Homeomorphisms of the annulus with a transitive lift II

Salvador Addas-Zanata and Fábio Armando Tal

Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

Abstract

Let f be a homeomorphism of the closed annulus A that preserves the orientation, the boundary components and that has a lift \tilde{f} to the infinite strip \tilde{A} which is transitive. We show that, if the rotation number of \tilde{f} restricted to both boundary components of A is strictly positive, then there exists a closed nonempty connected set $\Gamma \subset \tilde{A}$ such that $\Gamma \subset$ $] - \infty, 0] \times [0, 1]$, Γ is unbounded, the projection of Γ to A is dense, $\Gamma (1, 0) \subset \Gamma$ and $\tilde{f}(\Gamma) \subset \Gamma$. Also, if p_1 is the projection on the first coordinate of \tilde{A} , then there exists d > 0 such that, for any $\tilde{z} \in \Gamma$,

$$\limsup_{n\to\infty}\frac{p_1(\tilde{f}^n(\tilde{z}))-p_1(\tilde{z})}{n}<-d.$$

 ${\bf Key}$ words: closed connected sets, order, transitivity, stable sets, compactification

e-mail: sazanata@ime.usp.br and fabiotal@ime.usp.br

Addas-Zanata and Tal are partially supported by CNPq, grants: 304803/2006-5 and 304360/05-8 respectively

1 Introduction and statements of the main results

In this paper we continue the study started in [1]. There, we considered homeomorphisms f of the closed annulus $A = S^1 \times [0, 1]$ ($S^1 = \mathbb{R}/\mathbb{Z}$), which preserve the orientation, the boundary components and have a transitive lift \tilde{f} to the universal cover of the annulus, $\tilde{A} = \mathbb{R} \times [0, 1]$.

Results from [3] and [4] imply that these are reasonable hypotheses, see the explanation below.

First note that, given a homeomorphism $f : A \to A$ which preserves orientation and the boundary components, for any Borel probability f-invariant measure μ , the rotation number of μ , is defined as follows.

Let $p_1 : \widetilde{A} \to \mathbb{R}$ be the projection on the first coordinate and let $p : \widetilde{A} \to A$ be the covering mapping. Fixed f and \widetilde{f} , the displacement function $\phi : A \to \mathbb{R}$ is defined as

$$\phi(x,y) = p_1 \circ \tilde{f}(\tilde{x},\tilde{y}) - \tilde{x},\tag{1}$$

for any $(\tilde{x}, \tilde{y}) \in p^{-1}(x, y)$. The rotation number of μ is then given by

$$\rho(\mu) = \int_A \phi(x, y) d\mu.$$

Following the usual definition (see [2]), we refer to the set of area, orientation and boundary components preserving homeomorphisms of the annulus, which satisfy $\rho(Leb) = 0$ for a certain fixed lift \tilde{f} , as the set of rotationless homeomorphisms. Every time we say that f is a rotationless homeomorphism, a special lift \tilde{f} is fixed and used to define ϕ .

In [3] it is proved that the transitivity of \tilde{f} holds for a residual subset of rotationless homeomorphisms of the annulus and the results in [4] suggest that the same statement holds in the C^1 topology.

Here we consider the following situation: Suppose f is an orientation and boundary components preserving homeomorphism of the annulus which has a transitive lift $\tilde{f}: \tilde{A} \to \tilde{A}$ (one with a dense orbit). We denote the set of such mappings by $Hom_+^{trans}(A)$. So every time we say $f \in Hom_+^{trans}(A)$ and refer to a lift \tilde{f} of f, we are always considering a transitive lift (it is possible that fhas more then one transitive lift, we choose any of them and fix it).

Before we state the theorems proved in [1], we need a definition:

Definition : B^- is the subset of

$$B = \bigcap_{n \le 0} \tilde{f}^n(] - \infty, 0] \times [0, 1])$$

which contains exactly all unbounded connected components of B and nothing else.

Theorem 1 : If $f \in Hom_+^{trans}(A)$ and the rotation number of \tilde{f} restricted to the boundary components of the annulus is strictly positive, then B^- is not empty and in particular, $B^- \cap \{0\} \times [0,1] \neq \emptyset$. Also B^- is positively invariant, closed and does not intersect the boundary of \tilde{A} .

Theorem 2 : Under the hypotheses of theorem 1, the ω -limit set of B^- , $\omega(B^-) \stackrel{\text{def.}}{=} \bigcap_{n=0}^{\infty} \overline{\left(\bigcup_{i=n}^{\infty} \widetilde{f}^i(B^-)\right)}$ is empty.

Thus, iterates of B^- by \tilde{f} converge to the left end of \tilde{A} . The properties of B^- allow us to extend this theorem and obtain a stronger result:

Theorem 3 : Under the hypotheses of theorem 1, there exists a real number $\rho^+(B^-) < 0$ such that, if $\tilde{z} \in B^-$, then

$$\limsup_{n \to \infty} \frac{p_1(\widehat{f}^n(\widetilde{z})) - p_1(\widetilde{z})}{n} \le \rho^+(B^-) < 0.$$

The last theorem shows that all points in B^- have a "minimum negative velocity" in the strip \tilde{A} .

An important consequence of theorem 3 is that, even though there are points with rotation number in $]\rho^+(B^-), 0[$, they do not belong to B^- . In particular, if such points are hyperbolic periodic saddles that have unstable manifolds unbounded to the left, then they must also be unbounded to the right.

Theorem 4 : Under the hypotheses of theorem 1, $p(B^-)$ is dense in A.

Proofs of the above results can be found in [1].

Our main objective here is to have a more precise understanding of the structure of B^- . It will be shown that a connected component Γ of B^- can, a priory, be of one of the following types:

1. injective, which means that $\Gamma \cap (\Gamma + (s, 0)) = \emptyset$, for all integers $s \neq 0$;

2. non injective, which means that $\Gamma - (1,0) \subset \Gamma$.

Our theorems are the following:

Theorem 5 : Under the hypotheses of theorem 1, there exists a non injective connected component Γ of B^- , such that $p(\Gamma)$ is dense in the annulus, $\tilde{f}(\Gamma) \subset \Gamma$, and for some positive integer k, $\tilde{f}^{-1}(\Gamma) \subset \Gamma + (k, 0)$, which implies that $f(p(\Gamma)) = p(\Gamma)$.

