k} sent above.

The third assertion allows us to perturb f̃ in a way that the new map has a
rotation set whose interior contains (0, 0) and the last two assertions allow us to

perturb f̃ in a way that the new map has a rotation set which does not contain
(0, 0).

The sets{
(x, y) ∈ R2 | |y| � 1

2π
| sin(πx)|

}
,

{
(x, y) ∈ R2 | |x| � 1

2π
| sin(πy)|

}
,

project by π onto connected compact subsets of T2 respectively denoted H and V .
We set C = T2 \ (H ∪ V ) and then define

H̃ = π−1(H), Ṽ = π−1(V ), C̃ = π−1(C).

Proposition 11. There exists f̃H ∈ D̃iff
∞
0 (T2) such that:

(1) the fixed point set of f̃H is H̃;

(2) for every z̃ ∈ Ṽ ∪ C̃, one has p1 ◦ f̃H(z̃) � p1(z̃);

(3) for every z̃ ∈ int(C̃), one has p1 ◦ f̃H(z̃) > p1(z̃) and p2 ◦ f̃H(z̃) = p2(z̃);
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(4) there exists z̃0 ∈ Ṽ such that

lim
k→−∞

f̃k
H(z̃0) = (0, 1), lim

k→+∞
f̃k
H(z̃0) = (0, 0);

(5) there exists z̃1 ∈ R× {1/2} such that f̃H(z̃1) = z̃1 + (1, 0).

Proof. Let us begin by choosing a pair of smooth Z2-periodic real valued functions
ξ and η on R2 such that:

• ξ vanishes on H̃ ∪ (Z× R) and is positive elsewhere;

• η vanishes on H̃ ∪ C̃ and is negative elsewhere (which means on int(Ṽ )).

The map f̃ε : z̃ �→ z̃ + ε.(ξ(z̃), η(z̃)) is smooth and lifts a smooth transformation
of T2 homotopic to the identity. As the set of C∞-diffeomorphisms of the torus is

open, if ε > 0 is sufficiently small, then f̃ε belongs to D̃iff
∞
0 (T2). The fixed point

set of f̃ε is H̃. Moreover f̃ε fixes every vertical {k} ×R, k ∈ Z, moving every point
(k, y), y �∈ Z, negatively in the vertical direction.

So we can choose a point z̃0 ∈ {0} × (0, 1) whose orbit avoids R× {1/2} and its
α-limit is (0, 1) and its ω-limit is (0, 0).

The point z̃1 = (1/(2π), 1/2) ∈ ∂Ṽ is sent on its right by f̃ε still on the horizontal
line R × {1/2}. Let us choose δ ∈ (0, 1/2 − 1/2π) such that the orbit of z̃0 avoids

R× [1/2− δ, 1/2 + δ]. One can construct f̃ ′ ∈ D̃iff
∞
0 (T2) such that:

• f̃ ′(z̃) = z̃ if δ � |p2(z̃)− 1/2| � 1/2;

• p2 ◦ f̃ ′(z̃) = p2(z̃) for all z̃ ∈ R2;

• p1 ◦ f̃ ′(z̃) � p1(z̃) for all z̃ ∈ R2;

• f̃ ′ ◦ f̃ε(z̃1) = z̃1 + (1, 0).

Let us verify that f̃H = f̃ ′ ◦ f̃ε satisfies the properties formulated in the propo-
sition.

The assertion (5) is satisfied by construction and (4) because the orbit of z̃0
avoids the support of f̃ ′. To get (3) note that p1 ◦ f̃H(z̃) � p1 ◦ f̃ε(z̃) > p1(z̃)

and p2 ◦ f̃H(z̃) = p2 ◦ f̃ε(z̃) = p2(z̃) for every z̃ ∈ int(C̃). To get (2) note that

p1 ◦ f̃H(z̃) � p1 ◦ f̃ε(z̃) � p1(z̃) for every z̃ ∈ Ṽ ∪ C̃. In fact the last inequality is

strict if moreover z̃ �∈ Z×R and we have p2◦ f̃H(z̃) = p2◦ f̃ε(z̃) < p2(z̃) if z̃ ∈ Z×R.

