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Abstract

Let f be a homeomorphism of the closed annulus A that preserves
the orientation, the boundary components and that has a lift f̃ to the
infinite strip Ã which is transitive. We show that, if the rotation number
of f̃ restricted to both boundary components of A is strictly positive,
then there exists a closed nonempty connected set Γ ⊂ Ã such that Γ ⊂

] −∞, 0] × [0, 1], Γ is unbounded, the projection of Γ to A is dense, Γ −

(1, 0) ⊂ Γ and f̃(Γ) ⊂ Γ. Also, if p1 is the projection on the first coordinate
of Ã, then there exists d > 0 such that, for any z̃ ∈ Γ,

lim sup
n→∞

p1(f̃
n(z̃)) − p1(z̃)

n
< −d.
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1 Introduction and statements of the main re-

sults

In this paper we continue the study started in [1]. There, we considered home-
omorphisms f of the closed annulus A = S1 × [0, 1] (S1=IR/ZZ), which preserve

the orientation, the boundary components and have a transitive lift f̃ to the
universal cover of the annulus, Ã =IR×[0, 1].

Results from [3] and [4] imply that these are reasonable hypotheses, see the
explanation below.

First note that, given a homeomorphism f : A → A which preserves ori-
entation and the boundary components, for any Borel probability f -invariant
measure µ, the rotation number of µ, is defined as follows.

Let p1 : Ã →IR be the projection on the first coordinate and let p : Ã → A
be the covering mapping. Fixed f and f̃ , the displacement function φ : A→IR
is defined as

φ(x, y) = p1 ◦ f̃(x̃, ỹ) − x̃, (1)

for any (x̃, ỹ) ∈ p−1(x, y). The rotation number of µ is then given by

ρ(µ) =

∫

A

φ(x, y)dµ.

Following the usual definition (see [2]), we refer to the set of area, orien-
tation and boundary components preserving homeomorphisms of the annulus,
which satisfy ρ(Leb) = 0 for a certain fixed lift f̃ , as the set of rotationless
homeomorphisms. Every time we say that f is a rotationless homeomorphism,
a special lift f̃ is fixed and used to define φ.

In [3] it is proved that the transitivity of f̃ holds for a residual subset of
rotationless homeomorphisms of the annulus and the results in [4] suggest that
the same statement holds in the C1 topology.

Here we consider the following situation: Suppose f is an orientation and
boundary components preserving homeomorphism of the annulus which has a
transitive lift f̃ : Ã→ Ã (one with a dense orbit). We denote the set of such
mappings by Homtrans

+ (A). So every time we say f ∈ Homtrans
+ (A) and refer

to a lift f̃ of f , we are always considering a transitive lift (it is possible that f
has more then one transitive lift, we choose any of them and fix it).

Before we state the theorems proved in [1], we need a definition:

Definition : B− is the subset of

B =
⋂

n≤0

f̃n(] −∞, 0] × [0, 1])

which contains exactly all unbounded connected components of B and
nothing else.
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Theorem 1 : If f ∈ Homtrans
+ (A) and the rotation number of f̃ restricted

to the boundary components of the annulus is strictly positive, then B− is not
empty and in particular, B− ∩ {0} × [0, 1] 6= ∅. Also B− is positively invariant,
closed and does not intersect the boundary of Ã.

Theorem 2 : Under the hypotheses of theorem 1, the ω-limit set of B−,

ω(B−)
def.
=

⋂∞

n=0

(⋃∞

i=n f̃ i(B−)
)

is empty.

Thus, iterates of B− by f̃ converge to the left end of Ã. The properties of
B− allow us to extend this theorem and obtain a stronger result:

Theorem 3 : Under the hypotheses of theorem 1, there exists a real number
ρ+(B−) <0 such that, if z̃ ∈ B−, then

lim sup
n→∞

p1(f̃
n(z̃)) − p1(z̃)

n
≤ ρ+(B−) < 0.

The last theorem shows that all points in B− have a “minimum negative
velocity” in the strip Ã.

An important consequence of theorem 3 is that, even though there are points
with rotation number in ]ρ+(B−), 0[, they do not belong to B−. In particular,
if such points are hyperbolic periodic saddles that have unstable manifolds un-
bounded to the left, then they must also be unbounded to the right.

Theorem 4 : Under the hypotheses of theorem 1, p(B−) is dense in A.

Proofs of the above results can be found in [1].
Our main objective here is to have a more precise understanding of the

structure of B−. It will be shown that a connected component Γ of B− can, a
priory, be of one of the following types:

1. injective, which means that Γ ∩ (Γ + (s, 0)) = ∅, for all integers s 6= 0;

2. non injective, which means that Γ − (1, 0) ⊂ Γ.

Our theorems are the following:

Theorem 5 : Under the hypotheses of theorem 1, there exists a non injective
connected component Γ of B−, such that p(Γ) is dense in the annulus, f̃(Γ) ⊂

Γ, and for some positive integer k, f̃−1(Γ) ⊂ Γ + (k, 0), which implies that
f(p(Γ)) = p(Γ).

Theorem 6 : Under the hypotheses of theorem 1, all connected component of
B− are non injective.
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It is worth noticing that, if Γ is the component of B− described in theorem
5, it is a closed connected f̃ -invariant set which contains infinite negative integer
translates of all its points. If we look at the projection of a connected piece of
Γ to the annulus, it can not separate the boundary components of A, because
f is transitive and, as we will show in proposition 1, Γc is connected. Thus,
there can not be a compact connected subset of Γ containing both a point P
and P − (1, 0).

Theorems 3, 4, 5 and 6 above have an interesting consequence. If Γ is as
in theorem 5, and we consider the set Γsat=

⋃∞

i=0 Γ + (i, 0), then Γsat is dense

and connected in the strip, f̃(Γsat) = Γsat and, in a sense, all points in Γsat

converge to the left end of Ã through iterations of f̃ with a strictly negative
velocity. Therefore Γsat can be seen as part of a dense “stable manifold of the
point L in the L, R-compactification (left and right compactification) of the
strip”.

2 Preliminaries for the proofs

In this section we state some simple results proved in [1] that will be necessary
for our arguments and give a general set of hypotheses that already appeared
in [1].

2.1 Hypothesis satisfied by the set D

Let D ⊂ Ã be a non-empty closed set with the following properties:

• f̃(D) ⊂ D;

• D ⊂] −∞, 0] × [0, 1];

• Every connected component of D is unbounded;

• D ∩ IR × {i} = ∅, i ∈ {0, 1};

• If z̃ ∈ D then z̃ − (1, 0) ∈ D.

It is easily verified that B− has these properties, so every result shown for
D must hold in the particular case of interest to us. In the proof of theorem 5,
we find another set with the properties listed above.

2.2 On the structure of p(D) ⊂ A

Remember that f̃ is transitive and it moves points in ∂Ã uniformly to the right.

Lemma 1 : p(D) ⊃ S1 × {0}, or p(D) ⊃ S1 × {1}.

Lemma 2 : If p(D) 6= A, then p(D)
c

is connected and dense in A and, more-

over, p(D)
c
contains a homotopically non trivial simple closed curve in the open

annulus S1×]0, 1[.
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3 On the structure of D ⊂ Ã

Let Γ be a connected component of D, see subsection 2.1. We recall that, by
the definition of D, Γ is unbounded and contained in ] − ∞, 0] × [0, 1]. Before
going on, we present a few related definitions. For every a ∈ IR we let

Va = {a} × [0, 1], V +
a = [a, +∞[×[0, 1] and V −

a =] −∞, a] × [0, 1]. (2)

If a = 0 we denote V0 and V
+(−)
0 simply by V and V +(−). The next proposition

is important for the results in this section.

Proposition 1 : Γc is connected.