Theorem 6 : Under the hypotheses of theorem 1, all connected component of B^- are non injective.

It is worth noticing that, if Γ is the component of B^- described in theorem 5, it is a closed connected \tilde{f} -invariant set which contains infinite negative integer translates of all its points. If we look at the projection of a connected piece of Γ to the annulus, it can not separate the boundary components of A, because f is transitive and, as we will show in proposition 1, Γ^c is connected. Thus, there can not be a compact connected subset of Γ containing both a point P and P - (1, 0).

Theorems 3, 4, 5 and 6 above have an interesting consequence. If Γ is as in theorem 5, and we consider the set $\Gamma_{sat} = \bigcup_{i=0}^{\infty} \Gamma + (i, 0)$, then Γ_{sat} is dense and connected in the strip, $\tilde{f}(\Gamma_{sat}) = \Gamma_{sat}$ and, in a sense, all points in Γ_{sat} converge to the left end of \tilde{A} through iterations of \tilde{f} with a strictly negative velocity. Therefore Γ_{sat} can be seen as part of a dense "stable manifold of the point L in the L, R-compactification (left and right compactification) of the strip".

2 Preliminaries for the proofs

In this section we state some simple results proved in [1] that will be necessary for our arguments and give a general set of hypotheses that already appeared in [1].

2.1 Hypothesis satisfied by the set D

Let $D \subset \widetilde{A}$ be a non-empty closed set with the following properties:

- $\widetilde{f}(D) \subset D;$
- $D \subset]-\infty,0] \times [0,1];$
- Every connected component of D is unbounded;
- $D \cap \mathbb{R} \times \{i\} = \emptyset, i \in \{0, 1\};$
- If $\tilde{z} \in D$ then $\tilde{z} (1,0) \in D$.

It is easily verified that B^- has these properties, so every result shown for D must hold in the particular case of interest to us. In the proof of theorem 5, we find another set with the properties listed above.

2.2 On the structure of $p(D) \subset A$

Remember that \tilde{f} is transitive and it moves points in $\partial \tilde{A}$ uniformly to the right.

Lemma 1 : $\overline{p(D)} \supset S^1 \times \{0\}, \text{ or } \overline{p(D)} \supset S^1 \times \{1\}.$

Lemma 2 : If $\overline{p(D)} \neq A$, then $\overline{p(D)}^c$ is connected and dense in A and, moreover, $\overline{p(D)}^c$ contains a homotopically non trivial simple closed curve in the open annulus $S^1 \times]0, 1[$.

3 On the structure of $D \subset \widetilde{A}$

Let Γ be a connected component of D, see subsection 2.1. We recall that, by the definition of D, Γ is unbounded and contained in $] - \infty, 0] \times [0, 1]$. Before going on, we present a few related definitions. For every $a \in \mathbb{R}$ we let

$$V_a = \{a\} \times [0,1], \ V_a^+ = [a, +\infty[\times[0,1] \text{ and } V_a^- =] - \infty, a] \times [0,1].$$
(2)

If a = 0 we denote V_0 and $V_0^{+(-)}$ simply by V and $V^{+(-)}$. The next proposition is important for the results in this section.

Proposition 1 : Γ^c is connected.

Proof:

Clearly, there is one connected component of Γ^c which contains $int(V^+)$, $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$.

So, if by contradiction, we suppose that Γ^c has another connected component, denoted C, contained in V^- , its boundary must be contained in Γ . As $\tilde{f}^n(\Gamma) \subset V^-$ for all $n \geq 0$, we get that $\tilde{f}^n(C) \subset V^-$ for all $n \geq 0$. So for every $\tilde{z} \in C$, $\limsup_{n \to \infty} p_1 \circ \tilde{f}^n(\tilde{z}) \leq 0$. As C is an open subset of \tilde{A} , this contradicts the transitivity of \tilde{f} . \Box

For a connected component Γ of D, let us define

$$m_{\Gamma} = \sup\{\widetilde{x} \in \mathbb{R} : (\widetilde{x}, \widetilde{y}) \in \Gamma, \text{ for some } \widetilde{y} \in [0, 1]\} \le 0.$$
(3)

Consider the closed connected set $\Gamma \cup \{m_{\Gamma}\} \times [0, 1]$. Its complement has two open unbounded connected components in

]
$$-\infty, m_{\Gamma}[\times [0,1]],$$

one of which contains $] - \infty$, $m_{\Gamma}[\times\{0\}$ (denoted Γ_{down}) and another one which contains $] - \infty$, $m_{\Gamma}[\times\{1\}$ (denoted Γ_{up}). It is possible that $(\Gamma \cup \{m_{\Gamma}\} \times [0, 1])^c$ has other unbounded (to the left) connected components. But only Γ_{up} and Γ_{down} will be of interest to us, because of the following fact, whose proof is an exercise which depends only on the connectivity of Γ (see lemma 4 for a generalization of this result):

Fact 1 : Given a connected component Γ of D, if Θ is a closed unbounded connected set, which satisfies $\Theta \cap \Gamma = \emptyset$ and $\Theta \subset] -\infty$, $m_{\Gamma}[\times[0, 1]]$, then $\Theta \subset \Gamma_{up}$ or $\Theta \subset \Gamma_{down}$.

In the following, we will generalize the above construction and present some simple results on the connected components of D. These results will permit us to define an order \prec on the connected components of D. Actually, the next results will hold in a slightly more general context: Any two disjoint closed unbounded connected sets $\Theta_1, \Theta_2 \subset V^-$, which have connected complements will be related by this order, that is either $\Theta_1 \prec \Theta_2$ or $\Theta_2 \prec \Theta_1$. We choose to define the partial order in this setting because, if Γ_1, Γ_2 are connected components of D, then $\tilde{f}(\Gamma_1)$ and $\tilde{f}(\Gamma_2)$ may not be, they are just contained in connected components of D. But in this case, if $\Gamma_1 \prec \Gamma_2$, as $\tilde{f}(\Gamma_1)$ and $\tilde{f}(\Gamma_2)$ are disjoint closed unbounded connected sets which have connected complements, we will show that $\tilde{f}^{\pm 1}(\Gamma_1) \prec \tilde{f}^{\pm 1}(\Gamma_2)$, that is $\tilde{f}^{\pm 1}$ preserves the order. The proofs of the following results are easy, but some are long and a little boring. For this reason, they will be given in the appendix.

