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Abstract. In this paper we consider twist mappings of the torus, T : T2 → T2, and their
vertical rotation intervals ρV (T ) = [ρ−

V , ρ+
V ], which are closed intervals such that for any

ω ∈ ]ρ−
V , ρ+

V [ there exists a compact T -invariant set Qω with ρV (x) = ω for any x ∈ Qω,
where ρV (x) is the vertical rotation number of x. In the case when ω is a rational number,
Qω is a periodic orbit. Here we analyze how ρ−

V and ρ+
V behave as we perturb T and which

dynamical properties for T can be obtained from their values.

1. Introduction and main results
The dynamics of a degree-one endomorphism of the circle has a very important invariant,
the so-called rotation interval, which is a generalization of the concept of rotation number
originally introduced by Poincaré in the study of circle homeomorphisms. Unprecisely,
the rotation number of a point is the average speed at which the orbit of the point rotates
around the circle, when this average speed exists. The definition of rotation interval had to
be introduced in this context (see [12, 21]), because for degree-one mappings of the circle
which are not one-to-one, different points may have different rotation numbers, something
that does not happen for one-to-one mappings. To be more precise, given a degree-one
endomorphism of the circle, denoted by f : S1 → S1, there exists a closed interval
ρ(f ) = [ρ−, ρ+] with the following properties:
• given ω ∈ ρ(f ), there exists a compact f -invariant set Qω, such that the rotation

number of every x ∈ Qω is equal to ω. And if ω = p/q , then Qω is a q-periodic
orbit for f ;

• if ω /∈ ρ(f ), then the rotation number of every point in the circle (when it exists) is
different from ω.

In [7], Boyland proved several results about the way ρ− and ρ+ behave as f is perturbed
and gave some dynamical consequences of the rationality or not of their values.

The aim of the present paper is to study a similar problem in the context of twist
mappings of the torus. First, we remember that twist mappings of the torus have an
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invariant called the vertical rotation interval (see [1–3, 5]), which has some similarities
to the rotation interval of an f : S1 → S1 as above. In [2] we proved that given an
exact ‘area’-preserving twist mapping T̂ : S1 × R → S1 × R which induces a mapping
T : T2 → T2 homotopic to the Dehn twist (φ, I) → (φ + I mod 1, I mod 1), then there
exists a closed interval ρV = [ρ−

V , ρ+
V ] with the following properties.

For ω ∈ int(ρV ), there are two different situations:
(1) ω = p/q is a rational number. In this case there is a q-periodic point x for T

(in fact, there are at least two such points) that lifts to a point x̂ ∈ S1 × R such that
T̂ q (̂x) = x̂ + (0, p);

(2) ω is an irrational number. Then there is a compact, T -invariant set Q ⊂ T2 that lifts
to a set Q̂ ⊂ S1 × R such that for any x̂ ∈ Q̂ we have:

lim
n→∞

p2 ◦ T̂ n(̂x) − p2(̂x)

n
= ω,

where p2 : S1 × R → R is the projection in the vertical coordinate.
As will be explained in definition (7) below, the vertical rotation interval is, in fact, the

whole vertical rotation set as defined by Misiurewicz and Ziemian in [19]. Among other
things, this means that if ω /∈ ρV , then for any sequences xi ∈ R2 and ni → ∞,

lim
i→∞

p2 ◦ T ni (xi) − p2(xi)

ni

�= ω,

which is much stronger than just saying that no T -invariant set realizes this vertical rotation
number.

In [2], we also proved that int(ρV ) �= ∅ if and only if T̂ does not have rotational invariant
curves. Note that in this case 0 ∈ ρV .

This class of mappings is a very interesting one, as it contains, for instance, the well-
known standard mapping

ŜM :
{

φ̂′ = φ̂ + Î + (k/2π) sin(2πφ̂) mod 1,

Î ′ = Î + (k/2π) sin(2πφ̂),
(1)

and a surprising mapping analyzed in [1, 3, 4], related to the dynamics near a homoclinic
orbit to a saddle-center equilibrium of a Hamiltonian system with 2 degrees of freedom.
In appropriate coordinates this mapping may be written as

F̂ :
{

φ̂′ = µ(φ̂) + Î + γ log(J (φ̂)) mod π,

Î ′ = Î + γ log(J (φ̂)),
(2)

where J (φ̂) = α2 cos 2(φ̂) + α−2 sin 2(φ̂), µ(φ̂) = arctan(tan(φ̂)/α2), µ(0) = 0, and
α, γ ∈ R are parameters.

On the other hand, the proof presented in [3, Appendix] implies that even without the
‘area’ preservation and exactness hypothesis, there is still a closed interval (the vertical
rotation interval) ρV = [ρ−

V , ρ+
V ] associated to T with the same properties (1) and (2)

above. But, in this case it may happen that 0 /∈ ρV and we cannot give a simple criterion
to guarantee the non-degeneracy of ρV .
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As already indicated, the main goal of this paper is to study how ρ−
V and ρ+

V behave as
T is perturbed and which dynamical implications can be obtained from their values and
properties. One simple remark is that everything proved for ρ+

V is also true for ρ−
V , so in

the following we consider only ρ+
V .

In [5] we proved that ρ+
V is a continuous function of T in the C1-topology, so basically

there are two situations to be analyzed:

(i) ρ+
V is a rational number;

(ii) ρ+
V is an irrational number.

The precise statements of the results we obtain and some of their consequences will be
presented after the necessary definitions are introduced. In the next section we present an
exposition of the results used in this paper. In the third section we prove our main results.
In the fourth section we present other consequences of our results and in the last section
we present an open question.

Notations and definitions.

(0) Let (φ̂, Î ) denote the coordinates for the cylinder S1 × R = (R/Z) × R, where φ̂

is defined modulo 1. Let (φ, I) denote the coordinates for the universal cover R2 of the
cylinder. For all mappings T̂ : S1 × R → S1 × R we define (φ̂′, Î ′) = T̂ (φ̂, Î ) and
(φ′, I ′) = T (φ, I), where T : R2 → R2 is a lift of T̂ .

(1) D1
r (R

2) = {T : R2 → R2/T is a C1-diffeomorphism of the plane, I ′(φ, I)
I→±∞→

±∞, ∂Iφ
′ > 0 (twist to the right), φ′(φ, I)

I→±∞→ ± ∞ and T is the lift of a
C1-diffeomorphism T̂ : S1 × R → S1 × R}.

(2) Diff1
r (S

1 × R) = {T̂ : S1 × R → S1 × R/T̂ is induced by an element of D1
r (R

2)}.
(3) Let p1 : R2 → R and p2 : R2 → R be the standard projections, respectively in

the φ and I coordinates (p1(φ, I) = φ and p2(φ, I) = I ). We also use p1 and p2 for the
standard projections of the cylinder.