Proof:
Clearly, there is one connected component of Γc which contains int(V +),

IR × {0} and IR × {1}.
So, if by contradiction, we suppose that Γc has another connected compo-

nent, denoted C, contained in V −, its boundary must be contained in Γ. As
f̃n(Γ) ⊂ V − for all n ≥ 0, we get that f̃n(C) ⊂ V − for all n ≥ 0. So for every

z̃ ∈ C, lim sup
n→∞

p1 ◦ f̃n(z̃) ≤ 0. As C is an open subset of Ã, this contradicts the

transitivity of f̃ . 2

For a connected component Γ of D, let us define

mΓ = sup{x̃ ∈ IR :(x̃, ỹ) ∈ Γ, for some ỹ ∈ [0, 1]} ≤ 0. (3)

Consider the closed connected set Γ∪{mΓ}× [0, 1]. Its complement has two
open unbounded connected components in

] −∞, mΓ[×[0, 1],

one of which contains ] −∞, mΓ[×{0} (denoted Γdown) and another one which
contains ]−∞, mΓ[×{1} (denoted Γup). It is possible that (Γ ∪ {mΓ} × [0, 1])

c

has other unbounded (to the left) connected components. But only Γup and
Γdown will be of interest to us, because of the following fact, whose proof is
an exercise which depends only on the connectivity of Γ (see lemma 4 for a
generalization of this result):

Fact 1 : Given a connected component Γ of D, if Θ is a closed unbounded
connected set, which satisfies Θ∩Γ = ∅ and Θ ⊂ ]−∞, mΓ[×[0, 1], then Θ ⊂ Γup

or Θ ⊂ Γdown.

In the following, we will generalize the above construction and present some
simple results on the connected components of D. These results will permit us to
define an order ≺ on the connected components of D. Actually, the next results
will hold in a slightly more general context: Any two disjoint closed unbounded
connected sets Θ1, Θ2 ⊂ V −, which have connected complements will be related
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by this order, that is either Θ1 ≺ Θ2 or Θ2 ≺ Θ1. We choose to define the
partial order in this setting because, if Γ1, Γ2 are connected components of
D, then f̃(Γ1) and f̃(Γ2) may not be, they are just contained in connected

components of D. But in this case, if Γ1 ≺ Γ2, as f̃(Γ1) and f̃(Γ2) are disjoint
closed unbounded connected sets which have connected complements, we will
show that f̃±1(Γ1) ≺ f̃±1(Γ2), that is f̃±1 preserves the order. The proofs of
the following results are easy, but some are long and a little boring. For this
reason, they will be given in the appendix.

To begin, let us define the set:

UnConn = {Γ ⊂ int(Ã) : Γ is a closed unbounded
connected set, bounded to the right, which has a connected complement}

Lemma 3 : Let Γ ∈ UnConn and a ∈ IR be such that Va intersects Γ. Then,
Γc∩]−∞, a[×[0, 1] has at least two (open) connected components, one containing
] −∞, a[×{0} and the other containing ] −∞, a[×{1}.

Proof:
Immediate. 2

Proposition 2 : Let Γ ∈ UnConn and let a ∈ IR be such that Va intersects Γ.
Then, Γ∩V −

a has at least one unbounded connected component, which intersects
Va.

Proof:
See the appendix. 2

Before going on, let us define the sets Γa,down and Γa,up as follows:

Γa,down (resp. Γa,up) is the connected component of Γc∩] −∞, a] × [0, 1]
that contains ] −∞, a[×{0} (resp. ] −∞, a[×{1}).

If Γ ∈ UnConn intersects some vertical Va, it is possible that Γ ∩ V −
a has more

than one unbounded connected component. We denote by

[
Γ ∩ V −

a

]
= union of all unbounded connected components of Γ ∩ V −

a . (4)

Proposition 3 : Let a, b ∈ IR be such that b < a and let Γ be an element of
UnConn, which intersects Va. Then Γb,down ⊂ Γa,down and Γb,up ⊂ Γa,up.

Proof:
See the appendix. 2

Let Γ1, Γ2 ∈ UnConn be disjoint sets and let Va be a vertical which intersects
Γ1.

Lemma 4 : One and only one of the following possibilities must hold:
[Γ2 ∩ V −

a ] ⊂ Γ1a,down or [Γ2 ∩ V −
a ] ⊂ Γ1a,up.
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Proof:
See the appendix. 2

The previous results will be used in what follows in order to define an order
among disjoint elements of UnConn.

Let Γ1 and Γ2 be disjoint elements of UnConn and let a ∈ IR be such that
Γ1 and Γ2 intersect Va. We say that Γ2 ≺a Γ1, if [Γ2 ∩ V −

a ] ⊂ Γ1a,down.

Lemma 5 : Given Γ1, Γ2 and a ∈ IR as above, either Γ2 ≺a Γ1 or Γ1 ≺a Γ2.

Proof:
See the appendix. 2

Finally, in order to present a good definition of order, we need the following
two lemmas:

Lemma 6 : Let Γ1 and Γ2 be elements of UnConn such that Γ1 ∩ Γ2 = ∅
and let a, b ∈ IR be such that Γ1 and Γ2 intersect Va and Vb. Then we have the
following:

Γ1 ≺a Γ2 ⇔ Γ1 ≺b Γ2

Γ2 ≺a Γ1 ⇔ Γ2 ≺b Γ1

Proof:
See the appendix. 2

So if Γ1 and Γ2 are disjoint elements of UnConn and a ∈ IR is such that
Γ2 ≺a Γ1, we simply say that Γ2 ≺ Γ1.

Also, let us prove the following transitivity lemma:

Lemma 7 : If Γ1, Γ2, Γ3 are elements of UnConn that do not intersect, such
that Γ1 ≺ Γ2 and Γ2 ≺ Γ3, then Γ1 ≺ Γ3.

Proof:
See the appendix. 2

Our next objective is to show that f̃±1 preserves the order just defined.

Lemma 8 : Let Γ1, Γ2 be disjoint elements of UnConn and suppose Γ1 ≺ Γ2.
Then, f̃±1(Γ1) ≺ f̃±1(Γ2).

Proof:
See the appendix. 2

We now, for a fixed connected component Γ of D (see subsection 2.1), con-
sider the covering mapping p |Γ. It may or may not be injective. We examine
the consequences in each case:
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3.1 The covering mapping p |Γ is not injective

This means that there exists z̃ ∈ Ã and an integer s > 0 such that z̃, z̃ +(s, 0) ∈
Γ. So, Γ ∩ (Γ − (s, 0)) 6= ∅. The last property of D tell us that Γ − (s, 0) ⊂ D.
But this implies that

Γ − (s, 0) ⊂ Γ, (5)

because Γ is a connected component of D.
Suppose that Γ − (1, 0) is not contained in Γ. As Γ − (1, 0) ⊂ D, we get

that (Γ − (1, 0)) ∩ Γ = ∅. As Γ − (1, 0) does not intersect VmΓ
= {mΓ} × [0, 1],

lemma 4 implies that either Γ − (1, 0) ⊂ Γdown or Γ − (1, 0) ⊂ Γup. Suppose it
is contained in Γup.

Proposition 4 : If Γ− (1, 0) ⊂ Γup, then Γ− (i, 0) ⊂ Γup for all integers i > 1.

Proof:
See the appendix. 2

Therefore, if the map p |Γ is not injective, then

Γ − (1, 0) ⊂ Γ. (6)

As we already said in the introduction, Γ will be called a non injective
component.

3.2 The covering mapping p |Γ is injective

This implies that Γ ∩ (Γ + (s, 0)) = ∅, for all integers s 6= 0. In particular,
Γ∩ (Γ− (1, 0)) = ∅ and we use this relation to describe the asymptotic behavior
of p(Γ) around the annulus.

Definition: We say that Γ is a down component of D if Γ ≺ Γ − (1, 0) and,
analogously, Γ is an up component if Γ − (1, 0)≺ Γ.

Lemma 9 : If Γ ⊂ D is a down component, then dist(Γ, IR × {1}) > 0 and
analogously, if Γ ⊂ D is an up component, then dist(Γ, IR × {0}) > 0.

Proof:
See the appendix. 2

In both cases we will say that Γ is an injective component.

4 Proof of theorem 5

Let ǫ > 0 be such that for all (x̃, ỹ) ∈ IR×{[0, ǫ] ∪ [1 − ǫ, 1]} , p1◦ f̃(x̃, ỹ) > x̃+σ,

for a certain fixed σ > 0. Such ǫ > 0 exists since f̃ moves points in the boundary
of Ã uniformily to the right.
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As theorem 4 says that p(B−) = A, there exists a real b such that

B− ∩ {b} × [0, ǫ] 6= ∅.