To begin, let us define the set:

 $UnConn = \{\Gamma \subset int(\widetilde{A}) : \Gamma \text{ is a closed unbounded}$ connected set, bounded to the right, which has a connected complement}

Lemma 3 : Let $\Gamma \in UnConn$ and $a \in \mathbb{R}$ be such that V_a intersects Γ . Then, $\Gamma^c \cap]-\infty, a[\times[0,1] \text{ has at least two (open) connected components, one containing}] <math>-\infty, a[\times\{0\} \text{ and the other containing }] -\infty, a[\times\{1\}.$

Proof: Immediate. \Box

Proposition 2 : Let $\Gamma \in UnConn$ and let $a \in \mathbb{R}$ be such that V_a intersects Γ . Then, $\Gamma \cap V_a^-$ has at least one unbounded connected component, which intersects V_a .

Proof: See the appendix. \Box

Before going on, let us define the sets $\Gamma_{a,down}$ and $\Gamma_{a,up}$ as follows:

$$\begin{split} \Gamma_{a,down} \mbox{ (resp. } \Gamma_{a,up}) \mbox{ is the connected component of } \Gamma^c \cap] &-\infty, a] \times [0,1] \\ \mbox{ that contains }] &-\infty, a [\times \{0\} \mbox{ (resp. }] &-\infty, a [\times \{1\}). \end{split}$$

If $\Gamma \in UnConn$ intersects some vertical V_a , it is possible that $\Gamma \cap V_a^-$ has more than one unbounded connected component. We denote by

 $[\Gamma \cap V_a^-]$ = union of all unbounded connected components of $\Gamma \cap V_a^-$. (4)

Proposition 3 : Let $a, b \in \mathbb{R}$ be such that b < a and let Γ be an element of UnConn, which intersects V_a . Then $\Gamma_{b.down} \subset \Gamma_{a.down}$ and $\Gamma_{b.up} \subset \Gamma_{a.up}$.

Proof: See the appendix. \Box

Let $\Gamma_1, \Gamma_2 \in UnConn$ be disjoint sets and let V_a be a vertical which intersects Γ_1 .

Lemma 4 : One and only one of the following possibilities must hold: $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,down} \text{ or } [\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}.$ Proof:

See the appendix. \Box

The previous results will be used in what follows in order to define an order among disjoint elements of UnConn.

Let Γ_1 and Γ_2 be disjoint elements of UnConn and let $a \in \mathbb{R}$ be such that Γ_1 and Γ_2 intersect V_a . We say that $\Gamma_2 \prec_a \Gamma_1$, if $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,down}$.

Lemma 5 : Given Γ_1, Γ_2 and $a \in \mathbb{R}$ as above, either $\Gamma_2 \prec_a \Gamma_1$ or $\Gamma_1 \prec_a \Gamma_2$.

Proof:

See the appendix. \Box

Finally, in order to present a good definition of order, we need the following two lemmas:

Lemma 6 : Let Γ_1 and Γ_2 be elements of UnConn such that $\Gamma_1 \cap \Gamma_2 = \emptyset$ and let $a, b \in \mathbb{R}$ be such that Γ_1 and Γ_2 intersect V_a and V_b . Then we have the following:

$$\begin{array}{ccc} \Gamma_1 \prec_a \Gamma_2 & \Leftrightarrow & \Gamma_1 \prec_b \Gamma_2 \\ \Gamma_2 \prec_a \Gamma_1 & \Leftrightarrow & \Gamma_2 \prec_b \Gamma_1 \end{array}$$

Proof:

See the appendix. \Box

So if Γ_1 and Γ_2 are disjoint elements of UnConn and $a \in \mathbb{R}$ is such that $\Gamma_2 \prec_a \Gamma_1$, we simply say that $\Gamma_2 \prec \Gamma_1$.

Also, let us prove the following transitivity lemma:

Lemma 7 : If $\Gamma_1, \Gamma_2, \Gamma_3$ are elements of UnConn that do not intersect, such that $\Gamma_1 \prec \Gamma_2$ and $\Gamma_2 \prec \Gamma_3$, then $\Gamma_1 \prec \Gamma_3$.

Proof:

See the appendix. \Box

Our next objective is to show that $\tilde{f}^{\pm 1}$ preserves the order just defined.

Lemma 8 : Let Γ_1, Γ_2 be disjoint elements of UnConn and suppose $\Gamma_1 \prec \Gamma_2$. Then, $\tilde{f}^{\pm 1}(\Gamma_1) \prec \tilde{f}^{\pm 1}(\Gamma_2)$.

Proof:

See the appendix. \Box

We now, for a fixed connected component Γ of D (see subsection 2.1), consider the covering mapping $p \mid_{\Gamma}$. It may or may not be injective. We examine the consequences in each case:

3.1 The covering mapping $p|_{\Gamma}$ is not injective

This means that there exists $\tilde{z} \in A$ and an integer s > 0 such that $\tilde{z}, \tilde{z} + (s, 0) \in \Gamma$. So, $\Gamma \cap (\Gamma - (s, 0)) \neq \emptyset$. The last property of D tell us that $\Gamma - (s, 0) \subset D$. But this implies that

$$\Gamma - (s, 0) \subset \Gamma, \tag{5}$$

because Γ is a connected component of D.

Suppose that $\Gamma - (1,0)$ is not contained in Γ . As $\Gamma - (1,0) \subset D$, we get that $(\Gamma - (1,0)) \cap \Gamma = \emptyset$. As $\Gamma - (1,0)$ does not intersect $V_{m_{\Gamma}} = \{m_{\Gamma}\} \times [0,1]$, lemma 4 implies that either $\Gamma - (1,0) \subset \Gamma_{down}$ or $\Gamma - (1,0) \subset \Gamma_{up}$. Suppose it is contained in Γ_{up} .

Proposition 4 : If $\Gamma - (1, 0) \subset \Gamma_{up}$, then $\Gamma - (i, 0) \subset \Gamma_{up}$ for all integers i > 1.

Proof: See the appendix. \Box

Therefore, if the map $p \mid_{\Gamma}$ is not injective, then

$$\Gamma - (1,0) \subset \Gamma. \tag{6}$$

As we already said in the introduction, Γ will be called a non injective component.