(4) Let TQ ⊂ D1
r (R

2) be the set of mappings T such that

T :
{

φ′ = Tφ(φ, I) with ∂Iφ
′ = ∂I Tφ(φ, I) ≥ K > 0 and

I ′ = TI (φ, I)

TI (φ + 1, I ) = TI (φ, I),

TI (φ, I + 1) = TI (φ, I) + 1,

Tφ(φ + 1, I ) = Tφ(φ, I) + 1,

Tφ(φ, I + 1) = Tφ(φ, I) + 1.

(3)

Every T ∈ TQ induces a mapping T̂ ∈ Diff1
r (S

1 × R) and a mapping T : T2 → T2,
where T2 = R2/Z2 is the 2-torus. Coordinates in the torus are denoted by (φ, I ) and
p : R2 → T2 is the associated covering mapping.

(5) Let π : R2 → S1 × R be the following covering mapping:

π(φ, I) = (φ mod 1, I ). (4)
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(6) Given a point x ∈ T2, we define its vertical rotation number as (when the limit
exists)

ρV (x) = lim
n→∞

p2 ◦ T n(x) − p2(x)

n
, for any x ∈ p−1(x). (5)

(7) Given a mapping T ∈ TQ, following Misiurewicz and Ziemian [19], we define the
vertical rotation set of T as follows:

ρV (T ) =
∞⋂
i=1

⋃
n≥i

{
p2 ◦ T n(x) − p2(x)

n
: x ∈ R2

}
, (6)

that is, σ ∈ ρV (T ), if and only if there are sequences xi ∈ R2 and ni → ∞, such that

lim
i→∞

p2 ◦ T ni (xi) − p2(xi)

ni

= σ.

If we denote ω− = inf ρV (T ) and ω+ = sup ρV (T ), [19, Theorem 2.4] gives two ergodic
T -invariant measures µ− and µ+ with vertical rotation numbers ω− and ω+, respectively.
This means that ∫

T2
φ(x) dµ−(+) = ω−(+),

where φ : T2 → R is given by:

φ(x) = p2 ◦ T (x) − p2(x), for any x ∈ p−1(x).

Therefore, from the Birkhoff ergodic theorem, there are points z+ and z− with ρV (z+) =
ω+ and ρV (z−) = ω−. Finally, applying [3, Theorem 6 of the Appendix] and
[2, Theorem 5], we get that for all α ∈ ]ω−, ω+[ there is a compact T -invariant set Qα ,
which is a periodic orbit if α is rational, such that ρV (x) = α, for all x ∈ Qα .
So, ρV (T ) = [ω−, ω+]. This justifies the title of the paper, because in this setting the
vertical rotation set is an interval.

Now we are ready to state our main results.

THEOREM 1. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , p/q], with p/q ∈ Q and

(p, q) = 1. Then, there exists a compact set Â ⊂ S1 × R such that Ĝ(Â) = Â, where
Ĝ(•)

def= T̂ q (•) − (0, p). Of course, we can choose Â as a minimal set, but it is not true
that Ĝ always has periodic points.

Note that, in general, Ĝ does not have a twist property, but in the literature there is a
class of mappings called tilt that contains Ĝ. Tilt mappings share many properties with the
twist mappings and many results that are true for twist mappings are also true for the tilt
ones. See e.g. [18, 8, 11], for more information on this subject. The set Â constructed in
the theorem is an invariant set for Ĝ, possibly an Aubry–Mather set (by ‘Aubry–Mather
set’ we mean a compact, Ĝ-invariant minimal set that is contained in a graph over S1). It is
not hard to obtain a Ĝ as in the above theorem without periodic points. For instance, it is
easy to construct a T ∈ TQ such that ρV (T ) = {0} and T̂ has no periodic points. For this,
consider the Reeb homeomorphism F of R × [0, 1] which has the following properties:
(i) F(R × {i}) = R × {i}, for i = 0, 1;
(ii) for all x ∈ R × [0, 1], F(x + (1, 0)) = F(x) + (1, 0);
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FIGURE 1. Diagram showing the dynamics of F .

(iii) for all φ ∈ R, F (φ, 1) = F(φ, 0) + (1, 1);
(iv) the homeomorphism F̂ : S1 × [0, 1] → S1 × [0, 1] induced by F satisfies

ρ(F̂ )|S1×{0} = √
2 − 2 < 0 and ρ(F̂ )|S1×{1} = √

2 − 1 > 0.

Now, let us define a T ∈ TQ from F in the following way. Given x ∈ R2,
define T (x) = F(x − (0,m)) + (m,m), where m ∈ Z is chosen in such a way that
p2(x) − m ∈ [0, 1[. As F has the twist property, we have that T ∈ TQ. By construction,
T̂ has no periodic points. See Figure 1 for a picture of the dynamics of F .

THEOREM 2. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , p/q], with ρ−

V < p/q , p/q ∈ Q

and (p, q) = 1. Then, given any η > 0 there exists α ∈ [0, η] such that Tα(φ, I) =
T (φ, I) + (0, α) induces a mapping T α on the torus with an nq-periodic orbit Qp/q

(n ≥ 1) that has ρV (Qp/q) = np/nq = p/q .

COROLLARY 1. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , p/q], with ρ−

V < p/q , p/q ∈ Q

and (p, q) = 1. Suppose also that there is no periodic orbit for T with vertical rotation
number ρV = p/q . Then, for all ε > 0, we get that ρ+

V (T−ε) < p/q .

COROLLARY 2. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , p/q], with ρ−

V < p/q , p/q ∈ Q

and (p, q) = 1. Suppose also that there is a neighborhood U of T in TQ such that for any
T ∗ ∈ U , ρ+

V (T ∗) ≥ p/q . Then, T has some (at least two) periodic orbits with vertical
rotation number ρV = p/q that cannot be destroyed by arbitrarily small perturbations.

LEMMA 1. The set (ρ+
V )−1(ω) = {T ∈ TQ : ρ+

V (T ) = ω} is a path-connected subset of
TQ for any ω ∈ R.

Theorem 2 and Corollary 1 mean that given T ∗ ∈ TQ with ρ+
V (T ∗) = p/q , if T

∗

does not have periodic points with vertical rotation number ρV = p/q , then T ∗ ∈
∂(ρ+

V )−1(p/q).

THEOREM 3. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , ω], with ω /∈ Q. Then, for any

ε > 0 we get that ρ+
V (Tε) > ω.

So, given T ∈ TQ as in Theorem 3, ρ+
V (Tε) �= ω for all ε �= 0. In other words, for any

irrational number ω, (ρ+
V )−1(ω) has empty interior.