Consequently the fixed point set of f̃H is included in H̃. Conversely, the fact that

δ < 1/2 − 1/2π implies that H̃ is included in the fixed point set of f̃H , so (1) is
proved. �

In the same way, we can prove:

Proposition 12. There exists f̃V ∈ D̃iff
∞
0 (T2) such that:

(1) the fixed point set of f̃V is Ṽ ;

(2) for every z̃ ∈ H̃ ∪ C̃, one has p2 ◦ f̃V (z̃) � p2(z̃);

(3) for every z̃ ∈ int(C̃), one has p2 ◦ f̃V (z̃) > p2(z̃) and p1 ◦ f̃V (z̃) = p1(z̃);
(4) there exists z̃′0 ∈ R2 such that

lim
k→−∞

f̃k
V (z̃

′
0) = (1, 0), lim

k→+∞
f̃k
V (z̃

′
0) = (0, 0);

(5) there exists z̃′1 ∈ {1/2} × R such that f̃V (z̃
′
1) = z̃′1 + (0, 1).
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It remains to prove that f̃ = f̃V ◦ f̃H satisfies the properties formulated in

Theorem 3. Let us study the properties of the vector field z �→ f̃(z̃)− z̃:

• if z̃ ∈ int(C̃) and f̃H(z̃) ∈ int(C̃), then

p1 ◦ f̃(z̃) = p1 ◦ f̃H(z̃) > p1(z̃) and p2 ◦ f̃(z̃) > p2 ◦ f̃H(z̃) = p2(z̃);

• if z̃ ∈ int(C̃) and f̃H(z̃) ∈ Ṽ , then

p1 ◦ f̃(z̃) = p1 ◦ f̃H(z̃) > p1(z̃) and p2 ◦ f̃(z̃) = p2 ◦ f̃H(z̃) = p2(z̃);

• if z̃ ∈ Ṽ and f̃H(z̃) ∈ int(C̃)), then p1 ◦ f̃(z̃) = p1 ◦ f̃H(z̃) > p1(z̃);

• if z̃ ∈ Ṽ and f̃H(z̃) ∈ Ṽ , then p1 ◦ f̃(z̃) = p1 ◦ f̃H(z̃) � p1(z̃) and f̃(z) �= 0
if z �∈ Z2;

• if z̃ ∈ H̃, then p2 ◦ f̃(z̃) � p2 ◦ f̃H(z̃) = p2(z̃) and f̃(z) �= 0 if z �∈ Z2.

Summarizing, the vector field z �→ f̃(z̃) − z̃ vanishes only on Z2 and takes its
value out of the negative cone (−∞, 0)2. Moreover each vertical line {k}×R is sent

on its right by f̃ and each horizontal line R× {k} is sent above. One deduces that

the rotation set of f̃ is included in the non-negative cone [0,+∞)2. Let us consider a
vector v in the negative cone. The properties about vertical and horizontal lines are

still satisfied for the diffeomorphism f̃ − v. So the rotation set of f̃ − v is contained

in the non-negative cone. But f̃−v is fixed point free, and so by a result of J. Franks
[9], (0, 0) cannot be an extremal point of the rotation set. Consequently, it does
not belong to this set. The vector v may be chosen arbitrarily small, so one can

perturb f̃ in a way that (0, 0) does not belong to the rotation set.

By construction, one knows that f̃(z̃1) = f̃H(z̃1) = z1 + (1, 0) and f̃(z̃′1) =

f̃V (z̃
′
1) = z′0 + (0, 1). So the rotation set of f̃ contains (0, 0), (1, 0) and (0, 1) and

has non-empty interior. Similarly, one knows

lim
k→−∞

f̃k(z̃0) = (0, 1), lim
k→+∞

f̃k(z̃0) = (0, 0),

and
lim

k→−∞
f̃k(z̃′0) = (1, 0), lim

k→+∞
f̃k(z̃′0) = (0, 0).