3.2 The covering mapping $p \mid_{\Gamma}$ is injective

This implies that $\Gamma \cap (\Gamma + (s, 0)) = \emptyset$, for all integers $s \neq 0$. In particular, $\Gamma \cap (\Gamma - (1, 0)) = \emptyset$ and we use this relation to describe the asymptotic behavior of $p(\Gamma)$ around the annulus.

Definition: We say that Γ is a down component of D if $\Gamma \prec \Gamma - (1,0)$ and, analogously, Γ is an up component if $\Gamma - (1,0) \prec \Gamma$.

Lemma 9 : If $\Gamma \subset D$ is a down component, then $dist(\Gamma, \mathbb{R} \times \{1\}) > 0$ and analogously, if $\Gamma \subset D$ is an up component, then $dist(\Gamma, \mathbb{R} \times \{0\}) > 0$.

Proof: See the appendix. \Box

In both cases we will say that Γ is an injective component.

4 Proof of theorem 5

Let $\epsilon > 0$ be such that for all $(\tilde{x}, \tilde{y}) \in \mathbb{R} \times \{[0, \epsilon] \cup [1 - \epsilon, 1]\}, p_1 \circ \tilde{f}(\tilde{x}, \tilde{y}) > \tilde{x} + \sigma$, for a certain fixed $\sigma > 0$. Such $\epsilon > 0$ exists since \tilde{f} moves points in the boundary of \tilde{A} uniformily to the right. As theorem 4 says that $\overline{p(B^-)} = A$, there exists a real b such that

 $B^- \cap \{b\} \times [0, \epsilon] \neq \emptyset.$

In the following we will consider the "lowest" component of B^- in $\{b\} \times [0, \epsilon]$.

First, remember that as B^- is closed, there must be a $0 < \delta \leq \epsilon$ such that $(b, \delta) \in B^-$, and for all $0 \leq \tilde{y} < \delta, (b, \tilde{y}) \notin B^-$, that is, (b, δ) is the "lowest" point of B^- in $\{b\} \times [0, \epsilon]$. We denote by v the segment $\{b\} \times [0, \delta]$ and by Γ_1 the connected component of B^- that contains (b, δ) .

Definition: Let Ω be the open connected component of $(\Gamma_1 \cup v)^c$, which contains $] - \infty, b[\times \{0\}.$

Proposition 5 : $\widetilde{f}(\Gamma_1) \cap v = \emptyset$.

Proof:

Immediate. \Box

Proposition 6 : If $\Gamma_1 \cap \widetilde{f}(\Gamma_1) = \emptyset$ and $\Gamma_1 \prec \widetilde{f}(\Gamma_1)$, then $\widetilde{f}(v) \cap \Gamma_1 = \emptyset$.

Proof: As $\widetilde{f}(\Gamma_1) \subset B^-$, either $\Gamma_1 \supset \widetilde{f}(\Gamma_1)$ or $\Gamma_1 \cap \widetilde{f}(\Gamma_1) = \emptyset$. So, if $\Gamma_1 \prec \widetilde{f}(\Gamma_1)$, we get by lemma 8 that $\widetilde{f}^{-1}(\Gamma_1) \prec \Gamma_1$, so $\left[\widetilde{f}^{-1}(\Gamma_1) \cap V_b^-\right] \subset \Gamma_{1b,down}$.

As $closure(\Omega) \supset closure(\Gamma_{1b,down})$, we get that $\left[\widetilde{f}^{-1}(\Gamma_1) \cap V_b^{-}\right] \subset closure(\Omega)$. If $\widetilde{f}^{-1}(\Gamma_1) \cap v \neq \emptyset$, then consider an element $\Upsilon \in \left[\widetilde{f}^{-1}(\Gamma_1) \cap closure(\Omega)\right] =$ {unbounded connected components of $\widetilde{f}^{-1}(\Gamma_1) \cap closure(\Omega)$ }. The connectivity of $\widetilde{f}^{-1}(\Gamma_1)$ and the fact that $\widetilde{f}^{-1}(\Gamma_1) \cap \Gamma_1 = \emptyset$ imply that Υ intersects v. As $\Upsilon \subset V^-$ and $\widetilde{f}(\Upsilon) \subset \Gamma_1$, we get that $\Upsilon \subset B^-$, something in contradiction with $B^- \cap v = \emptyset$. So $\widetilde{f}^{-1}(\Gamma_1) \cap v = \emptyset$. \Box

Lemma 10 : Either $\Gamma_1 \supset \tilde{f}(\Gamma_1)$ or $\tilde{f}(\Gamma_1) \prec \Gamma_1$, that is, $\tilde{f}(\Gamma_1)$ is not above Γ_1 . Proof:

Suppose $\Gamma_1 \prec \tilde{f}(\Gamma_1)$. Clearly, as $\partial \Omega \subset \Gamma_1 \cup v$, $\tilde{f}(\Gamma_1) \cap \Gamma_1 = \emptyset$, $v \cap \tilde{f}(v) = \emptyset$ and $\tilde{f}(\Gamma_1) \cap v = \tilde{f}(v) \cap \Gamma_1 = \emptyset$ (see the previous proposition), we obtain

$$\tilde{f}(\partial\Omega)\cap\Omega=\emptyset.$$

As $] - \infty, b[\times\{0\} \subset \tilde{f}(] - \infty, b[\times\{0\})$, we get that $\Omega \subset \tilde{f}(\Omega)$. But, since Ω is open and limited to the right, this contradicts the transitivity of \tilde{f} . \Box

So, lemma 10 implies that either $\tilde{f}(\Gamma_1) \subset \Gamma_1$ or $\tilde{f}(\Gamma_1) \prec \Gamma_1$. In order to analyze the two previous possibilities, we have to consider all possible "shapes" for Γ_1 :

1) Γ_1 is an injective down component;

2) Γ_1 is an injective up component;

3) Γ_1 is a non-injective component;

Now we will exclude some of the above possibilities, but before we present an useful proposition. **Proposition 7** : If Γ is a connected component of B^- , injective or non-injective, which satisfies $\tilde{f}(\Gamma) \cap \Gamma = \emptyset$ and $\tilde{f}(\Gamma) \prec \Gamma$, then $\tilde{f}^n(\Gamma) \cap \Gamma = \emptyset$ and $\tilde{f}^n(\Gamma) \prec \Gamma$ for all integers n > 0.