In the following we will consider the “lowest” component of B− in {b} × [0, ǫ].
First, remember that as B− is closed, there must be a 0 < δ ≤ ǫ such that

(b, δ) ∈ B−, and for all 0 ≤ ỹ < δ, (b, ỹ) /∈ B−, that is, (b, δ) is the “lowest”
point of B− in {b} × [0, ǫ]. We denote by v the segment {b} × [0, δ[ and by Γ1

the connected component of B− that contains (b, δ).

Definition: Let Ω be the open connected component of (Γ1∪v)c, which contains
] −∞, b[×{0}.

Proposition 5 : f̃(Γ1) ∩ v = ∅.

Proof:
Immediate. 2

Proposition 6 : If Γ1 ∩ f̃(Γ1) = ∅ and Γ1 ≺ f̃(Γ1), then f̃(v) ∩ Γ1 = ∅.

Proof:
As f̃(Γ1) ⊂ B−, either Γ1 ⊃ f̃(Γ1) or Γ1 ∩ f̃(Γ1) = ∅. So, if Γ1 ≺ f̃(Γ1), we

get by lemma 8 that f̃−1(Γ1) ≺ Γ1, so
[
f̃−1(Γ1) ∩ V −

b

]
⊂ Γ1b,down.

As closure(Ω) ⊃ closure(Γ1b,down), we get that
[
f̃−1(Γ1) ∩ V −

b

]
⊂ closure(Ω).

If f̃−1(Γ1) ∩ v 6= ∅, then consider an element Υ ∈
[
f̃−1(Γ1) ∩ closure(Ω)

]
=

{unbounded connected components of f̃−1(Γ1)∩ closure(Ω)}. The connectivity

of f̃−1(Γ1) and the fact that f̃−1(Γ1) ∩ Γ1 = ∅ imply that Υ intersects v. As

Υ⊂ V − and f̃(Υ) ⊂ Γ1, we get that Υ ⊂ B−, something in contradiction with

B− ∩ v = ∅. So f̃−1(Γ1) ∩ v = ∅. 2

Lemma 10 : Either Γ1 ⊃ f̃(Γ1) or f̃(Γ1) ≺ Γ1, that is, f̃(Γ1) is not above Γ1.

Proof:
Suppose Γ1 ≺ f̃(Γ1). Clearly, as ∂Ω ⊂ Γ1 ∪ v, f̃(Γ1) ∩ Γ1 = ∅, v ∩ f̃(v) = ∅

and f̃(Γ1) ∩ v = f̃(v) ∩ Γ1 = ∅ (see the previous proposition), we obtain

f̃(∂Ω) ∩ Ω = ∅.

As ] − ∞, b[×{0} ⊂ f̃(] − ∞, b[×{0}), we get that Ω ⊂ f̃(Ω). But, since Ω is

open and limited to the right, this contradicts the transitivity of f̃ . 2

So, lemma 10 implies that either f̃(Γ1) ⊂ Γ1 or f̃(Γ1) ≺ Γ1. In order to
analyze the two previous possibilities, we have to consider all possible “shapes”
for Γ1 :

1) Γ1 is an injective down component;
2) Γ1 is an injective up component;
3) Γ1 is a non-injective component;
Now we will exclude some of the above possibilities, but before we present

an useful proposition.
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Proposition 7 : If Γ is a connected component of B−, injective or non-injective,
which satisfies f̃(Γ) ∩ Γ = ∅ and f̃(Γ) ≺ Γ, then f̃n(Γ) ∩ Γ = ∅ and f̃n(Γ) ≺ Γ
for all integers n > 0.

Proof:
By contradiction, suppose there exists some n0 > 1 (the smallest one) such

that f̃n0(Γ) ∩ Γ 6= ∅. This means that Γ, f̃(Γ), f̃2(Γ), ..., f̃n0−1(Γ) are disjoint

closed connected subsets of the strip Ã, each of them having a connected com-
plement and f̃n0(Γ) ⊂ Γ. As f̃(Γ1) ≺ Γ1, lemmas 7 and 8 imply that

f̃n0−1(Γ) ≺ ... ≺ f̃2(Γ) ≺ f̃(Γ) ≺ Γ. (7)

On the other hand, as f̃n0(Γ) ∩ f̃n0−1(Γ) = ∅, lemma 8 implies that f̃n0(Γ) ≺

f̃n0−1(Γ). So, f̃n0(Γ) ∩
(
f̃n0−1(Γ)

)
down

has an unbounded connected compo-

nent. As f̃n0(Γ) ⊂ Γ and f̃n0−1(Γ) ∩ Γ = ∅, using lemma 4 we get that

Γ ≺ f̃n0−1(Γ), a contradiction with expression (7). So, f̃n(Γ) ∩ Γ = ∅ for
all integers n > 0. The other implication follows from lemma 8. 2

Lemma 11 : Suppose that we are in case 1 or in case 3 and f̃(Γ1) ≺ Γ1 (see
the end of page 8). Then there exists a vertical Vr = {r}× [0, 1] and a sequence

ni
i→∞
→ ∞ such that f̃ni(Γ1) ∩ Vr 6= 0 for all i.

Proof:
The proof is naturally divided into two parts.

• Suppose that case 1 holds;

As Γ1 is a down component, Γ1 ≺ Γ1 − (1, 0). Lemma 8 tell us that

f̃(Γ1) ≺ f̃(Γ1) − (1, 0). (8)

A simple analysis shows that in both cases, f̃(Γ1) ⊂ Γ1 or f̃(Γ1) ≺ Γ1, we get
that

f̃(Γ1) + (k, 0) ≺ Γ1 (9)

for all integers k > 0. Moreover, as v ∩ B− = ∅, the following holds: f̃(Γ1) ⊂
Γ1 ∪ Ω.

Our objective now is to show that for all integers n > 0 and k > 0, the
following is true: (f̃n(Γ1) + (k, 0)) ∩ Γ1 = ∅ and f̃n(Γ1) + (k, 0) ≺ Γ1.

This clearly follows from the properties of the order and expression (9).

• Suppose that case 3 holds and f̃(Γ1) ≺ Γ1;

As f̃(Γ1) ≺ Γ1, closure(Γ1b,down) ⊂ closure(Ω) and ∂Ω ⊂ Γ1 ∪ v does not

intersect f̃(Γ1), we get that f̃(Γ1) ⊂ Ω.

If for some integers n0 > 0 and k0 > 0, (f̃n0(Γ1) + (k0, 0)) ∩ Γ1 6= ∅, then

f̃n0(Γ1) ∩ (Γ1 − (k0, 0)) 6= ∅ ⇒ f̃n0(Γ1) ∩ Γ1 6= ∅ ⇒ f̃n0(Γ1) ⊂ Γ1, which, using
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proposition 7, implies that f̃(Γ1) ⊂ Γ1, a contradiction. So, for all integers

n > 0 and k > 0, as f̃n(Γ1) + (k, 0) ⊃ f̃n(Γ1) and

f̃n(Γ1) ≺ ... ≺ f̃(Γ1) ≺ Γ1 (see proposition 7),

we get that (f̃n(Γ1) + (k, 0)) ∩ Γ1 = ∅ and f̃n(Γ1) + (k, 0) ≺ Γ1.
Now the proof continues in a similar way in both the injective and non

injective cases: We only use that for all integers n > 0 and k > 0, the following
is true:

(f̃n(Γ1) + (k, 0)) ∩ Γ1 = ∅
and

f̃n(Γ1) + (k, 0) ≺ Γ1

Let us fix some k′ > 0 in a way that f̃(Γ1) + (k′, 0) intersects v. The rea-

son why such a k′ exists is the following: As (f̃(Γ1) + (k, 0)) ∩ Γ1 = ∅ and

f̃(Γ1)+ (k, 0) ≺ Γ1 for all integers k > 0, we get that
[
(f̃(Γ1) + (k, 0)) ∩ V −

b

]
⊂

closure(Γ1b,down) ⊂ closure(Ω). And as ∂Ω ⊂ Γ1 ∪ v and Ω ⊂] −∞, 0] × [0, 1],

we get that if k′ > 0 is sufficiently large in a way that f̃(Γ1) + (k′, 0) in-

tersects {1} × [0, 1], then f̃(Γ1) + (k′, 0) intersects the boundary of Ω in the
only possible place, v. Denote by Γ∗ an unbounded connected component of
(f̃(Γ1) + (k′, 0)) ∩ closure(Ω).