So, one can perturb f̃ in a neighborhood of Z2 for the C0-topology and get a

map f̃ ′ ∈ D̃iff
∞
0 (T2) arbitrarily close to f̃ such that

f̃ ′(z̃1) = z1 + (1, 0), f̃(z̃′1) = z′1 + (0, 1)

and such that there exist positive integers q and q′ satisfying

f̃ ′q(z̃0) = z0 − (0, 1), f̃ ′q′(z̃′1) = z′1 − (1, 0).

The rotation set of f̃ ′ contains the vectors (0, 1), (1, 0), (−1/q, 0), (0,−1/q′), so
its interior contains (0, 0).

4.4. Proof of Theorem 4. The previous example is clearly not area preserving.

Indeed every horizontal line R × {c}, is fixed by f̃ε if c ∈ Z, and sent below if
c �∈ Z. Many points are sent below, which is necessary to get (in an easy way) a
point whose orbit joins (0, 1) to (0, 0). To find an example in the area preserving
category, one must find another argument. We will see below that it is possible to
do so. The proof is very similar to the proof of Theorem 3, writing the example
as a composition of a “horizontal map” and a “vertical map”. We want the maps
to satisfy similar properties but to be area preserving. The main difficulty is the
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construction of the homoclinic points. As we will see, we succeeded to do it working
in the space of homeomorphisms. The way to do so is to begin by constructing a
horizontal map that, roughly speaking, sends everybody on the right. Then one
gets a homoclinic point using a perturbation supported on a countable union of
disks disjoint from their images (to ensure that we will not add any fixed point).
The problem is that we still want to control the displacement for the perturbed
map. To do so, we will choose an explicit map to begin with and the easiest way
is to consider an integrable map defined with affine formulas. This is the reason
we will modify the sets H and C we used in the first construction. Of course the
map is no more differentiable. Nevertheless, this is not really the reason why we
have restricted ourselves to homeomorphisms (we could have worked with smooth
integrable maps). The main difficulty is to do the perturbation in the differentiable
category. Of course, one may ask if there exists a smooth or even a differentiable
example (recall that Theorem 1 tells us that there is none in the space of analytic
diffeomorphisms).

We will begin by changing the definition of the setH, V and C. Fix α ∈ (0, 1/10].
The sets{

(x, y) ∈ [−1

2
,
1

2
]2 | |y| � 2α|x|

}
,

{
(x, y) ∈ [−1

2
,
1

2
]2 | |x| � 2α|y|

}
,

project by π onto connected compact subsets of T2 respectively denoted H and V .
We set C = T2 \ (H ∪ V ) and then define

H̃ = π−1(H), Ṽ = π−1(V ), C̃ = π−1(C).

The analogous of Proposition 11 is the following:

Proposition 13. There exists f̃H ∈ D̃iff
0

0(T
2) such that:

(1) f̃H is area preserving;

(2) the fixed point set of f̃H is H̃;

(3) if z̃ ∈ C̃ \ H̃, the vector f̃H(z̃)− z̃ belongs to the cone of equation |y| < x;

(4) if z̃ ∈ Ṽ \ H̃ and f̃(z̃) �∈ Ṽ , the vector f̃H(z̃) − z̃ belongs to the cone of
equation |y| < x;

(5) if z̃ ∈ Ṽ \ H̃ and f̃(z̃) ∈ Ṽ , the vector f̃H(z̃) − z̃ belongs to the half-plane
of equation y < x;

(6) there exists z̃0 ∈ Ṽ such that

lim
k→−∞

f̃k
H(z̃0) = (0, 1), lim

k→+∞
f̃k
H(z̃0) = (0, 0);

(7) there exists z̃1 ∈ Ṽ such that f̃H(z̃1) = z̃1 + (1, 0).