To conclude we present a corollary of the main result of [16], which says that we do not
need to think of general perturbations in this setting. Vertical translations are enough for
all applications, as the previous results have indicated.
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COROLLARY 3. Let T ∈ TQ be such that ρV (T ) = [ω−, ω+]. Suppose that by an
arbitrarily C1-small perturbation applied to T , we can change ω+, that is, there exists
T ∗ arbitrarily C1-close to T , such that ρ+

V (T ∗) �= ω+. Then, for any given ε > 0, at least
one of the following inequalities must hold:
(1) ρ+

V (Tε) �= ω+, or
(2) ρ+

V (T−ε) �= ω+.
Moreover, given T ∈ TQ with ρV (T ) = [ω−, ω+], there exists a neighborhood

T ∈ U ⊂ TQ such that for any T ∗ ∈ U , ρ+
V (T ∗) = ω+, if and only if, for some ε > 0,

ρ+
V (Tα) = ω+ for all α ∈ [−ε, ε].

2. Basic tools
2.1. Some results for twist mappings. First, we recall some topological results for twist
mappings essentially due to Le Calvez (see [14, 15]). Let T̂ ∈ Diff1

r (S
1 × R), and

T ∈ D1
r (R

2) be one of its lifts. For every pair (s, q), s ∈ Z and q ∈ N∗ we define the
following sets:

Klift(s, q) = {(φ, I) ∈ R2 : p1 ◦ T q(φ, I) = φ + s}
and K(s, q) = π ◦ Klift(s, q).

(7)

Then we have the following.

LEMMA 2. For every s ∈ Z and q ∈ N∗, K(s, q) ⊃ C(s, q), a connected compact set
that separates the cylinder.

Now we need a few definitions.
For every q ≥ 1 and φ′ ∈ R, let

µq(t) = T q(φ′, t), for t ∈ R. (8)

We say that the first encounter between µq and the vertical line through some φ0 ∈ R

is for
tF ∈ R such that tF = min{t ∈ R : p1 ◦ µq(t) = φ0}.

The last encounter is defined in the same way:

tL ∈ R such that tL = max{t ∈ R : p1 ◦ µq(t) = φ0}.
Of course, we have −∞ < tF ≤ tL < +∞.

LEMMA 3. For all φ0, φ
′ ∈ R, let µq(t) = T q(φ′, t), as in (8). So we have the following

inequalities: p2 ◦ µq(tL) ≤ p2 ◦ µq(t ′) ≤ p2 ◦ µq(tF ), for all t ′ ∈ R such that
p1 ◦ µq(t ′) = φ0.

For all s ∈ Z and q ∈ N∗ we can define the following functions on S1:

µ−(φ̂) = min{p2(̂z) : ẑ ∈ K(s, q) and p1(̂z) = φ̂},
µ+(φ̂) = max{p2(̂z) : ẑ ∈ K(s, q) and p1(̂z) = φ̂}.

And we can define similar functions for T̂ q(K(s, q)):

ν−(φ̂) = min{p2(̂z) : ẑ ∈ T̂ q ◦ K(s, q) and p1(̂z) = φ̂},
ν+(φ̂) = max{p2(̂z) : ẑ ∈ T̂ q ◦ K(s, q) and p1(̂z) = φ̂}.
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LEMMA 4. Defining Graph{µ±} = {(φ̂, µ±(φ̂)) : φ̂ ∈ S1} we have

Graph{µ−} ∪ Graph{µ+} ⊂ C(s, q).

So, for all φ̂ ∈ S1, we have (φ̂, µ±(φ̂)) ∈ C(s, q).

And we have the following simple corollary to Lemma 3.

COROLLARY 4. T̂ q(φ̂, µ−(φ̂)) = (φ̂, ν+(φ̂)) and T̂ q(φ̂, µ+(φ̂)) = (φ̂, ν−(φ̂)).

For proofs of all the previous results see Le Calvez [14, 15].
Now, we remember ideas and results from [16]. In the following, T ∈ TQ.
Give a triplet (s, p, q) ∈ Z × N∗ × Z, if there is no point (φ, I) ∈ R2 such that

T q(φ, I) = (φ + s, I +p), it can be proved that the sets T̂ q ◦K(s, q) and K(s, q)+ (0, p)

can be separated by the graph of a continuous function from S1 to R, essentially because,
from all the previous results, either one of the following inequalities must hold:

ν−(φ̂) − µ+(φ̂) > p, (9)

ν+(φ̂) − µ−(φ̂) < p, (10)

for all φ̂ ∈ S1, where ν+, ν−, µ+, µ− are associated to K(s, q).
Following Le Calvez [16], we say that the triplet (s, q, p) is positive (respectively

negative) for T if T̂ q ◦ K(s, q) is above (9) (respectively below (10)) the graph.
For all T ∈ TQ, we have

T (φ, I) = (φ′, I ′) ⇔ I = g(φ, φ′) and I ′ = g′(φ, φ′), (11)

where g and g′ are differentiable mappings from R2 to R with some special properties (see
the proof of Lemma 1).

If T , T ∗ ∈ TQ, we say that T ≤ T ∗ if g∗ ≤ g and g′ ≤ g∗′, where (g, g′) is associated
to T and (g∗, g∗′) to T ∗ (as in (11)).

PROPOSITION 1. If (s, q, p) is a positive (respectively negative) triplet of T and if T ≤ T ∗
(respectively T ≥ T ∗), then (s, q, p) is a positive (respectively negative) triplet of T ∗.

The above proposition is a consequence of the following result, also proved in [16].
Note that hα : R2 → R2 is given by hα(φ, I) = (φ, I + α).

LEMMA 5. Let T ∈ D1
r (R

2) and (φ0, I0) ∈ R2. Denote the points of the orbit of (φ0, I0)

by (φn, In) = T n(φ0, I0), n ≥ 0, and consider the mapping hα ◦ T ◦ hα , for α > 0. Then,
for any n ≥ 1, the image by (hα ◦T ◦hα)n of the lower vertical {φ0}×]−∞, I0 −α] meets
the upper vertical {φn} × [In + α,+∞[. Moreover, the intersection point whose second
coordinate is the larger may be written (hα ◦T ◦hα)n(φ0, I

′
0), where (hα ◦T ◦hα)n({φ0}×

]−∞, I ′
0[) is located to the left of the vertical passing through (φn, In).

2.2. Results on the theory of cocycles of ergodic transformation groups. Now, we
present some results and ideas from the theory of cocycles of ergodic transformation
groups. A fundamental reference in this subject is the book of Schmidt [22]. In particular,
our presentation will be directed towards the kind of application we need, so the definitions
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and results will be stated with no generality. Another fundamental result for us is due to
Atkinson [6].