By the choice of k′ > 0 and the connectivity of f̃(Γ1)+(k′, 0), we get that Γ∗

is not contained in B− because it intersects v. So, there exists a positive integer
a1 > 0 such that f̃a1(Γ∗) intersects ]0, +∞[×[0, 1]. Remember that f̃a1(Γ∗) ⊂

f̃a1+1(Γ1) + (k′, 0) ≺ Γ1 and so f̃a1(Γ∗) ≺ Γ1. As above, the fact that f̃a1(Γ∗)

intersects ]0, +∞[×[0, 1] implies that f̃a1(Γ∗) ∩ closure(Ω) has an unbounded
connected component, Γ∗∗ which intersects v. So, Γ∗∗ is not contained in B−

and thus there exists an integer a2 > 0 such that f̃a2(Γ∗∗) ⊂ f̃a2+a1+1(Γ1) +
(k′, 0) intersects ]0, +∞[×[0, 1]. In exactly the same way as above, we obtain an

unbounded connected component of f̃a2(Γ∗∗)∩ closure(Ω), denoted Γ∗∗∗ which
intersects v. So, Γ∗∗∗ is not contained in B− and there exists an integer a3 > 0
such that f̃a3(Γ∗∗∗) intersects ]0, +∞[×[0, 1] and so on.

Thus, if we define ni = a1 + a2 + ... + ai + 1, we get that ni
i→∞
→ ∞

and for all i ≥ 1, f̃ni−1(f̃(Γ1) + (k′, 0)) ⊃ f̃ni−1(Γ∗) = f̃a2+...+ai(f̃a1(Γ∗)) ⊃

f̃a2+...+ai(Γ∗∗) ⊃ ... ⊃ f̃ai(Γ
i−times

∗...∗ ) and f̃ai(Γ
i−times

∗...∗ ) intersects ]0, +∞[×[0, 1].
So,

f̃ni(Γ1) intersects V0 − (k′, 0) = V−k′

and the lemma is proved. 2

Thus, in case 1 and in case 3 if f̃(Γ1) ≺ Γ1, lemma 11 implies that ω(B−)
is not empty. And this is a contradiction with theorem 2. So, either Γ1 is an
injective up component or Γ1 is an non-injective component and f̃(Γ1) ⊂ Γ1.
In the remainder of this section, we show that it is not possible for Γ1 to be an
injective up component.
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Lemma 12 : If Γ1 is an injective up component, then dist(Γ1, IR × {1}) = 0.

Proof:
As Γ1 is an injective up component, lemma 9 implies that

dist(Γ1, IR × {0}) > 0.

So, if by contradiction we suppose that dist(Γ1, IR×{1}) > 0, there exists ǫ1 > 0
such that Γ1 ∩ IR × {[0, ǫ1] ∪ [1 − ǫ1, 1]} = ∅.

Since f̃ is transitive, f is transitive and thus there is a point z ∈ S1 × [1 −
ǫ1/2, 1] and an integer n > 0 such that f−n(z) ∈ S1 × [0, ǫ1/2]. We know that
f̃(Γ1) ⊂ Γ1 or f̃(Γ1) ≺ Γ1, so by proposition 7 and lemmas 7 and 8 we get that

f̃n(Γ1) ⊂ Γ1 or f̃n(Γ1) ≺ Γ1.

Now let d ∈ IR be such that f̃−i(Vd) ⊂ V −
mΓ1

−1 (mΓ1
is defined in expression

(3)) for i = 0, 1, ..., n and f̃n(Γ1)∩V −
d ⊂ Γ1 ∪Γ1 down, see proposition 10 of the

appendix.
Let z̃ ∈ V −

d be a point such that p(z̃) = z and let k be the vertical line
segment that has as extremes z̃ and a point z̃1 in IR × {1}.

As f̃−n(z̃) ∈ IR × [0, ǫ1/2] ∩ V −
mΓ1

−1, we obtain that f̃−n(z̃) ∈ Γ1 down. As

f̃−n(Vd) ⊂ V −
mΓ1

−1, we get that f̃−n(k) ∩ VmΓ1
= ∅. Since f̃−n(z̃1) /∈ Γ1 down

and f̃−n(z̃) ∈ Γ1 down, and since k is connected, f̃−n(k) ∩ ∂(Γ1 down) 6= ∅. But

∂(Γ1 down) ⊂ Γ1 ∪ VmΓ1
, so f̃−n(k)∩ Γ1 6= ∅, which implies that k ∩ f̃n(Γ1) 6= ∅

and this is a contradiction because k ⊂ V −
d ∩ Γ1 up and f̃n(Γ1) ∩ V −

d ⊂ Γ1 ∪
Γ1 down. 2

Thus if Γ1 is an injective up component, then p(Γ1) intersects S1 × {1}. So
consider a real c such that

Γ1 ∩ {c} × [1 − ǫ, 1] 6= ∅,

where ǫ > 0 was defined in the beginning of this section. As we did before, as
B− is closed, there must be a 0 < µ ≤ ǫ such that (c, 1 − µ) ∈ B−, and for all
1 − µ ≤ ỹ < 1, (c, ỹ) /∈ B−, that is, (c, 1 − µ) is the “highest” point of B− in
{c} × [1 − ǫ, 1]. We denote by w the segment {c}×]1 − µ, 1].

Let Γ2 be the connected component of B− that contains (c, 1 − µ). An
argument analogous to the one which implies that Γ1 can not be an injective
down component implies that Γ2 can not be an injective up component, so if Γ1 is
injective up, Γ1 6= Γ2 and thus Γ1∩Γ2 = ∅. In this way, Γ2 is either non-injective
or an injective down component. In the second case, as dist(Γ2, IR × {1}) > 0
(see lemma 9), it is not possible that Γ1 ≺ Γ2. But this implies that Γ2 ≺ Γ1

and so Γ2 intersects v, which is a contradiction with the definition of v. So Γ2

is a non-injective component. By exactly the same reasoning applied to Γ1, we
must have f̃(Γ2) ⊂ Γ2.

The following lemma concludes the proof of theorem 5, because either Γ1

is a non-injective component and f̃(Γ1) ⊂ Γ1 or, in case Γ1 is an injective up
component, Γ2 is non-injective and f̃(Γ2) ⊂ Γ2.

11



Lemma 13 : If Γ is a non-injective component of B− such that f̃(Γ) ⊂ Γ, then
p(Γ) = A.

Proof:
First of all, note that the set Γ has all the properties required for the set D in

subsection 2.1, so lemma 1 implies that either p(Γ) ⊃ S1×{0} or p(Γ) ⊃ S1×{1}.
Let us suppose, without loss of generality, that

p(Γ) ⊃ S1 × {0}.

Lemma 2 shows that, if p(Γ) is not dense in A, then there exists a simple
closed curve γ ⊂ interior(A), which is homotopically non trivial and such that
p(Γ) ∩ γ = ∅. But since p(Γ) is connected, we must have Γ ⊂ p−1(γ−), where
γ− is the connected component of γc which contains S1 × {0}.

As Γ is closed and S1 × {0} ⊂ p(Γ), we can find a point (c′, δ′) ∈ Γ such
that:

1. δ′ < ǫ, where ǫ > 0 was defined in the beginning of this section;

2. if v′ = c′ × [0, δ′[, then Γ ∩ v′ = ∅ and v′ ⊂ p−1(γ−).

Now, let us choose Ω′ as the connected component of (Γ ∪ v′)
c

that contains
] −∞, c′[×{0} and consider the following set:

Ωsat =
∞
∪

n=0
f̃−n(Ω′)

First note that, as the boundary of Ω′ is contained in Γ ∪ v′, for all integers
n > 0 we have:

∂
(
f̃−n(Ω′)

)
⊂

(
∞
∪

i=0
f̃−i(Γ)

)
∪

(
∞
∪

i=0
f̃−i(v′)

)
(10)

Clearly Ωsat is an open set. Let us show that it is connected. Each set
of the form f̃−i(Ω′) is connected because f̃ is a homeomorphism. Also, since

f̃−i(] −∞, c′[×{0}) ⊂] −∞, c′[×{0}, we have f̃−i(Ω′) ∩ Ω′ 6= ∅. But Ω′ is also
open and connected, so Ωsat must be connected.