Proof. We will construct f̃H step by step. Let us begin by stating elementary facts.
There exists a diffeomorphism θ : [0, 1] → [α, 1 − α], uniquely defined, such that,
for every y ∈ [0, 1] the quadrilater joining the points

(α, 1/2), (1/2− α, 1/2), (α− α|2y − 1|, y), (1/2− α, y),

and the quadrilater joining the points

(α, 1/2), (1/2, 1/2), (α− α|2y − 1|, y), (1/2, θ(y)),
have the same area (see Figure 5).
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(y)θ

1/2−α

y

α

α

α

1/2

y

Figure 5

Consequently, there exists a continuous map h̃ : R×[0, 1] → R2, uniquely defined,
such that

• the image of h̃ is equal to (Ṽ ∪ C̃) ∩ R× [0, 1];

• the map h̃ is a homeomorphism between R× [0, 1] and its image;

• the map h̃ preserves the area;
• the image of the horizontal segment

[α− α|2y − 1|, 1− 3α+ α|y − 1/2|]× {y}
is the broken segment passing through

(α− α|2y − 1|, y), (1/2, θ(y)) and (1− α+ α|2y − 1|, y);
• h̃(x+ k(1− 2α), y) = h̃(x, y) + (k, 0), for every (x, y) ∈ R× [0, 1] and every

k ∈ Z;

• the fixed point set of h̃ is equal to Ṽ ∩ [−1/2, 1/2]× [0, 1] (see Figure 6).

 ’Δ

~
h

~
h Δ(  )

 ’Δ(  )~
h

V

U~
[−1/2,1/2]x[0,1]

Δ

Figure 6

One gets an area preserving homeomorphism of R× [0, 1] by setting

f̃0(x, y) = (x+ α/2− α|y − 1/2|, y)
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whose fixed point set is the boundary of the strip R× [0, 1]. Consequently, the map

h̃ ◦ f̃0 ◦ h̃−1 can be extended in a unique way to a map f̃1 ∈ D̃iff
0

0(T
2) whose fixed

point set is equal to H̃. Moreover f̃1 is area preserving and coincides with f̃0 on
the quadrilater

{(x, y) ∈ R× [0, 1] | α− α|2y − 1| � x � α/2− α|y − 1/2|}.
Note that the slope of the segment joining (α − α|2y − 1|, y) to (1/2, θ(y)) and

the slope of the segment joining (1/2, θ(y)) to (1−α+α|2y−1|, y) are both smaller

than 1 in modulus. This implies that if z̃ �∈ H̃, then f̃1(z̃)− z̃ belongs to the cone
of equation |y| < x (see Figure 7).

vector field  f  (z)−z~
1

~ ~

Figure 7

Now, fix β ∈ (0, 1) and define a sequence (yk)k∈Z by the inductive relation

y0 = 1/2, (1− yk−1) = β(1− yk) if k � 0, yk+1 = βyk if k � 0.

The sequence (yk)k∈Z is decreasing and satisfies

lim
k→−∞

yk = 1, lim
k→+∞

yk = 0.

Denote by γk the segment joining f̃1(0, yk) to (0, yk+1). The segments (γk)k∈Z

are pairwise disjoint and each f̃−1
1 (γk) is a segment disjoint from γk. Note that

every vector z − z′, z ∈ γk, z
′ ∈ f̃−1

1 (γk) belongs to the half-plane of equation
y < x. So, one can construct a family of pairwise disjoint topological open disks

(Dk)k∈Z such that Dk is a neighborhood of γk disjoint from f̃−1
1 (Dk) and such that

every vector z − z′, z ∈ Dk, z
′ ∈ f̃−1

1 (Dk) belongs to the half-plane of equation
y < x (see Figure 8).