Given a homeomorphism T : T2 → T2, a T -invariant ergodic probability measure µ

and a continuous function φ : T2 → R, we define the cocycle for T given by φ to be the
function a : Z × T2 → R given by

a(n, x) =


n−1∑
i=0

φ ◦ T
i
(x), for n > 0,

0, for n = 0,

−a(−n, T
n
(x)), for n < 0.

(12)

The skew-product extension of T , determined by φ, is given by the following mapping
V : T2 × R → T2 × R:

V (x, α) = (T (x), α + φ(x)). (13)

So, the powers of V can be expressed as

V n(x, α) = (T
n
(x), α + a(n, x)).

We say that the cocycle a is recurrent, if and only if, for every B ∈ σB(T2) = {Borel
σ -algebra of T2} with µ(B) > 0 and every ε > 0, there is an n �= 0 such that

µ(B ∩ T
−n

(B) ∩ {x : |a(n, x)| < ε}) > 0.

Now we present a result from [6].

THEOREM 4. Suppose that (T2, σB(T2), µ) is a non-atomic probability space, T :
T2 → T2 is a homeomorphism ergodic with respect to µ and φ : T2 → R is a continuous
function such that

∫
T2 φ(x) dµ = 0. Then, the cocycle a(n, x) (see (12)) is recurrent.

It is easy to see that the skew-product V (see (13)) is invariant under the product measure
µ × λ, where λ is the Lebesgue measure in R. The problem here is that the space T2 × R

is not compact, so we need to work a little more in order to get some kind of recurrence
for V . An important definition for this purpose is the following (see Schmidt [22, Ch. 1]).

We say that the skew-product V is conservative if for every A ∈ σB(T2 × R) with
µ × λ(A) > 0 and for µ × λ-almost everywhere (x, α) ∈ A, the set[ ⋃

n∈Z
V n(x, α)

]
∩ A

is infinite. At last, we present a theorem relating the concepts of recurrence and
conservativeness (see [22, Ch. 5]).

THEOREM 5. Suppose (T2,σB(T2), µ) is a non-atomic probability space, the homeo-
morphism T : T2 → T2 is ergodic with respect to µ and the cocycle a(n, x) (see (12))
is recurrent. Then the skew-product V (x, α) = (T (x), α + a(1, x)) is conservative.

So, Theorems 4 and 5 imply that for any continuous function φ : T2 → R such
that

∫
T2 φ(x) dµ = 0, the cocycle a(n, x) is recurrent and the skew-product V (x, α) is

conservative. An equivalent way to say that a skew-product V as in (13) is conservative is
the following.



Vertical rotation intervals for twist mappings 649

LEMMA 6. If a skew-product V as in (13) is conservative, then, given any B ∈ σB(T2),
with µ(B) > 0 and any δ > 0, for µ-almost everywhere x ∈ B we have

T
n
(x) ∈ B and |a(n, x)| < δ, for infinitely many n ∈ Z.

Proof. Immediate from the definitions. �

2.3. Some results previously obtained by the author. Finally, we present some results
from [2, 3, 5] that are used in this paper. The first result, we recall, was presented in an
informal way in Definition 7 of §1.

THEOREM 6. To each mapping T ∈ TQ, we can associate a maximal closed interval
ρV (T ) = [ρ−

V , ρ+
V ], possibly degenerated to a single point, such that for every ω ∈

]ρ−
V , ρ+

V [ there is a compact T -invariant set Qω ⊂ T2 with ρV (x) = ω, for all x ∈ Qω.
If ω is a rational number p/q , then Qω is a q-periodic orbit. In fact, in this case there are
at least two periodic orbits.

For a proof, see [3, Appendix, Theorem 6] and [2, Theorem 5]. The next results are
proved in [5].

THEOREM 7. The functions ρ+
V , ρ−

V : TQ → R are continuous in the C1-topology.

This result trivially implies that given p/q ∈ ]ρ−
V , ρ+

V [, the periodic orbits with this
vertical rotation number cannot be destroyed by arbitrarily small perturbations applied
to T . See also [8, Theorem 2.3].

LEMMA 7. Given T ∈ TQ, let f : R → R be given by: f (α) = ρ+
V (Tα). Then f is a

non-decreasing function of α.

Remember that Tα(φ, I) = T (φ, I) + (0, α).

3. Proofs
3.1. Proof of Theorem 1. Let G : R2 → R2 be given by G(x) = T q(x) − (0, p) and
let Ĝ be the cylinder mapping induced by G. As ρ+

V (T ) = p/q , if Ĝ has no fixed points,
then

Ĝ(C(0, q)) ∩ C(0, q) = ∅. (14)

Let U be the unbounded component of C(0, q)c which contains the lower end of the
cylinder. From (14), without loss of generality, we can suppose that Ĝ(closure(U)) ⊂ U .
Now we have two possibilities:
(1) there exists N ≥ 1 such that ĜN(closure(U)) ⊂ closure(U) − (0, 1);
(2) for every n ≥ 1, there exists ẑn ∈ closure(U) ∩ {closure(U) − (0, 1)}c such that

Ĝi (̂zn) /∈ closure(U) − (0, 1) for 0 ≤ i ≤ n.
The first possibility easily implies that ρ+

V (T ) ≤ p/q − 1/Nq, which is not true.
So condition (2) is satisfied. As the ẑn are contained in a compact set, let ẑ∗ be an
accumulation point of the sequence (̂zn)n≥1. Clearly, the positive orbit of ẑ∗ is bounded, so
consider the ω-limit set of ẑ∗, ω(̂z∗, Ĝ). It is a Ĝ-invariant, compact subset of the cylinder.
To conclude the proof, we note that every continuous mapping of a compact metric space
has an invariant minimal subset (see [13, Proposition 3.3.6]). �
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3.2. Proof of Theorem 2. Let η > 0 be a fixed number and suppose that Ĝ does not have
periodic points. From the previous theorem, we know that there is a compact, Ĝ-invariant
minimal subset of the cylinder, which we call Â.

Now we prove a lemma which will be used in the proofs of Theorems 2 and 3. It is a
consequence of Lemma 5 and the ideas in [16].

LEMMA 8. Given δ > 0, suppose that there exist z0 = (φ0, I0) ∈ R2, n ≥ 2 and s,m ∈ Z

such that T n(z0) − (s,m) ∈ Bδ(z0). Let

M = max{Lipschitz(T ), Lipschitz(T −1)}
and β be a minimal value of the angle between a vertical and the pre-image of a vertical.
As T ∈ TQ is a twist mapping, β > 0. If

α > max{(sin β)−1M2δ, (1 + cot β)Mδ},
then the image by (hα ◦T ◦hα)n of the lower vertical {φ0}×]−∞, I0 −α] meets the upper
vertical {φ0 + s} × [I0 + m,+∞[. In particular, the maps µ−, µ+, ν−, ν+ associated to
the set Cα(s, n) satisfy ν+(φ0) > µ−(φ0) + m.