For all integers n > 0, as f̃−n(Ω′) is connected, intersects IR × {0} and is

disjoint from IR×{1}, if we show that
(

∞
∪

i=0
f̃−i(Γ)

)
∪

(
∞
∪

i=0
f̃−i(v′)

)
⊂ p−1(γ−),

then expression (10) implies that f̃−n(Ω′) ⊂ p−1(γ−), which gives: Ωsat ⊂
p−1(γ−) and the proof is complete.

Let us prove that f̃−i(Γ) ⊂ p−1(γ−) for all integers i > 0. This follows from
the following:

Proposition 8 : There exists an integer k > 0 such that f̃−1(Γ) ⊂ Γ + (k, 0).

Proof:

12



Since f̃(Γ) ⊂ Γ, we get Γ ⊂ f̃−1(Γ). As Γ ⊂ V −, f̃−1(Γ) is limited to the
right, so there exists an integer k > 0 such that f̃−1(Γ) − (k, 0) ⊂ V −. If i ≥ 1,

f̃ i
(
f̃−1(Γ) − (k, 0)

)
= f̃ i−1(Γ) − (k, 0) ⊂ Γ − (k, 0) ⊂ Γ.

So f̃−1(Γ)− (k, 0) is contained in B−. As Γ ⊂ f̃−1(Γ) ⇒ Γ− (k, 0) ⊂ f̃−1(Γ)−

(k, 0). So, f̃−1(Γ)−(k, 0) intersects Γ because Γ ⊃ Γ−(k, 0), therefore f̃−1(Γ)−
(k, 0) (which is clearly connected) is contained in Γ. 2

The above proposition implies that for any integer i ≥ 1, f̃−i(Γ) ⊂ Γ +
(i.k, 0) ⊂ p−1(γ−).

We are left to deal with
∞
∪

i=0
f̃−i(v′). Let us show that f̃−1(v′) ⊂ Ω′. From

the choice of v′, f̃−1(v′) ∩ v′ = ∅ and f̃−1(v′) ∩ Γ = ∅ because v′ ∩ Γ = ∅ and

f̃(Γ) ⊂ Γ. Finally, the following inclusions

Ω′ ⊃] −∞, c′[×{0} and ] −∞, c′[×{0} ⊃ f̃−1(] −∞, c′[×{0})

imply that f̃−1(v′) ∩ Ω′ 6= ∅ and so f̃−1(v′) ⊂ Ω′ ⊂ p−1(γ−).

Thus, f̃−2(v′) ⊂ f̃−1(Ω′), whose boundary, ∂
(
f̃−1(Ω′)

)
, is contained in

f̃−1(Γ) ∪ f̃−1(v′) ⊂ p−1(γ−). As above, f̃−1(Ω′) is connected, intersects
IR × {0} and is disjoint from IR × {1}, so we get that

f̃−2(v′) ⊂ f̃−1(Ω′) ⊂ p−1(γ−).

Thus, f̃−3(v′) ⊂ f̃−2(Ω′) and an analogous argument implies that f̃−3(v′) ⊂

f̃−2(Ω′) ⊂ p−1(γ−). An induction shows that

f̃−n(v′) ⊂ f̃−n+1(Ω′) ⊂ p−1(γ−) for all integers n ≥ 1,

and the lemma is proved because the above implies that f̃−1(Ωsat) ⊂ Ωsat ⊂
p−1(γ−) and this contradicts the transitivity of f̃ . 2

As we know that at least one element of the set {Γ1, Γ2} is non-injective and
positively invariant, the above lemma implies that Γ1 or Γ2 must have a dense
projection to the annulus. One more thing can be said, which will be important
in the proof of the next theorem:

Proposition 9 : Both Γ1 and Γ2 are non-injective components.

Proof:
If the proposition is not true for Γ1, then as we already proved, Γ1 must be

an injective up component. As Γ2 does not cross v, and Γ1 does not cross w,
by the definitions of v and w, it must be the case that Γ1 ≺ Γ2 and so

dist(Γ2, IR × {0}) > 0,

13



something that contradicts lemma 13. So Γ1 is a non-injective component. To
conclude the proof we have to note that Γ1 and Γ2 have analogous properties,
Γ1 is the connected component of B− that contains the lowest point of B− in
{b}× [0, ǫ] and Γ2 is the connected component of B− that contains the “highest”
point of B− in {c}× [1− ǫ, 1]. So Γ2 must also be a non-injective component. 2

Summarizing, the above results prove that for ǫ > 0 satisfying the condition
stated in the beginning of this section and for every vertical segment u of the
form {l}×[0, ǫ] (or {l}×[1−ǫ, 1]) which intersects B−, the “lowest” (or “highest”)

component of B− in u must be non-injective, f̃ -positively invariant and dense
when projected to A.

5 Proof of theorem 6

Without loss of generality, suppose Γ ⊂ B− is an injective down connected
component. Consider a vertical v = {c} × [0, ǫ[, such that:

1) 0 < ǫ ≤ ǫ′, where ǫ′ is such that ∀(x̃, ỹ) ∈ IR × [0, ǫ′],

p1 ◦ f̃(x̃, ỹ) > x̃ + σ, for some σ > 0;
2) v ⊂ Γdown;
3) v ∩ B− 6= ∅.

(11)

The above is possible because p(B−) = A and so there exists a real c < mΓ

such that {c}×[0, ǫ′[∩B− 6= ∅, where ǫ′ comes from 1) of (11). As Γ is an injective
component, from the previous theorem we get that the “lowest” component of
B− in {c} × [0, ǫ′[ can not be Γ. So, if {c} × [0, ǫ′[ do not intersect Γ, then let
v = {c} × [0, ǫ′[, otherwise let 0 < ǫ < ǫ′ be such that v = {c} × [0, ǫ[⊂ Γdown

and (c, ǫ) ∈ Γ.
Denote by Θ the “lowest” connected component of B− in v and by

w = {c} × [0, δ[⊂ v

the vertical such that w∩B− = ∅ and (c, δ) ∈ Θ. From theorem 5 we know that
Θ satisfies the following conditions:

i) Θ is non-injective;

ii) f̃(Θ) ⊂ Θ;

iii) p(Θ) = A;

(12)

If Θ≺ Γ, then proposition 10 implies the existence of a real number d such
that Θ∩V −

d ⊂ Γdown. As dist(Γ, IR×{1}) > 0, we get that dist(Θ, IR×{1}) > 0,
something that contradicts property iii) of expression (12).

So we can assume that Γ ≺ Θ. As in some of the previous results, let Ω be
the connected component of (Θ∪w)c that contains ]−∞, c[×{0}. We know that

closure(Ω) ⊃ closure(Θc,down) (13)
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and, as Γ ≺ Θ, [Γ ∩ V −
c ] ⊂ Θc,down. So, using expression (13) we get that Γ ⊂ Ω

because Γ is connected, Γ ∩ Ω 6= ∅ and Γ ∩ ∂Ω ⊂ Γ ∩ (Θ ∪ w) = ∅. The rest of
our proof will be divided in two steps:

Step 1: Here we are going to prove that for all integers n > 0 and k ≥ 0,
f̃n(Γ) + (k, 0) is disjoint from Θ and f̃n(Γ) ⊂ Ω ⇒ f̃n(Γ) + (k, 0) ≺ Θ.

As Γ ≺ Θ, we get for any integer n > 0, that either f̃n(Γ) ⊂ Θ or f̃n(Γ)∩Θ =

∅ and f̃n(Γ) ≺ Θ (because f̃(Θ) ⊂ Θ), which implies that f̃n(Γ) ⊂ Ω. To begin,

suppose f̃(Γ) ⊂ Θ. This means that f̃−1(Θ) ⊃ Γ and so, if f̃−1(Θ) ∩ V = ∅

(remember that V = {0} × [0, 1]), then f̃−1(Θ) is contained in a connected

component of B−, that is, f̃−1(Θ) = Γ, a contradiction because Γ is injective

and Θ is not. So, f̃−1(Θ) ∩ V 6= ∅. Let Γ′ be the connected component of

f̃−1(Θ) ∩ V − that contains Γ. The fact that f̃−1(Θ) is connected implies that
Γ′ intersects V , is contained in B− and contains Γ. So, Γ′ = Γ and this is a
contradiction because Γ ⊂ Ω and Ω ∩ V = ∅. So, f̃(Γ) ∩ Θ = ∅ ⇒ f̃(Γ) ≺ Θ ⇒

f̃(Γ) ⊂ Ω.