For every k ∈ Z, one can find an area preserving homeomorphism gk supported

on Dk and sending the point f̃1(0, yk) onto (0, yk+1). There exists a unique element

g̃ of D̃iff
0

0(T
2) that for every k ∈ Z coincides with gk on Dk and fixes every point

with no Z2 translation in a Dk. This homeomorphism is area preserving. Note that

f̃2 = g̃ ◦ f̃1 satisfies all properties formulated in Proposition 13 but the last one. A

last step is necessary to obtain f̃H .
Let us choose 1/2 < a < c < b < min(y−1, 1 − α) and a continuous map

ϕ : [0, 1] → R that vanishes out of (a, b), takes positive values in (a, b) and satisfies

Licensed to Univ of Mass Amherst. Prepared on Wed May 30 17:41:49 EDT 2018 for download from IP 128.119.168.112.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1568 SALVADOR ADDAS-ZANATA AND PATRICE LE CALVEZ

1
~
f 

γ0

γ
1

D0

γ
11

~
f (   )

−1

γ01
~
f (   )

−1.
.

.

.

.

..

.

.
..

..

..
.

α

α/2

Figure 8

ϕ(c) = 1−α/2+α(c−1/2). There exists a unique area preserving homeomorphism

g̃1 ∈ D̃iff
0

0(T
2) such that g̃1(x, y) = (x+ ϕ(y), y), if (x, y) ∈ R× [0, 1]. It sends the

point

f̃2(α/2− α(c− 1/2), c) = f̃1(α/2− α(c− 1/2), c) = (α− α(2c− 1), c)

onto (α/2−α(c− 1/2) + 1, c). Setting f̃H = g̃1 ◦ f̃2 and z̃1 = (α/2−α(c− 1/2), c),
one gets a map that satisfies all assertions formulated in Proposition 13. Note that
the three assertions relative to the vector field are satisfied because the vector field
z̃ �→ f̃H(z̃)− z̃ is horizontal pointing to the right. �

Similarly we prove

Proposition 14. There exists f̃V ∈ D̃iff
0

0(T
2) such that:

(1) f is area preserving;

(2) the fixed point set of f̃V is Ṽ ;

(3) if z̃ ∈ C̃ \ Ṽ , the vector f̃V (z̃)− z̃ belongs to the cone of equation |x| < y;

(4) if z̃ ∈ H̃ \ Ṽ and f̃(z̃) �∈ H̃, the vector f̃V (z̃) − z̃ belongs to the cone of
equation |x| < y;

(5) if z̃ ∈ H̃ \ Ṽ and f̃(z̃) ∈ H̃, the vector f̃V (z̃) − z̃ belongs to the half-plane
of equation x < y;

(6) there exists z̃′0 ∈ H̃ such that

lim
k→−∞

f̃k
V (z̃

′
0) = (1, 0), lim

k→+∞
f̃k
V (z̃

′
0) = (0, 0);

(7) there exists z̃′1 ∈ H̃ such that f̃V (z̃
′
1) = z̃′1 + (0, 1).

It remains to prove that f̃ = f̃V ◦ f̃H satisfies the properties formulated in
Theorem 4.

Let us prove first that each vector f(z̃)− z̃, z̃ ∈ R2, is not a positive multiple of
(−1,−1).