Proof. First, let us denote zi = (φi , Ii ) = T i(z0), for all 0 ≤ i ≤ n. The distance between
zn−1 and T −1(z0 + (s,m)) is at most Mδ and the distance between T −1(z0 + (s,m)) and
T −1(z0 + (s,m − α)) is at least M−1α. Using the definition of β and the inequality
M−1α sin β > Mδ, we get that T −1(z0 + (s,m − α)) is located to the right of the
vertical passing through zn−1. From the other inequality, α > (1 + cot β)Mδ, we get that
T −1({φ0 + s}×R) intersects the vertical {φn−1}×R in a point whose second coordinate is
smaller than In−1 + α. See Figure 2 for a picture of this situation (in the picture we use η

instead of α). These two facts imply that (hα ◦ T ◦hα)−1({φ0 + s}× [I0 +m,+∞[) meets
{φn−1} × R in a point whose second coordinate is smaller than In−1 + α. Using Lemma 5,
we obtain that (hα ◦ T ◦ hα)n−1({φ0}× ] − ∞, I0 − α]) meets (hα ◦ T ◦ hα)−1({φ0 + s} ×
[I0 + m,+∞[), and the proof is complete. �

Now, choose δ > 0 such that max{(sin β)−1M2δ, (1 + cot β)Mδ} < η/4. As Â is
minimal, let us fix some ẑ0 ∈ Â such that Ĝn(̂z0) ∈ Bδ(̂z0), for some n ≥ 2. This implies
that

T nq(z0) − (s, np) ∈ Bδ(z0),

for any z0 ∈ π−1(̂z0) and for some s ∈ Z. If we apply Lemma 8, we get that the triplet
(s, nq, np) is non-negative for hη/4 ◦ T ◦ hη/4. As ρ−

V < p/q and we are supposing
that Ĝ has no periodic points, the triplet (s, nq, np) is negative for T . So, there are two
possibilities:
(1) hη/4 ◦ T ◦ hη/4 has an nq-periodic point with ρV = p/q;
(2) the triplet (s, nq, np) is positive for hη/4 ◦ T ◦ hη/4.

Let us analyze the second possibility. As (s, nq, np) is negative for T and positive
for hη/4 ◦ T ◦ hη/4, there exists α ∈ [0, η/4] such that hα ◦ T ◦ hα has a periodic point
of type (s, nq, np). Otherwise, (the following argument was taken from [16]) the upper
semi-continuity in the Hausdorff topology of the mappings

α → Cα(s, nq) and α → ( ̂hα ◦ T ◦ hα)nq ◦ Cα(s, nq)
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FIGURE 2. Diagram explaining the proof of Lemma 8.

and the connectivity of [0, η/4] imply that (s, nq, np) is a positive triplet for every mapping
hα ◦ T ◦ hα, α ∈ [0, η/4], or it is a negative triplet for every mapping hα ◦ T ◦ hα, α ∈
[0, η/4]. And this is a contradiction. So, in both possibilities, there exists α ∈ [0, η/4]
such that hα ◦ T ◦ hα has a periodic point of type (s, nq, np). Now, we note that

hα ◦ (hα ◦ T ◦ hα) ◦ h−α(φ, I) = T (φ, I) + (0, 2α) = T2α(φ, I). (15)

So, if hα ◦ T ◦ hα has a periodic point of type (s, nq, np) for some α ∈ [0, η/4], then T 2α

has an nq-periodic point with ρV = p/q . �

3.3. Proof of Corollary 1. If z ∈ T2 is periodic for T , then the corollary hypothesis
implies that

ρV (z) = lim
n→∞

p2 ◦ T n(z) − p2(z)

n
<

p

q
,

for any z ∈ p−1(z). As ρ−
V < p/q , this means that for every s ∈ Z and n ∈ N∗, the triplet

(s, nq, np) is negative for T , so it is also negative for T−α, for all α > 0. Given ε > 0,
we know from Lemma 7 that ρ+

V (T−ε) ≤ p/q . Suppose that ρ+
V (T−ε) = p/q . If we

apply Theorem 2 to T−ε we get that there exists α ∈ [0, ε/4] such that T−ε+α(φ, I) =
T (φ, I) + (0,−ε + α) induces a mapping T −ε+α on the torus with an n∗q-periodic orbit
Qp/q (n∗ ≥ 1) that has ρV (Qp/q) = p/q . This means that for some s∗ ∈ Z, the triplet
(s∗, n∗q, n∗p) is non-negative for T−ε+α . As −ε + α < 0, this is a contradiction. �

3.4. Proof of Corollary 2. As there is a neighborhood T ∈ U ⊂ TQ such that for any
T ∗ ∈ U, ρ+

V (T ∗) ≥ p/q , we get from the previous lemma that there exist s∗ ∈ Z and
n∗ ∈ N∗ such that T has a periodic point of type (s∗, n∗q, n∗p).
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Now, suppose that for all s ∈ Z and n ∈ N∗, we have the following inequalities:

ν+(φ̂) − µ−(φ̂) − np ≤ 0, (16)

for all φ̂ ∈ S1, where µ−, ν+ are the mappings associated to C(s, nq) for T . If we
remember [16, Proposition 3, p. 466] we get, for any α < 0, that

ν+
α (φ̂) − µ−

α (φ̂) − np < 0, (17)

for all φ̂ ∈ S1, where µ−
α , ν+

α are the mappings associated to C(s, nq) for Tα. If |α| is
sufficiently small (α < 0), then Tα, T2α ∈ U and so Lemma 7, together with the corollary
hypothesis, implies that ρ+

V (Tα) = ρ+
V (T2α) = p/q . As expression (17) is true for all

s ∈ Z and n ∈ N∗, we get that T α has no periodic points with vertical rotation number
ρV = p/q . Then, Corollary 1 implies that ρ+

V (T2α) < p/q , a contradiction. So, as
ρ−

V < p/q , there exists s∗ ∈ Z and n∗ ∈ N∗ such that

ν+(φ̂0) − µ−(φ̂0) − n∗p < 0,

ν+(φ̂1) − µ−(φ̂1) − n∗p > 0,
(18)

for some φ̂0, φ̂1 ∈ S1, where µ−, ν+ are the mappings associated to C(s∗, n∗q) for T .
To conclude the proof, we just have to remember that the mappings

T̂ → C(s∗, n∗q) and T̂ → T̂ n∗q ◦ C(s∗, n∗q)

are upper semi-continuous in the Hausdorff topology. So, an expression similar to (18)
holds for every mapping sufficiently C1-close to T . Also, the connectivity of C(s∗, n∗q)

implies the existence of at least two periodic points of type (s∗, n∗q, n∗p) for all mappings
in TQ such that (18) holds. See also [8, Theorem 2.3]. �

3.5. Proof of Lemma 1. In order to show that for any ω ∈ R, the set (ρ+
V )−1(ω) is a

path-connected subset of TQ, we will show that there exists an isotopy Tt ∈ (ρ+
V )−1(ω),

t ∈ [0, 1], between any given T ∈ (ρ+
V )−1(ω) and the following mapping:

Dω :
{

φ′ = φ + I,

I ′ = I + ω.