Proof:

By contradiction, suppose there exists some $n_0 > 1$ (the smallest one) such that $\tilde{f}^{n_0}(\Gamma) \cap \Gamma \neq \emptyset$. This means that Γ , $\tilde{f}(\Gamma)$, $\tilde{f}^2(\Gamma)$, ..., $\tilde{f}^{n_0-1}(\Gamma)$ are disjoint closed connected subsets of the strip \tilde{A} , each of them having a connected complement and $\tilde{f}^{n_0}(\Gamma) \subset \Gamma$. As $\tilde{f}(\Gamma_1) \prec \Gamma_1$, lemmas 7 and 8 imply that

$$\widetilde{f}^{n_0-1}(\Gamma) \prec \dots \prec \widetilde{f}^2(\Gamma) \prec \widetilde{f}(\Gamma) \prec \Gamma.$$
(7)

On the other hand, as $\tilde{f}^{n_0}(\Gamma) \cap \tilde{f}^{n_0-1}(\Gamma) = \emptyset$, lemma 8 implies that $\tilde{f}^{n_0}(\Gamma) \prec \tilde{f}^{n_0-1}(\Gamma)$. So, $\tilde{f}^{n_0}(\Gamma) \cap \left(\tilde{f}^{n_0-1}(\Gamma)\right)_{down}$ has an unbounded connected component. As $\tilde{f}^{n_0}(\Gamma) \subset \Gamma$ and $\tilde{f}^{n_0-1}(\Gamma) \cap \Gamma = \emptyset$, using lemma 4 we get that $\Gamma \prec \tilde{f}^{n_0-1}(\Gamma)$, a contradiction with expression (7). So, $\tilde{f}^n(\Gamma) \cap \Gamma = \emptyset$ for all integers n > 0. The other implication follows from lemma 8. \Box

Lemma 11 : Suppose that we are in case 1 or in case 3 and $\tilde{f}(\Gamma_1) \prec \Gamma_1$ (see the end of page 8). Then there exists a vertical $V_r = \{r\} \times [0,1]$ and a sequence $n_i \xrightarrow{i \to \infty} \infty$ such that $\tilde{f}^{n_i}(\Gamma_1) \cap V_r \neq 0$ for all *i*.

Proof:

The proof is naturally divided into two parts.

• Suppose that case 1 holds;

As Γ_1 is a down component, $\Gamma_1 \prec \Gamma_1 - (1,0)$. Lemma 8 tell us that

$$f(\Gamma_1) \prec f(\Gamma_1) - (1,0). \tag{8}$$

A simple analysis shows that in both cases, $\tilde{f}(\Gamma_1) \subset \Gamma_1$ or $\tilde{f}(\Gamma_1) \prec \Gamma_1$, we get that

$$f(\Gamma_1) + (k,0) \prec \Gamma_1 \tag{9}$$

for all integers k > 0. Moreover, as $v \cap B^- = \emptyset$, the following holds: $\widetilde{f}(\Gamma_1) \subset \Gamma_1 \cup \Omega$.

Our objective now is to show that for all integers n > 0 and k > 0, the following is true: $(\tilde{f}^n(\Gamma_1) + (k, 0)) \cap \Gamma_1 = \emptyset$ and $\tilde{f}^n(\Gamma_1) + (k, 0) \prec \Gamma_1$.

This clearly follows from the properties of the order and expression (9).

• Suppose that case 3 holds and $\tilde{f}(\Gamma_1) \prec \Gamma_1$;

As $\widetilde{f}(\Gamma_1) \prec \Gamma_1$, $closure(\Gamma_{1b,down}) \subset closure(\Omega)$ and $\partial \Omega \subset \Gamma_1 \cup v$ does not intersect $\widetilde{f}(\Gamma_1)$, we get that $\widetilde{f}(\Gamma_1) \subset \Omega$.

If for some integers $n_0 > 0$ and $k_0 > 0$, $(\widetilde{f}^{n_0}(\Gamma_1) + (k_0, 0)) \cap \Gamma_1 \neq \emptyset$, then $\widetilde{f}^{n_0}(\Gamma_1) \cap (\Gamma_1 - (k_0, 0)) \neq \emptyset \Rightarrow \widetilde{f}^{n_0}(\Gamma_1) \cap \Gamma_1 \neq \emptyset \Rightarrow \widetilde{f}^{n_0}(\Gamma_1) \subset \Gamma_1$, which, using proposition 7, implies that $\tilde{f}(\Gamma_1) \subset \Gamma_1$, a contradiction. So, for all integers n > 0 and k > 0, as $\tilde{f}^n(\Gamma_1) + (k, 0) \supset \tilde{f}^n(\Gamma_1)$ and

$$\tilde{f}^n(\Gamma_1) \prec \ldots \prec \tilde{f}(\Gamma_1) \prec \Gamma_1 \text{ (see proposition 7)},$$

we get that $(\widetilde{f}^n(\Gamma_1) + (k, 0)) \cap \Gamma_1 = \emptyset$ and $\widetilde{f}^n(\Gamma_1) + (k, 0) \prec \Gamma_1$.

Now the proof continues in a similar way in both the injective and non injective cases: We only use that for all integers n > 0 and k > 0, the following is true:

$$(f^{n}(\Gamma_{1}) + (k, 0)) \cap \Gamma_{1} = \emptyset$$

and
 $\widetilde{f}^{n}(\Gamma_{1}) + (k, 0) \prec \Gamma_{1}$

Let us fix some k' > 0 in a way that $\tilde{f}(\Gamma_1) + (k', 0)$ intersects v. The reason why such a k' exists is the following: As $(\tilde{f}(\Gamma_1) + (k, 0)) \cap \Gamma_1 = \emptyset$ and $\tilde{f}(\Gamma_1) + (k, 0) \prec \Gamma_1$ for all integers k > 0, we get that $\left[(\tilde{f}(\Gamma_1) + (k, 0)) \cap V_b^- \right] \subset closure(\Gamma_{1b,down}) \subset closure(\Omega)$. And as $\partial \Omega \subset \Gamma_1 \cup v$ and $\overline{\Omega} \subset] - \infty, 0] \times [0, 1]$, we get that if k' > 0 is sufficiently large in a way that $\tilde{f}(\Gamma_1) + (k', 0)$ intersects $\{1\} \times [0, 1]$, then $\tilde{f}(\Gamma_1) + (k', 0)$ intersects the boundary of Ω in the only possible place, v. Denote by Γ^* an unbounded connected component of $(\tilde{f}(\Gamma_1) + (k', 0)) \cap closure(\Omega)$.