Now note that f̃(Γ) is itself a connected component of B−. In order to
prove the previous assertion, denote by Π the connected component of B− that
contains f̃(Γ). If f̃(Γ) 6= Π, then f̃−1(Π) ⊃ Γ is not a connected component of

B−, so f̃−1(Π)∩V 6= ∅, which means that f̃−1(Π)∩w 6= ∅ because f̃−1(Π)∩Θ =

∅ and f̃−1(Π)∩Ω 6= ∅. If we denote by Γ∗ the connected component of f̃−1(Π)∩Ω

that contains Γ, then as f̃−1(Π) is connected, Γ∗ intersects w and is contained
in B−, a contradiction.

So, f̃(Γ) = Π ⊂ Ω and an induction using the above argument implies that
for every integer n > 0 :

1) f̃n(Γ) ∩ Θ = ∅;

2) f̃n(Γ) is a connected component of B−;

3) f̃n(Γ) ⊂ Ω;

4) f̃n(Γ) ≺ Θ;

As Γ ⊂ B− is an injective down connected component, the same holds for
f̃n(Γ) (for any integer n > 0). So the assertion from step 1 holds.

Step 2: Here we perform the same construction as we did in lemma 11, see
it for more details.

Let us fix some k′ > 0 in a way that f̃(Γ) + (k′, 0) intersects w. Denote

by Γ∗ an unbounded connected component of (f̃(Γ) + (k′, 0)) ∩ closure(Ω). By

the choice of k′ > 0 and the connectivity of f̃(Γ) + (k′, 0), we get that Γ∗ is
not contained in B− because it intersects w. So, there exists a positive integer
a1 > 0 such that f̃a1(Γ∗) intersects ]0, +∞[×[0, 1].

Step 1 implies that f̃a1(f̃(Γ)+(k′, 0)) = f̃a1+1(Γ)+(k′, 0) does not intersect
Θ and is smaller then it the order ≺ . So, as

Γ∗ ⊂ f̃(Γ) + (k′, 0) ⇒ f̃a1(Γ∗) ∩ Θ = ∅ and f̃a1(Γ∗) ≺ Θ.
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The fact that f̃a1(Γ∗) intersects ]0, +∞[×[0, 1] implies that f̃a1(Γ∗)∩closure(Ω)
has an unbounded connected component, Γ∗∗ which intersects w. So, Γ∗∗ is not
contained in B− and thus there exists an integer a2 > 0 such that f̃a2(Γ∗∗) ⊂

f̃a2+a1+1(Γ)+(k′, 0) intersects ]0, +∞[×[0, 1]. In exactly the same way as above,

we obtain an unbounded connected component of f̃a2(Γ∗∗)∩closure(Ω), denoted
Γ∗∗∗ which intersects w. So, Γ∗∗∗ is not contained in B− and there exists an
integer a3 > 0 such that f̃a3(Γ∗∗∗) intersects ]0, +∞[×[0, 1] and so on.

Thus, if we define ni = a1 + a2 + ... + ai + 1, we get that ni
i→∞
→ ∞

and for all i ≥ 1, f̃ni−1(f̃(Γ) + (k′, 0)) ⊃ f̃ni−1(Γ∗) = f̃a2+...+ai(f̃a1(Γ∗)) ⊃

f̃a2+...+ai(Γ∗∗) ⊃ ... ⊃ f̃ai(Γ
i−times

∗...∗ ) and f̃ai(Γ
i−times

∗...∗ ) intersects ]0, +∞[×[0, 1].
So,

f̃ni(Γ) intersects V − (k′, 0) = V−k′

and this contradicts theorem 2 and thus proves theorem 6.

6 Appendix

Here we prove the results from section 3 used to define the order between ele-
ments of UnConn.

Proof of proposition 2:
As we did in [1], let us consider the L, R-compactification of Ã = IR× [0, 1],

denoted by Â (we compactify Ã by adding two points to it, L and R, the left
and right ends, respectively, getting a closed disk). For every object (point, set,

etc) in Ã, we denote the corresponding object in Â by putting âon it.

Let zn ∈ Γ ∩ V −
a be a sequence such that p1(zn)

n→∞
→ −∞, or equivalently,

Â ∋ ẑn
n→∞
→ L.

Note that Γ̂ is connected, it intersects V̂a and contains L, so each ẑn belongs
to a connected component of Γ̂ ∩ V̂ −

a , denoted Γ̂n, which intersects V̂a. Let

Γ̂ni
be a convergent subsequence in the Hausdorff topology, Γ̂ni

n→∞
→ Γ̂∗. This

means that, given any open neighborhood N̂ of Γ̂∗, for all sufficiently large i,
Γ̂ni

is contained in N̂. So Γ̂∗ must contain L and must intersect V̂a. Suppose

that Γ̂∗ is not contained in Γ̂. This means that there exists P̂ ∈ Γ̂∗, with
P̂ /∈ Γ̂. As Γ̂ is closed, for some ǫ0 > 0, Bǫ0(P̂ ) ∩ Γ̂ = ∅, where Bǫ0(P̂ ) =

{ẑ ∈ Â : dEuclidean(ẑ, P̂ ) < ǫ0} and dEuclidean(•, •) is the usual Euclidean

distance in Â. But as Γ̂ni

n→∞
→ Γ̂∗ in the Hausdorff topology, for all sufficiently

large i, Γ̂∗ ⊂ (ǫ0/2−neighborhood of Γ̂ni
). Thus we get that dEuclidean(P̂ , Γ̂) ≤

dEuclidean(P̂ , Γ̂ni
) < ǫ0/2, something that contradicts the choice of P̂ ∈ Γ̂∗. So

Γ̂∗ ⊂ Γ̂ and the proposition is proved because although Γ∗ may not be connected,
it must contain an unbounded connected component which intersects Va. 2

Proof of proposition 3:
Let z ∈ Γb,down. This means that there exists a simple continuous arc θ

which connects z to a point z0 ∈] − ∞, b[×{0}, θ ∩ Γ = ∅ and θ ⊂ Γb,down ⊂
] − ∞, b[×[0, 1]. As a > b, θ ∩ ∂Γa,down ⊂ θ ∩ Γ = ∅. As z0 ∈ Γa,down, we get
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that θ ⊂ Γa,down, which implies that Γb,down ⊂ Γa,down. The other inclusion is
proved in a similar way. 2

Proof of lemma 4:
Without loss of generality, let us suppose that Γ1, Γ2 ⊂ V −. We first prove

that [Γ2 ∩ V −
a ] ⊂ Γ1a,down ∪ Γ1a,up. Suppose this is not the case. Then, there

exists an unbounded connected component of Γ2∩V −
a , denoted Γ∗

2, contained in
a connected component of Γc

1∩]−∞, a[×[0, 1], different from Γ1a,down and Γ1a,up.
Denote this component by Γ1a,mid. Fix some P ∈ Γ∗

2. As P /∈ Γ1, there exists
ǫ > 0 such that Bǫ(P ) ∩ Γ1 = ∅. Now, let α′ ⊂ IR×]0, 1[ be a simple continuous
arc which connects P to (1, 0.5), totally contained in Γc

1, which is an open
connected set that contains P and (1, 0.5). Moreover, as ]0, +∞[×[0, 1] ⊂ Γc

1,
we can take α′ so that it does not intersect ]1, +∞[×{0.5}. Finally, let α be
a simple continuous arc given by [1, +∞[×{0.5} plus a continuous part of α′,
whose endpoints are (1, 0.5) and some point in Γ∗

2, so that α ∩ Γ∗
2 consists of

only its end point (clearly, this end point may not be P ).
Properties of α ∪ Γ∗

2 :

• α ∪ Γ∗
2 is a closed, connected set, disjoint from IR × {0, 1};

• IR × {0} and IR × {1} are in different connected components of (α ∪ Γ∗
2)

c ;

• α is limited to the left, that is, there exists a number M > 0 such that,
for all points z̃ in α, p1(z̃) > −M ;