This is enough, because Dω ∈ (ρ+
V )−1(ω). As T ∈ (ρ+

V )−1(ω) ⊂ TQ, it can be written as:

T :
{

φ′ = φ + I + hφ(φ, I),

I ′ = I + hI (φ, I),

where hφ and hI are bi-periodic functions. So the mappings (g, g′) associated to T

(see (11)) satisfy the following properties:
(1) g(φ, φ′) = φ′ − φ + m(φ, φ′) and g′(φ, φ′) = φ′ − φ + m′(φ, φ′), where m and m′

are bi-periodic functions;
(2) ∂φ′g(φ, φ′) = 1 + ∂φ′m(φ, φ′) > 0 and ∂φg′(φ, φ′) = −1 + ∂φm′(φ, φ′) < 0.
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Our isotopy Tt is given by

Tt (φ, I) = T ∗
t (φ, I) + (0, α(t)), (19)

where T ∗
t ∈ TQ is the mapping induced by the following pair (g∗

t , g∗′
t ):

g∗
t (φ, φ′) = φ′ − φ + (1 − t).m(φ, φ′),

g∗′
t (φ, φ′) = φ′ − φ + (1 − t).m′(φ, φ′).

It is clear that for t ∈ [0, 1], (g∗
t , g∗′

t ) induce a twist mapping, because property (2)
above implies that ∂φ′m(φ, φ′) > −1 and ∂φm′(φ, φ′) < 1. So, ∂φ′g∗

t (φ, φ′) > 0 and
∂φg∗′

t (φ, φ′) < 0. Thus, T ∗
t is the lift of an isotopy between T and D0 (T ∗

0 = T and
T ∗

1 = D0).
We still have to prove that the function α : [0, 1] → R that appears in (19), which is

chosen in a way that Tt ∈ (ρ+
V )−1(ω) for all t ∈ [0, 1], can be chosen to be continuous.

Clearly, α(0) = 0 and α(1) = ω.
Let us define T ∗

t,α(φ, I) = T ∗
t (φ, I) + (0, α) and let

Aω = {(t, α) ∈ [0, 1] × R : ρ+
V (T ∗

t,α) = ω}.
Theorem 7 implies that Aω is a closed set. As it is trivially bounded, Aω is a compact subset
of [0, 1] × R. Also, for each t ∈ [0, 1], as ρ+

V (T ∗
t,α) is a non-decreasing function of α

(see Lemma 7) and ρ+
V (T ∗

t,α)
α→±∞→ ±∞, there exists a closed interval [α−(t), α+(t)]

(maybe degenerated to a point) such that ρ+
V (T ∗

t,α) = ω, if and only if α ∈ [α−(t), α+(t)].
So, Aω ∩{t}×R = [α−(t), α+(t)]. We will conclude the proof by showing that α−(t) and
α+(t) are continuous functions of t . This clearly implies that Aω contains the graph of a
continuous function α : [0, 1] → R such that α(0) = 0 and α(1) = ω.

Suppose that α−(t) is not continuous. Then, there exists t ∈ [0, 1], ε > 0 and a
sequence ti

i→∞→ t such that α−(ti ) > α−(t) + ε, for all i ∈ N. If we choose a sufficiently
small δ > 0, then the following is true for any ti ∈ [t − δ, t + δ]:

T ∗
ti

(
φ, I − ε

4

)
+

(
0, α−(t) − ε

4

)
≤ T ∗

t
(φ, I) + (0, α−(t))

≤ T ∗
ti

(
φ, I + ε

4

)
+

(
0, α−(t) + ε

4

)
.

The above expression implies (see the proof of Lemma 7) that:

ρ+
V

(
T ∗

ti

(
φ, I − ε

4

)
+

(
0, α−(t) − ε

4

))
≤ ω ≤ ρ+

V

(
T ∗

ti

(
φ, I + ε

4

)
+

(
0, α−(t) + ε

4

))
.

So, if we remember Theorem 7, expression (15), which means that for any given α ∈ R,
ρ+

V (T (φ, I +α)+ (0, α)) = ρ+
V (T (φ, I)+ (0, 2α)) and Lemma 7, we get that there exists

τ ∈ [−ε/2, ε/2] such that ρ+
V (T ∗

ti ,α−(t)+τ
) = ω. Thus, α−(t) + τ ≥ α−(ti) > α−(t) + ε,

which is a contradiction.
The proof of the continuity of α+(t) is analogous, so we omit it. �

3.6. Proof of Theorem 3. Given ε > 0 and T ∈ TQ such that ρV (T ) = [ρ−
V , ω], with

ω /∈ Q, we are going to prove that ρ+
V (Tε) > ω. Our proof will be divided into two steps.
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Step 1. In this part we prove that for any given δ > 0, there exists a rational number
m/n > ω and a point x̂ ∈ S1 × R such that:
• T̂ n(̂x) − (0,m) ∈ Bδ(̂x);
• ρV (̂x) = ω.

If we remember [19, Theorem 2.4], we get that there is an ergodic T -invariant measure
µω with vertical rotation number ρV (µω) = ω, which means that if we define a function
φ : T2 → R by

φ(x) = p2 ◦ T (x) − p2(x) − ω, for any x ∈ p−1(x), (20)

then ∫
T2

φ(x) dµω = 0. (21)

The measure µω is trivially non-atomic, because it is ergodic and ω /∈ Q.
Now, let A ⊂ T2 be the following set: A = {x ∈ supp(µω) : x is recurrent and

ρV (x) = ω}, which has full µω-measure, µω(A) = 1, and is T -invariant, T (A) = A.
Using expression (21), we get from Theorems 4 and 5 that the cocycle a(n, x) and the

skew-product V (x, α) associated to T and φ (see (20)) are, respectively, recurrent and
conservative.

Choose any x0 ∈ A. As x0 is recurrent, there exists n0 > 0 such that T
n0

(x0) ∈
Bδ/8(x0). This means that there exists m0 ∈ Z, such that for all x̂0 ∈ S1 × R, lift of x0, we
have

T̂ n0 (̂x0) − (0,m0) ∈ Bδ/8(̂x0).