By the choice of k' > 0 and the connectivity of $\tilde{f}(\Gamma_1) + (k', 0)$, we get that Γ^* is not contained in B^- because it intersects v. So, there exists a positive integer $a_1 > 0$ such that $\tilde{f}^{a_1}(\Gamma^*)$ intersects $]0, +\infty[\times[0,1]]$. Remember that $\tilde{f}^{a_1}(\Gamma^*) \subset \tilde{f}^{a_1+1}(\Gamma_1) + (k',0) \prec \Gamma_1$ and so $\tilde{f}^{a_1}(\Gamma^*) \prec \Gamma_1$. As above, the fact that $\tilde{f}^{a_1}(\Gamma^*)$ intersects $]0, +\infty[\times[0,1]]$ implies that $\tilde{f}^{a_1}(\Gamma^*) \cap closure(\Omega)$ has an unbounded connected component, Γ^{**} which intersects v. So, Γ^{**} is not contained in $B^$ and thus there exists an integer $a_2 > 0$ such that $\tilde{f}^{a_2}(\Gamma^{**}) \subset \tilde{f}^{a_2+a_1+1}(\Gamma_1) + (k',0)$ intersects $]0, +\infty[\times[0,1]]$. In exactly the same way as above, we obtain an unbounded connected component of $\tilde{f}^{a_2}(\Gamma^{**}) \cap closure(\Omega)$, denoted Γ^{***} which intersects v. So, Γ^{***} is not contained in B^- and there exists an integer $a_3 > 0$ such that $\tilde{f}^{a_3}(\Gamma^{***})$ intersects $]0, +\infty[\times[0,1]]$ and so on.

Thus, if we define $n_i = a_1 + a_2 + \ldots + a_i + 1$, we get that $n_i \stackrel{i \to \infty}{\to} \infty$ and for all $i \ge 1$, $\tilde{f}^{n_i - 1}(\tilde{f}(\Gamma_1) + (k', 0)) \supset \tilde{f}^{n_i - 1}(\Gamma^*) = \tilde{f}^{a_2 + \ldots + a_i}(\tilde{f}^{a_1}(\Gamma^*)) \supset$ $\tilde{f}^{a_2 + \ldots + a_i}(\Gamma^{**}) \supset \ldots \supset \tilde{f}^{a_i}(\Gamma^{i-times})$ and $\tilde{f}^{a_i}(\Gamma^{i-times})$ intersects $]0, +\infty[\times[0, 1]]$. So,

 $\widetilde{f}^{n_i}(\Gamma_1)$ intersects $V_0-(k',0)=V_{-k'}$

and the lemma is proved. \Box

Thus, in case 1 and in case 3 if $\tilde{f}(\Gamma_1) \prec \Gamma_1$, lemma 11 implies that $\omega(B^-)$ is not empty. And this is a contradiction with theorem 2. So, either Γ_1 is an injective up component or Γ_1 is an non-injective component and $\tilde{f}(\Gamma_1) \subset \Gamma_1$. In the remainder of this section, we show that it is not possible for Γ_1 to be an injective up component.

Lemma 12 : If Γ_1 is an injective up component, then $dist(\Gamma_1, \mathbb{R} \times \{1\}) = 0$.

Proof:

As Γ_1 is an injective up component, lemma 9 implies that

 $dist(\Gamma_1, \mathbb{IR} \times \{0\}) > 0.$

So, if by contradiction we suppose that $dist(\Gamma_1, \mathbb{R} \times \{1\}) > 0$, there exists $\epsilon_1 > 0$ such that $\Gamma_1 \cap \mathbb{R} \times \{[0, \epsilon_1] \cup [1 - \epsilon_1, 1]\} = \emptyset$.

Since f is transitive, f is transitive and thus there is a point $z \in S^1 \times [1 - \epsilon_1/2, 1]$ and an integer n > 0 such that $f^{-n}(z) \in S^1 \times [0, \epsilon_1/2]$. We know that $\tilde{f}(\Gamma_1) \subset \Gamma_1$ or $\tilde{f}(\Gamma_1) \prec \Gamma_1$, so by proposition 7 and lemmas 7 and 8 we get that

$$\tilde{f}^n(\Gamma_1) \subset \Gamma_1 \text{ or } \tilde{f}^n(\Gamma_1) \prec \Gamma_1.$$

Now let $d \in \mathbb{R}$ be such that $\tilde{f}^{-i}(V_d) \subset V_{m_{\Gamma_1}-1}^-(m_{\Gamma_1} \text{ is defined in expression}$ (3)) for i = 0, 1, ..., n and $\tilde{f}^n(\Gamma_1) \cap V_d^- \subset \Gamma_1 \cup \Gamma_1 \text{ down}$, see proposition 10 of the appendix.

Let $\tilde{z} \in V_d^-$ be a point such that $p(\tilde{z}) = z$ and let k be the vertical line segment that has as extremes \tilde{z} and a point \tilde{z}_1 in $\mathbb{R} \times \{1\}$.

As $\tilde{f}^{-n}(\tilde{z}) \in \mathbb{R} \times [0, \epsilon_1/2] \cap V_{m_{\Gamma_1}-1}^-$, we obtain that $\tilde{f}^{-n}(\tilde{z}) \in \Gamma_1 \operatorname{down}$. As $\tilde{f}^{-n}(V_d) \subset V_{m_{\Gamma_1}-1}^-$, we get that $\tilde{f}^{-n}(k) \cap V_{m_{\Gamma_1}} = \emptyset$. Since $\tilde{f}^{-n}(\tilde{z}_1) \notin \Gamma_1 \operatorname{down}$ and $\tilde{f}^{-n}(\tilde{z}) \in \Gamma_1 \operatorname{down}$, and since k is connected, $\tilde{f}^{-n}(k) \cap \partial(\Gamma_1 \operatorname{down}) \neq \emptyset$. But $\partial(\Gamma_1 \operatorname{down}) \subset \Gamma_1 \cup V_{m_{\Gamma_1}}$, so $\tilde{f}^{-n}(k) \cap \Gamma_1 \neq \emptyset$, which implies that $k \cap \tilde{f}^n(\Gamma_1) \neq \emptyset$ and this is a contradiction because $k \subset V_d^- \cap \Gamma_1 \operatorname{up}$ and $\tilde{f}^n(\Gamma_1) \cap V_d^- \subset \Gamma_1 \cup \Gamma_1 \operatorname{down}$. \Box