• (α ∪ Γ∗
2)∩Γ1 = ∅;

Let us choose b < a such that α ⊂ V +
b+1/2. By proposition 3, Γ1b,down ⊂

Γ1a,down and Γ1b,up ⊂ Γ1a,up, so we get that Γ∗
2 ∩ (Γ1b,down ∪ Γ1b,up) = ∅. Now

let β0 ⊂ Γ1b,down and β1 ⊂ Γ1b,up be simple continuous arcs which satisfy the
following:

• β0 connects a point of ] −∞, b[×{0} to a point of Γ1;

• β1 connects a point of ] −∞, b[×{1} to a point of Γ1;

So the following conditions hold

(β0 ∪ β1) ∩ Γ∗
2 = ∅ and (β0 ∪ β1) ⊂ V −

b ⇒ (β0 ∪ β1) ∩ α = ∅

and thus
(β0 ∪ Γ1 ∪ β1) ∩ (α ∪ Γ∗

2) = ∅,

something that contradicts the fact that (β0 ∪ Γ1 ∪ β1) is a closed connected
set and the “Properties of α ∪ Γ∗

2” listed above. So, [Γ2 ∩ V −
a ] ⊂ (Γ1a,down ∪

Γ1a,up).
Suppose now that for some Γ∗

2, Γ
∗∗
2 ∈ [Γ2 ∩ V −

a ] , we have Γ∗
2 ⊂ Γ1a,down and

Γ∗∗
2 ⊂ Γ1a,up. In the same way as above, there exists a simple continuous arc

α ⊂ IR×]0, 1[ which contains [1, +∞[×{0.5} and connects some point of Γ1 to

17



(1, 0.5), in a way that α ⊂ Γc
2 and α intersects Γ1 only at its end point. Clearly,

(α ∪ Γ1) is a closed connected set, which satisfies: IR × {0} and IR × {1} are in
different connected components of (α ∪ Γ1)

c .
Again, as above, let us choose b < a such that α ⊂ V +

b+1. Proposition 2

implies that
[
Γ∗

2 ∩ V −
b

]
and

[
Γ∗∗

2 ∩ V −
b

]
are non-empty. From what we did

above, we get that
[
Γ∗

2 ∩ V −
b

]
∪

[
Γ∗∗

2 ∩ V −
b

]
⊂ Γ1b,down ∪ Γ1b,up.

If,
[
Γ∗

2 ∩ V −
b

]
∩ Γ1b,up 6= ∅ ⇒ Γ∗

2 ∩ Γ1b,up 6= ∅, which implies, by proposition

3, that Γ∗
2 ∩ Γ1a,up 6= ∅, a contradiction. So,

[
Γ∗

2 ∩ V −
b

]
∩ Γ1b,up = ∅ and a

similar argument gives
[
Γ∗∗

2 ∩ V −
b

]
∩Γ1b,down = ∅. So,

[
Γ∗

2 ∩ V −
b

]
⊂ Γ1b,down and[

Γ∗∗
2 ∩ V −

b

]
⊂ Γ1b,up. Thus, there exists a simple continuous arc β0 contained in

Γ1b,down which connects a point of Γ∗
2 to some point in ]−∞, b[×{0}. Similarly,

there exists a simple continuous arc β1 contained in Γ1b,up which connects a
point of Γ∗∗

2 to some point in ] − ∞, b[×{1}. But (β0 ∪ Γ2 ∪ β1) is a closed
connected set and by construction of β0 and β1,

(β0 ∪ Γ2 ∪ β1) ∩ (α ∪ Γ1) = ∅,

which is a contradiction, completing the proof of the lemma. 2

Proof of lemma 5:
As in the previous lemma, let us suppose that Γ1, Γ2 ⊂ V −. From lemma

4, either [Γ2 ∩ V −
a ] ⊂ Γ1a,down or [Γ2 ∩ V −

a ] ⊂ Γ1a,up. In the first possibility,
Γ2 ≺a Γ1. So we are left to show that, if [Γ2 ∩ V −

a ] ⊂ Γ1a,up, then [Γ1 ∩ V −
a ] ⊂

Γ2a,down, which means that Γ1 ≺a Γ2.
Thus, let us suppose that [Γ2 ∩ V −

a ] ⊂ Γ1a,up and [Γ1 ∩ V −
a ] ⊂ Γ2a,up. If we

arrive at a contradiction, the lemma will be proved.
The argument here is very similar to the one used in the proof of lemma 4.

First, choose a simple continuous arc α ⊂ IR×]0, 1[ which contains [1, +∞[×{0.5}
and connects some point of Γ1 to (1, 0.5), in a way that α ⊂ Γc

2 and α intersects
Γ1 only at its end point. Clearly, (α ∪ Γ1) is a closed connected set, which satis-
fies: IR × {0} and IR × {1} are in different connected components of (α ∪ Γ1)

c .
As [Γ2 ∩ V −

a ] ⊂ Γ1a,up, there exists an element of [Γ2 ∩ V −
a ] , denoted Γ∗

2,
which by definition is closed, connected, unbounded to the left and is contained
in Γ1a,up. Again, let us choose b < a such that α ⊂ V +

b+1.

As in the end of the proof of lemma 4, we get that
[
Γ∗

2 ∩ V −
b

]
⊂ Γ1b,up. So,

there exists a simple continuous arc β1 contained in Γ1b,up which connects a
point of Γ∗

2 to some point in ] −∞, b[×{1}. Clearly, β1 ∩ Γ1 = ∅.
As [Γ1 ∩ V −

a ] ⊂ Γ2a,up, an argument similar to the one used to prove propo-
sition 2 implies:

Proposition 10 : There exists a real number c ≤ b, such that (Γ1 ∩ V −
c ) ∩

Γ2a,down = ∅.

Proof:
Suppose by contradiction, that the proposition is not true. Then, there is a

sequence of points zn ∈ Γ1∩Γ2a,down, such that p1(zn)
n→∞
→ −∞, or equivalently,
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Â ∋ ẑn
n→∞
→ L. Now, the proof goes exactly as in proposition 2 and we thus

obtain an unbounded connected component of Γ1 ∩ Γ2a,down, a contradiction
with [Γ1 ∩ V −

a ] ⊂ Γ2a,up. 2

Now let us look at Γ2c,down ⊂ Γ2b,down, where c comes from proposition 10.
Clearly, Γ1 ∩ Γ2c,down = ∅. So, there exists a simple continuous arc β0 which
connects a point of Γ2 to some point in ] − ∞, c[×{0}, in a way that β0 ∩ Γ2

is one extreme of β0, denoted m0, and β0\{m0} ⊂ Γ2c,down, which implies that
β0 ∩ Γ1 = ∅ and β0 ∩ α = ∅. So, (β0 ∪ Γ2 ∪ β1) is a closed connected set, which
intersects IR × {0} and IR × {1}. And, by construction

(β0 ∪ Γ2 ∪ β1) ∩ (α ∪ Γ1) = ∅,

a contradiction. So if [Γ2 ∩ V −
a ] ⊂ Γ1a,up, then [Γ1 ∩ V −

a ] ⊂ Γ2a,down, which
implies that Γ1 ≺a Γ2 and the lemma is proved. 2

Proof of lemma 6:
Suppose that b < a and Γ2 ≺a Γ1 ⇔ [Γ2 ∩ V −

a ] ⊂ Γ1a,down. Proposition
10 tells us that (Γ2 ∩ V −

a ) ∩ Γ1a,up is a limited set. So, as Γ1b,up ⊂ Γ1a,up,[
Γ2 ∩ V −

b

]
must be contained in Γ1b,down, which means that Γ2 ≺b Γ1. The

other implications are proved in a similar way. 2

Proof of lemma 7:
Let a ∈ IR be such that Γ1, Γ2 and Γ3 intersect Va. Then, [Γ1 ∩ V −

a ] ⊂
Γ2a,down and [Γ2 ∩ V −

a ] ⊂ Γ3a,down. In the proof of lemma 5, we proved that if Θ
and Λ are disjoint elements of UnConn and a ∈ IR is such that Θ and Λ intersect
Va then, [Θ ∩ V −

a ] ⊂ Λa,down implies [Λ ∩ V −
a ] ⊂ Θa,up. So, [Γ2 ∩ V −

a ] ⊂ Γ1a,up

and [Γ3 ∩ V −
a ] ⊂ Γ2a,up. Now, using proposition 10, let us choose b ≤ a such

that the following inclusions hold:

Γ3 ∩ V −
b ⊂ Γ2b,up

Γ1 ∩ V −
b ⊂ Γ2b,down

Γ2 ∩ V −
b ⊂ Γ3b,down

(14)

Finally, let us prove that Γ2b,down ⊂ Γ3b,down.
If this is not the case, then there exists a simple continuous arc α ⊂ Γ2b,down

that connects a point from ] − ∞, b[×{0} to a point P /∈ Γ3b,down. Thus α
intersects Γ3, a contradiction with expression (14). So, Γ1 ∩ V −

b ⊂ Γ2b,down ⊂
Γ3b,down, which implies that

[
Γ1 ∩ V −

b

]
⊂ Γ3b,down ⇔ Γ1 ≺ Γ3 and the lemma

is proved. 2

Proof of lemma 8:
Suppose that f̃(Γ2) ≺ f̃(Γ1). As Γ1 ≺ Γ2, for any a ∈ IR such that Γ1 and

Γ2 intersect Va, the proof of lemma 5 implies that [Γ2 ∩ V −
a ] ⊂ Γ1a,up. From

proposition 10, there exists a sufficiently small b < 0 such that:

Γ1 ∩ V −
b ⊂ Γ2b,down

Γ2 ∩ V −
b ⊂ Γ1b,up

f̃(Γ2) ∩ V −
b ⊂ f̃(Γ1)b,down

(15)
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Let c < b be such that f̃±1(Vc) ∩ Vb = ∅. From our previous results, we get
that

Γ1 ∩ V −
c ⊂ Γ2c,down

Γ2 ∩ V −
c ⊂ Γ1c,up

f̃(Γ2) ∩ V −
c ⊂ f̃(Γ1)c,down

.

So, there exists a simple continuous arc α ⊂ f̃(Γ1)c,down ⊂ V −
c that con-

nects a point from ] − ∞, c[×{0} to a point P ∈ f̃(Γ2). From the choice of

c, f̃−1(α) ⊂ V −
b and it connects a point from ]−∞, b[×{0} to f̃−1(P ) ∈ Γ2. As

α ⊂ f̃(Γ1)c,down, α ∩ f̃(Γ1) = ∅, so f̃−1(α) ∩ Γ1 = ∅. Thus, f̃−1(α) ⊂ Γ1b,down,

which implies that Γ2 ∩ Γ1b,down 6= ∅ and this contradicts (15). So, f̃(Γ1) ≺

f̃(Γ2). The other implication is proved in an analogous way. 2

Proof of proposition 4:
Suppose there exists s0 > 1 (the smallest one) such that Γ − (s0, 0) ⊂ Γ.

This means that Γ, Γ − (1, 0), ..., Γ − (s0 − 1, 0) are all disjoint.
As Γ − (1, 0) ⊂ Γup (which implies that Γ ≺ (Γ − (1, 0))), we get that

(Γ − (s, 0)) ∩ (Γ− (s + 1, 0)) = ∅ and Γ− (s, 0) ≺ Γ − (s + 1, 0), for all integers
s > 0. So, in particular, using lemma 7, we obtain the following implications:

1) Γ ≺ Γ − (1, 0) ≺ Γ − (2, 0) ≺ Γ − (3, 0) ≺ ... ≺ Γ − (s0 − 1, 0)
2) Γ − (s0 − 1, 0) ≺ Γ − (s0, 0).

(16)

So, as Γ − (s0, 0) ⊂ Γ and Γ ∩ (Γ − (s0 − 1, 0)) = ∅, we get from 2) of (16)
that Γ − (s0 − 1, 0) ≺ Γ, a contradiction with 1) of (16). Thus for all integers
i̇ > 0, Γ ∩ (Γ − (i, 0)) = ∅ and so

Γ ≺ Γ − (1, 0) ≺ Γ − (2, 0) ≺ Γ − (3, 0) ≺ ... ≺ Γ − (i, 0).

But this clearly implies that Γ − (i, 0) ⊂ Γup, because (Γ − (i, 0)) ∩ VmΓ
= ∅. 2

Proof of lemma 9:
In both cases, the proof is analogous, so suppose Γ is a down component.

This means that Γ − (1, 0) is contained in Γup.
Thus, for any x̃ < mΓ (see expression (3) for the definition of mΓ), if we

consider the segment {x̃} × [0, ỹ∗], where

ỹ∗ = ỹ∗(x̃) = sup{ỹ ∈]0, 1[: Γ ∩ {x̃} × [0, ỹ] = ∅}, (17)

we get that (Γ − (1, 0)) ∩ {x̃} × [0, ỹ∗] = ∅.
Now, consider a point (mΓ − 1, ỹΓ) ∈ Γ− (1, 0) and a simple continuous arc

γ ⊂ int(Ã), such that:
i) γ ∩ (Γ − (1, 0)) = (mΓ − 1, ỹΓ)
ii) γ ∩ Γ = ∅
iii) the endpoints of γ are (mΓ − 1, ỹΓ) and (mΓ + 1, 0.5)
iv) γ ∩ {mΓ + 1} × [0, 1] = (mΓ + 1, 0.5)
As Γ − (1, 0) ⊂ Γup and (Γ ∪ (Γ − (1, 0)))

c
is connected, it is possible to

choose γ as above.

20



The complement of the closed connected set (Γ−(1, 0))∪γ∪{mΓ+1}× [0, 1]
has exactly two connected components in ]−∞, mΓ + 1[×[0, 1], one containing
] − ∞, mΓ + 1[×{0}, denoted ((Γ − (1, 0)) ∪ γ)down and the other containing
]−∞, mΓ+1[×{1}, denoted ((Γ−(1, 0))∪γ)up. Note that this construction is not
unique, because we may have more then one point in (Γ−(1, 0))∩{mΓ−1}×[0, 1].
Nevertheless, for any such choice, Γ ⊂ ((Γ − (1, 0)) ∪ γ)down. This follows from
the fact that, for any

x̃ < min {mΓ, min{x̃ ∈ IR : (x̃, ỹ) ∈ γ, for some 0 < ỹ < 1}} − 10,

the segment {x̃} × [0, ỹ∗] (see (17)) does not intersect (Γ − (1, 0)) ∪ γ ∪ {mΓ +
1} × [0, 1] and (x̃, ỹ∗) ∈ Γ.

Now suppose, by contradiction, that dist(Γ, IR × {1}) = 0. As Γ is closed
and Γ ∩ IR × {1} = ∅, we get that for every

M ≤ M0 = min {mΓ − 10, min{x̃ ∈ IR : (x̃, ỹ) ∈ γ, for some 0 < ỹ < 1}} − 10

there exists ǫ > 0 such that if z̃ ∈ Γ ∩ IR×[1 − ǫ, 1], then p1(z̃) < M. So, for
M0 and ǫ > 0 as above, let us choose a point z̃0 ∈ Γ ∩ IR×[1 − ǫ, 1] such that
p1(z̃0) ≥ p1(z̃) for all z̃ ∈ Γ ∩ IR×[1 − ǫ, 1] and

dist(z̃0, IR × {1}) < dist(z̃, IR × {1}) for all
z̃ ∈ Γ ∩ {p1(z̃0)} × [1 − ǫ, 1] with z̃ 6= z̃0.

Intuitively, if we start going left from {mΓ}× [0, 1], z̃0 is the point of Γ with
largest possible x̃ and ỹ coordinates, that belongs to IR×[1 − ǫ, 1].

Now consider a closed vertical segment l contained in IR×[1−ǫ, 1], starting at
z̃0 and ending at IR×{1}. By construction of l, l∩Γ = z̃0. As Γ ⊂ ((Γ− (1, 0))∪
γ)down and l ∩ (γ ∪ {mΓ + 1} × [0, 1]) = ∅, we get that l ∩ (Γ − (1, 0)) 6= ∅. So,
there exists z̃1 ∈ l ∩ (Γ − (1, 0)) which implies that z̃1 + (1, 0) ∈ (l + (1, 0)) ∩ Γ.
And this contradicts the choice of z̃0. 2
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