• If z̃ ∈ C̃ \ H̃ and f̃H(z̃) ∈ C̃ \ Ṽ , then f̃H(z̃) − z̃ belongs to the cone of

equation |y| < x and f̃(z̃) − f̃H(z̃) to the cone of equation |x| < y, so

f̃(z̃)− z̃ belongs to the half-plane of equation 0 < x+ y;
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• if z̃ ∈ C̃ \ H̃ and f̃H(z̃) ∈ Ṽ , then f̃(z̃)− z̃ = f̃H(z̃)− z̃ belongs to the cone
of equation |y| < x;

• if z̃ ∈ Ṽ \ H̃ and f̃H(z̃) ∈ C̃ \ Ṽ , then f̃H(z̃) − z̃ belongs to the cone of

equation |y| < x and f̃(z̃) − f̃H(z̃) to the cone of equation |x| < y, so

f̃(z̃)− z̃ belongs to the half-plane of equation 0 < x+ y;

• if z̃ ∈ Ṽ \ H̃ and f̃H(z̃) ∈ Ṽ , then f̃(z̃) − z̃ = f̃H(z̃) − z̃ belongs to the
half-plane of equation y < x;

• if z̃ ∈ H̃ \V and f̃V (z̃) �∈ H̃ , then f̃(z̃)− z̃ = f̃V (z̃)− z̃ belongs to the cone
of equation |x| < y;

• if z̃ ∈ H̃ \ V and f̃V (z̃) ∈ H̃ , then f̃(z̃) − z̃ = f̃V (z̃) − z̃ belongs to the
half-plane of equation x < y;

• if z̃ ∈ H̃ ∩ Ṽ , then f̃(z̃) = z̃.

If v is a positive multiple of (−1,−1), then f̃ − v belongs to D̃iff
0

0(T
2), is fixed

point free and area preserving. As said in the previous section, (0, 0) is not an

extremal point of the rotation set of f̃ − v. Let us prove that it does not belong to
this set.

One gets a “vertical topological line” by adding to the broken line passing
through (0, 0), (1/2, α/2) and (0, 1) all its translates by the vectors (0, k), k ∈ Z.

This line is sent to its right by the maps f̃1, f̃2, f̃H . The fact that Ṽ is the fixed

point set of f̃V tells us that it is also sent to its right by f̃ . Because the slopes are

larger than 1 in modulus, it is strictly sent on its right by the map f̃ −v. Similarly,
one proves that the “horizontal topological line” obtained by adding to the broken
line passing through (0, 0), (1/2, α/2) and (1, 0) all its translates by the vectors

(k, 0), k ∈ Z, is sent strictly above by f̃ − v. Consequently, the rotation set of f̃ − v
is contained in [0,+∞)2 and cannot contain (0, 0).

By construction, one knows that f̃(z̃1) = f̃H(z̃1) = z1 + (1, 0) and f̃(z̃′1) =

f̃V (z̃
′
1) = z′0 + (0, 1). So the rotation set of f̃ contains (0, 0), (1, 0) and (0, 1) and

has non-empty interior. Simlarly, one knows that

lim
k→−∞

f̃k(z̃0) = (0, 1), lim
k→+∞

f̃k(z̃0) = (0, 0),

and

lim
k→−∞

f̃k(z̃′0) = (1, 0), lim
k→+∞

f̃k(z̃′0) = (0, 0).

So, one can perturb f̃ in a neighborhood of Z2 for the C0 topology to get an

area preserving map f̃ ′ ∈ D̃iff
0

0(T
2) such that

f̃ ′(z̃1) = z1 + (1, 0), f̃(z̃′1) = z′1 + (0, 1),

and such that there exist positive integers q and q′ satisfying

f̃ ′q(z̃0) = z0 − (0, 1), f̃ ′q′(z̃′1) = z′1 − (1, 0).

The rotation set of f̃ ′ contains the vectors (0, 1), (1, 0), (−1/q, 0), (0,−1/q′), its
interior contains (0, 0).

Remark. In both examples the fixed point is removable (we can destroy it with a
small perturbation) but not trivializable, due to the existence of the homoclinic
points. For example, in the second case one can find a foliation near the fixed point
such that each leaf is sent on its right by the map. Like the vertical foliation in
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the trivializable case, there exists two hyperbolic sectors, but the stable and the
unstable leaf of the singular point are replaced by an attracting and a repelling
sector, both containg a stable positive semi-orbit and a negative semi-orbit.
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