Thus if Γ_1 is an injective up component, then $\overline{p(\Gamma_1)}$ intersects $S^1 \times \{1\}$. So consider a real c such that

$$\Gamma_1 \cap \{c\} \times [1 - \epsilon, 1] \neq \emptyset,$$

where $\epsilon > 0$ was defined in the beginning of this section. As we did before, as B^- is closed, there must be a $0 < \mu \leq \epsilon$ such that $(c, 1 - \mu) \in B^-$, and for all $1 - \mu \leq \tilde{y} < 1, (c, \tilde{y}) \notin B^-$, that is, $(c, 1 - \mu)$ is the "highest" point of B^- in $\{c\} \times [1 - \epsilon, 1]$. We denote by w the segment $\{c\} \times [1 - \mu, 1]$.

Let Γ_2 be the connected component of B^- that contains $(c, 1 - \mu)$. An argument analogous to the one which implies that Γ_1 can not be an injective down component implies that Γ_2 can not be an injective up component, so if Γ_1 is injective up, $\Gamma_1 \neq \Gamma_2$ and thus $\Gamma_1 \cap \Gamma_2 = \emptyset$. In this way, Γ_2 is either non-injective or an injective down component. In the second case, as $dist(\Gamma_2, \mathbb{R} \times \{1\}) > 0$ (see lemma 9), it is not possible that $\Gamma_1 \prec \Gamma_2$. But this implies that $\Gamma_2 \prec \Gamma_1$ and so Γ_2 intersects v, which is a contradiction with the definition of v. So Γ_2 is a non-injective component. By exactly the same reasoning applied to Γ_1 , we must have $\tilde{f}(\Gamma_2) \subset \Gamma_2$.

The following lemma concludes the proof of theorem 5, because either Γ_1 is a non-injective component and $\tilde{f}(\Gamma_1) \subset \Gamma_1$ or, in case Γ_1 is an injective up component, Γ_2 is non-injective and $\tilde{f}(\Gamma_2) \subset \Gamma_2$.

Lemma 13 : If Γ is a non-injective component of B^- such that $\tilde{f}(\Gamma) \subset \Gamma$, then $p(\Gamma) = A$.

Proof:

First of all, note that the set Γ has all the properties required for the set D in subsection 2.1, so lemma 1 implies that either $p(\Gamma) \supset S^1 \times \{0\}$ or $p(\Gamma) \supset S^1 \times \{1\}$. Let us suppose, without loss of generality, that

$$\overline{p(\Gamma)} \supset S^1 \times \{0\}.$$

Lemma 2 shows that, if $p(\Gamma)$ is not dense in A, then there exists a simple closed curve $\gamma \subset interior(A)$, which is homotopically non trivial and such that $\overline{p(\Gamma)} \cap \gamma = \emptyset$. But since $p(\Gamma)$ is connected, we must have $\Gamma \subset p^{-1}(\gamma^{-})$, where γ^{-} is the connected component of γ^{c} which contains $S^{1} \times \{0\}$.

As Γ is closed and $S^1 \times \{0\} \subset \overline{p(\Gamma)}$, we can find a point $(c', \delta') \in \Gamma$ such that:

- 1. $\delta' < \epsilon$, where $\epsilon > 0$ was defined in the beginning of this section;
- 2. if $v' = c' \times [0, \delta']$, then $\Gamma \cap v' = \emptyset$ and $\overline{v'} \subset p^{-1}(\gamma^{-})$.

Now, let us choose Ω' as the connected component of $(\Gamma \cup v')^c$ that contains $] - \infty, c'[\times \{0\}$ and consider the following set:

$$\Omega_{sat} = \bigcup_{n=0}^{\infty} \widetilde{f}^{-n}(\Omega')$$

First note that, as the boundary of Ω' is contained in $\Gamma \cup v'$, for all integers n > 0 we have:

$$\partial\left(\widetilde{f}^{-n}(\Omega')\right) \subset \left(\bigcup_{i=0}^{\infty} \widetilde{f}^{-i}(\Gamma)\right) \cup \left(\bigcup_{i=0}^{\infty} \widetilde{f}^{-i}(v')\right)$$
(10)

Clearly Ω_{sat} is an open set. Let us show that it is connected. Each set of the form $\tilde{f}^{-i}(\Omega')$ is connected because \tilde{f} is a homeomorphism. Also, since $\tilde{f}^{-i}(] - \infty, c'[\times\{0\}) \subset] - \infty, c'[\times\{0\}, \text{ we have } \tilde{f}^{-i}(\Omega') \cap \Omega' \neq \emptyset$. But Ω' is also open and connected, so Ω_{sat} must be connected.

open and connected, so Ω_{sat} must be connected. For all integers n > 0, as $\tilde{f}^{-n}(\Omega')$ is connected, intersects $\mathbb{R} \times \{0\}$ and is disjoint from $\mathbb{R} \times \{1\}$, if we show that $\left(\bigcup_{i=0}^{\infty} \tilde{f}^{-i}(\Gamma)\right) \cup \left(\bigcup_{i=0}^{\infty} \tilde{f}^{-i}(v')\right) \subset p^{-1}(\gamma^{-})$, then expression (10) implies that $\tilde{f}^{-n}(\Omega') \subset p^{-1}(\gamma^{-})$, which gives: $\Omega_{sat} \subset p^{-1}(\gamma^{-})$ and the proof is complete.

Let us prove that $\tilde{f}^{-i}(\Gamma) \subset p^{-1}(\gamma^{-})$ for all integers i > 0. This follows from the following:

Proposition 8 : There exists an integer k > 0 such that $\tilde{f}^{-1}(\Gamma) \subset \Gamma + (k, 0)$.