If m0/n0 > ω, then we are done. So, suppose that m0/n0 < ω. Let C = n0ω − m0 > 0
and let 0 < δ1 < δ/8 be such that for all z ∈ Bδ1

(x0), T
n0

(z) ∈ Bδ/8(x0). Now define

δ1 = min{δ1/10, C/10}. As x0 ∈ A, we get that µω(Bδ1(x0)) > 0, which implies by
Lemma 6 that there exists z ∈ Bδ1(x0) ∩ A and n1 > n0 such that T

n1
(z) ∈ Bδ1(x0) and

|a(n1, z)| < δ1. And this means that there exists m1 ∈ Z such that for any ẑ ∈ S1 × R, lift
of z, we have

T̂ n1 (̂z) − (0,m1) ∈ B2δ1 (̂z), (22)

|a(n1, z)| =
∣∣∣∣ n1−1∑

i=0

φ ◦ T
i
(z)

∣∣∣∣ = |p2 ◦ T̂ n1 (̂z) − p2(̂z) − n1ω| < δ1. (23)

Expressions (22) and (23) imply that

|n1ω − m1| < 3δ1 < C = n0ω − m0. (24)

From (24), we get the following inequality:

ω <
m1 − m0

n1 − n0
.

Defining w = T
n0

(z) ∈ Bδ/8(x0), the choice of δ1 > 0 implies that

T̂ n1−n0(ŵ) − (0,m1 − m0) ∈ Bδ1+δ/8(ŵ) ⊂ Bδ/4(ŵ).

To finish this step, we just have to notice that as z ∈ A and T (A) = A, then
w = T

n0
(z) ∈ A and so ρV (w) = ω.
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Step 2. Choose some δ > 0 such that

max{(sin β)−1M2δ, (1 + cot β)Mδ} <
ε

4
(25)

and apply step 1 in order to get a point x ∈ R2 and a rational number m/n > ω such that

T n(x) − (s,m) ∈ Bδ(x), (26)

for some s ∈ Z.
Now, as in the proof of Theorem 2, if we apply Lemma 8 we get that the triplet (s, n,m)

is non-negative for hε/4 ◦ T ◦ hε/4. In fact, there are two possibilities:
(1) there exists xm/n ∈ R2 such that (hε/4 ◦ T ◦ hε/4)

n(xm/n) = xm/n + (s,m);
(2) the triplet (s, n,m) is positive for hε/4 ◦ T ◦ hε/4.

In the case when the second possibility is satisfied, let U be the unbounded component
of C(s, n)c which contains the upper end of the cylinder. As (s, n,m) is positive for

hε/4 ◦ T ◦ hε/4, we get that ̂(hε/4 ◦ T ◦ hε/4)
n
(closure(U)) ⊂ U + (0,m). This means

that there exists a constant C ∈ R such that for all x ∈ R2 and i > 0,

p2 ◦ (hε/4 ◦ T ◦ hε/4)
i.n(x) − p2(x) − i.m > C,

which implies that, at every point where the vertical rotation number is defined, it is larger
than m/n. And we know from [19, Theorem 2.4] that there is a point x+ ∈ T2, such that
ρV (x+) = ρ+

V (hε/4 ◦ T ◦ hε/4), and thus

ρV (x+) ≥ m

n
> ω.

So, both possibilities imply the existence of points with vertical rotation number
ρV ≥ m/n. Now, we just have to remember expression (15) in order to conclude that
ρ+

V (Tε) ≥ m/n > ω. �

3.7. Proof of Corollary 3. First of all, we remember the proof of Lemma 7, which says
that given T1, T2 ∈ TQ, if T1 ≤ T2, then ρ+

V (T1) ≤ ρ+
V (T2). The hypothesis of the

corollary implies that, given ε > 0, there exists a T ∗ sufficiently C1-close to T , such that
ρ+

V (T ∗) �= ω+ and the following is true:

h−ε/2 ◦ T ◦ h−ε/2 ≤ T ∗ ≤ hε/2 ◦ T ◦ hε/2.

Suppose that ρ+
V (T ∗) < ω+. Then, ρ+

V (h−ε/2 ◦ T ◦ h−ε/2) ≤ ρ+
V (T ∗) < ω+. The other

case is analogous. To conclude, we remember that ρ+
V (hα/2 ◦ T ◦ hα/2) = ρ+

V (Tα), for
any α ∈ R. Now we look at the second part of the corollary. One implication is trivial.
Let us prove the other. Suppose that there exists ε > 0 such that ρ+

V (Tα) = ω+, for
all α ∈ [−ε, ε], and there exists a sequence Ti

i→∞→ T , in the C1-topology, such that
ρ+

V (Ti) �= ω+. If i0 > 0 is sufficiently large, then

h−ε/2 ◦ T ◦ h−ε/2 ≤ Ti0 ≤ hε/2 ◦ T ◦ hε/2,

which implies that ω+ = ρ+
V (T−ε) ≤ ρ+

V (Ti0) ≤ ρ+
V (Tε) = ω+, and this is in contradiction

to the choice of Ti0 . �
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4. Consequences, applications and some motivation for the previous results

First of all, we present a consequence of Theorem 3.

COROLLARY 5. Let T ∈ TQ be such that ρV (T ) = [ρ−
V , ω], with ω /∈ Q and ρ−

V < ω.
Consider the following one-parameter family: Tt (φ, I) = T (φ, I) + (0, t). Then, there
exists ε > 0, such that ρV (Tt ) = [ρ−

V (t), ρ+
V (t)] satisfies ρ−

V (t)−ω < 0 and ρ+
V (t)−ω > 0,

for any t ∈ ]0, ε]. So as t goes from 0 to ε, infinitely many non-degenerated periodic points
are created.

Remark. We say that a certain set of periodic points is non-degenerated if it cannot be
destroyed by arbitrarily small perturbations applied to the mapping.

Proof. This proof is a trivial consequence of Theorems 3, 6 and 7. �

In particular, the above corollary implies that a mapping T ∈ TQ such that ρV (T ) =
[ρ−

V , ω], with ω /∈ Q and ρ−
V − ω < 0, is a bifurcation point of the set TQ. By an

arbitrarily small perturbation (in the same topology of the mapping) one creates infinitely
many periodic points.

If T ∈ TQ induces an analytic area-preserving mapping T : T2 → T2, for instance as
the standard mapping (see (1)), such that the above corollary hypothesis is satisfied, then
for any ε > 0, there exists α ∈ [0, ε] such that T α is not fully ergodic. To see this, note
that Corollary 5 implies that as t goes from 0 to ε, lots of non-degenerated periodic points
are created. And, right after the creation of some of these points (with the same vertical
rotation number p/q), we have two possibilities.

(i) There are infinitely many periodic points with vertical rotation number p/q . In this
case, the proof of [3, Theorem 3] implies that non-trivial invariant sets appear (by ‘non-
trivial’ we mean that the set does not have zero or full Lebesgue measure).

(ii) There are only finitely many periodic points with vertical rotation number p/q .
In this case, we proceed as follows. As T is area-preserving and the periodic points
with vertical rotation number p/q are isolated and non-trivial as a set, some of them have
negative topological index and some of them have positive topological index. In the area-
preserving setting, the only positive index allowed is 1 (see [17]). Preservation of area also
implies that in a sufficiently small neighborhood of the periodic points, the diffeomorphism
is the time-one mapping of a formal vector field (defined by a formal series), see [20].
So, we are able to apply results from [10], which say that at least in a topological sense, the
dynamics near the fixed points can be obtained as in the vector field setting, gluing a finite
number of sectors. As we are supposing that area is preserved by the diffeomorphism,
there cannot be elliptic, expanding or attracting sectors. As the topological index of the
point is 1 and the eigenvalues are both near 1 because the point has just been created, we
get that it must be a center.

So, if for some parameter k > 0, the supremum of the vertical rotation number of the
standard mapping (1) is irrational, then arbitrarily close to it in the analytic topology there
are mappings that are not fully ergodic. Unfortunately, we do not know if the perturbation
performed could be restricted to the standard family (just a change in the value of k).
See [9] for more information on this problem.
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The case when ρ+
V (T ) is a rational number is not completely clear. Let T ∈ TQ induce

an analytic area-preserving mapping T : T2 → T2, such that ρV (T ) = [ρ−
V , p/q], with

p/q ∈ Q and ρ−
V − p/q < 0. As we do not have an analogue of Corollary 5, there are two

possibilities:
(1) there exists ε > 0, such that ρV (T t ) = [ρ−

V (t), ρ+
V (t)] satisfies one of the following:

(1a) ρ−
V (t) − p/q < 0 and ρ+

V (t) − p/q > 0, for all t ∈ ]0, ε],
(1b) ρ−

V (t) − p/q < 0 and ρ+
V (t) − p/q < 0, for all t ∈ [−ε, 0[;

(2) there exists ε > 0, such that ρV (T t ) = [ρ−
V (t), ρ+

V (t)] satisfies: ρ−
V (t) − p/q < 0

and ρ+
V (t) = p/q , for all t ∈ [−ε, ε].

Case (1) implies that, as in the irrational case, there exists t ∈ R arbitrarily small, such
that T t is not fully ergodic. The second possibility is harder to study. We believe that it
implies the existence of non-trivial invariant sets with vertical rotation number ρV = p/q

(for instance, like elliptic islands). If this is true, it is also associated with non-ergodicity.

5. Open question
Here we present a conjecture that in a certain sense is the closure of this work. The setting
is the following. Let T ∈ TQ be such that ρV (T ) = [ρ−

V , p/q], with p/q ∈ Q and
ρ−

V − p/q < 0. Then we have the following.

CONJECTURE. Given T ∈ TQ as above, it is not possible that ρ+
V (Tα) �= p/q , for all

α �= 0.

If this conjecture is true, as ρ+
V (Tα) is a non-decreasing function of α, there exists ε > 0

such that one of the following possibilities must hold:
(1) T ∈ ∂(ρ+

V )−1(p/q) and ρ+
V (Tα) = p/q , for α ∈ [0, ε];

(2) T ∈ ∂(ρ+
V )−1(p/q) and ρ+

V (Tα) = p/q , for α ∈ [−ε, 0];
(3) T ∈ int(ρ+

V )−1(p/q).
One of the indications that this conjecture is true will be explained in the rest of this

section.
Let T ∈ TQ be written as

T :
{

φ′ = Tφ(φ, I),

I ′ = I + hI (φ),

where hI (φ) is a periodic function. This is true for the standard mapping and for F

(see (2)). Suppose that ρV (T ) = [ρ−
V , 1], with ρ−

V < 1. Then, we get that for some φ0 ∈ R,
hI (φ0) ≥ 1. As ρ−

V < 1, there exists φ1 ∈ R, such that hI (φ1) < 1. If hI (φ0) > 1, then the
mappings µ−, ν+ associated to C(0, 1) satisfy (as C(0, 1) is a graph over S1, µ− = µ+
and ν− = ν+)

ν+(φ̂0) − µ−(φ̂0) − 1 > 0

and
ν+(φ̂1) − µ−(φ̂1) − 1 < 0.

As C(0, 1) is a connected set, there exists φ̂∗ such that ν+(φ̂∗)−µ−(φ̂∗)−1 = 0. Finally, as
in the proof of Corollary 2, or [8, Theorem 2.3] , we get that some fixed points for T with
vertical rotation number ρV = 1 cannot be destroyed by arbitrarily small perturbations.
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C *

G(C  )
^ *

FIGURE 3. Diagram showing the construction of C∗.

So, as ρ+
V (Tα) ≤ 1 for any α < 0, there exists ε > 0 such that ρ+

V (Tα) = 1, for all
α ∈ [−ε, 0].

Now, suppose that hI (φ) ≤ 1, for all φ ∈ R. Let C ⊂ S1×R be a curve of the following
form:

C = {(φ̂, Î ) ∈ S1 × R : Î = c},
where c ∈ R is chosen in such a way that C does not contain fixed points for Ĝ(φ, I)

def=
T̂ (φ, I)−(0, 1). Clearly, this is always possible. As ρV (T ) = [ρ−

V , 1], there exists φ0 ∈ R

such that hI (φ0) = 1, which means that

Ĝ(C) ⊂ closure(C−) = C− ∪ C,

where C−(respectively+) is the open connected component of Cc that is below (respectively
above) C. Now, suppose that

{Ĝ(C) ∩ C} ∩ {Ĝ−1(C) ∩ C} = ∅. (27)

This is trivially true for the standard mapping and for F, because in both cases Ĝ(C) ∩ C

is a single point, which is not fixed by the choice of C. As the sets in (27) are compact
and disjoint, there exists a neighborhood V ⊂ C of Ĝ(C) ∩ C, disjoint from Ĝ−1(C) ∩ C.
Now, we are going to perform some changes in C in order to get a new curve C∗, disjoint
from its image by Ĝ. Define C∗ as the homotopically non-trivial simple closed curve
obtained from C\V together with some small arcs contained in C+ (the end points of
these arcs are in C). These arcs must be chosen sufficiently close to C, so that their images
by Ĝ are contained in C−. See Figure 3 for a picture of this situation.
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So we have the following equation for C∗:

Ĝ(C∗) ⊂ C∗−,

which persists under small perturbations applied to T . So, the supremum of the vertical
rotation number of all mappings in a sufficiently small neighborhood of T is less than or
equal to 1. In particular, there exists ε > 0 such that ρ+

V (Tα) = 1, for α ∈ [0, ε]. That is,
the above conjecture is true in this particular situation.
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