Proof:

Since $\tilde{f}(\Gamma) \subset \Gamma$, we get $\Gamma \subset \tilde{f}^{-1}(\Gamma)$. As $\Gamma \subset V^-$, $\tilde{f}^{-1}(\Gamma)$ is limited to the right, so there exists an integer k > 0 such that $\tilde{f}^{-1}(\Gamma) - (k, 0) \subset V^-$. If $i \ge 1$,

$$\tilde{f}^i\left(\tilde{f}^{-1}(\Gamma) - (k,0)\right) = \tilde{f}^{i-1}(\Gamma) - (k,0) \subset \Gamma - (k,0) \subset \Gamma.$$

So $\tilde{f}^{-1}(\Gamma) - (k, 0)$ is contained in B^- . As $\Gamma \subset \tilde{f}^{-1}(\Gamma) \Rightarrow \Gamma - (k, 0) \subset \tilde{f}^{-1}(\Gamma) - (k, 0)$. So, $\tilde{f}^{-1}(\Gamma) - (k, 0)$ intersects Γ because $\Gamma \supset \Gamma - (k, 0)$, therefore $\tilde{f}^{-1}(\Gamma) - (k, 0)$ (which is clearly connected) is contained in Γ . \Box

The above proposition implies that for any integer $i \geq 1$, $\tilde{f}^{-i}(\Gamma) \subset \Gamma + (i.k, 0) \subset p^{-1}(\gamma^{-})$.

We are left to deal with $\bigcup_{i=0}^{\infty} \widetilde{f}^{-i}(v')$. Let us show that $\widetilde{f}^{-1}(v') \subset \Omega'$. From the choice of v', $\widetilde{f}^{-1}(v') \cap v' = \emptyset$ and $\widetilde{f}^{-1}(v') \cap \Gamma = \emptyset$ because $v' \cap \Gamma = \emptyset$ and $\widetilde{f}(\Gamma) \subset \Gamma$. Finally, the following inclusions

$$\Omega' \supset]-\infty, c'[\times\{0\} \text{ and }]-\infty, c'[\times\{0\} \supset \widetilde{f}^{-1}(]-\infty, c'[\times\{0\})$$

imply that $\widetilde{f}^{-1}(v') \cap \Omega' \neq \emptyset$ and so $\widetilde{f}^{-1}(v') \subset \Omega' \subset p^{-1}(\gamma^{-})$.

Thus, $\tilde{f}^{-2}(v') \subset \tilde{f}^{-1}(\Omega')$, whose boundary, $\partial \left(\tilde{f}^{-1}(\Omega')\right)$, is contained in $\tilde{f}^{-1}(\Omega) = \tilde{f}^{-1}(\Omega')$

 $\widetilde{f}^{-1}(\Gamma) \cup \widetilde{f}^{-1}(v') \subset p^{-1}(\gamma^{-})$. As above, $\widetilde{f}^{-1}(\Omega')$ is connected, intersects $\mathbb{R} \times \{0\}$ and is disjoint from $\mathbb{R} \times \{1\}$, so we get that

$$\widetilde{f}^{-2}(v') \subset \widetilde{f}^{-1}(\Omega') \subset p^{-1}(\gamma^{-}).$$

Thus, $\tilde{f}^{-3}(v') \subset \tilde{f}^{-2}(\Omega')$ and an analogous argument implies that $\tilde{f}^{-3}(v') \subset \tilde{f}^{-2}(\Omega') \subset p^{-1}(\gamma^{-})$. An induction shows that

$$\widetilde{f}^{-n}(v') \subset \widetilde{f}^{-n+1}(\Omega') \subset p^{-1}(\gamma^{-})$$
 for all integers $n \ge 1$,

and the lemma is proved because the above implies that $\tilde{f}^{-1}(\Omega_{sat}) \subset \Omega_{sat} \subset p^{-1}(\gamma^{-})$ and this contradicts the transitivity of \tilde{f} . \Box

As we know that at least one element of the set $\{\Gamma_1, \Gamma_2\}$ is non-injective and positively invariant, the above lemma implies that Γ_1 or Γ_2 must have a dense projection to the annulus. One more thing can be said, which will be important in the proof of the next theorem:

Proposition 9 : Both Γ_1 and Γ_2 are non-injective components.

Proof:

If the proposition is not true for Γ_1 , then as we already proved, Γ_1 must be an injective up component. As Γ_2 does not cross v, and Γ_1 does not cross w, by the definitions of v and w, it must be the case that $\Gamma_1 \prec \Gamma_2$ and so

$$dist(\Gamma_2, \mathbb{I} \times \{0\}) > 0,$$

something that contradicts lemma 13. So Γ_1 is a non-injective component. To conclude the proof we have to note that Γ_1 and Γ_2 have analogous properties, Γ_1 is the connected component of B^- that contains the lowest point of B^- in $\{b\} \times [0, \epsilon]$ and Γ_2 is the connected component of B^- that contains the "highest" point of B^- in $\{c\} \times [1-\epsilon, 1]$. So Γ_2 must also be a non-injective component. \Box

Summarizing, the above results prove that for $\epsilon > 0$ satisfying the condition stated in the beginning of this section and for every vertical segment u of the form $\{l\} \times [0, \epsilon]$ (or $\{l\} \times [1-\epsilon, 1]$) which intersects B^- , the "lowest" (or "highest") component of B^- in u must be non-injective, \tilde{f} -positively invariant and dense when projected to A.

5 Proof of theorem 6

Without loss of generality, suppose $\Gamma \subset B^-$ is an injective down connected component. Consider a vertical $v = \{c\} \times [0, \epsilon]$, such that:

1)
$$0 < \epsilon \le \epsilon'$$
, where ϵ' is such that $\forall (\tilde{x}, \tilde{y}) \in \mathbb{R} \times [0, \epsilon'],$
 $p_1 \circ \tilde{f}(\tilde{x}, \tilde{y}) > \tilde{x} + \sigma, \text{ for some } \sigma > 0;$
2) $v \subset \Gamma_{down};$
3) $v \cap B^- \neq \emptyset.$
(11)

The above is possible because $\overline{p(B^-)} = A$ and so there exists a real $c < m_{\Gamma}$ such that $\{c\} \times [0, \epsilon'[\cap B^- \neq \emptyset]$, where ϵ' comes from 1) of (11). As Γ is an injective component, from the previous theorem we get that the "lowest" component of B^- in $\{c\} \times [0, \epsilon'[$ can not be Γ . So, if $\{c\} \times [0, \epsilon'[$ do not intersect Γ , then let $v = \{c\} \times [0, \epsilon'[$, otherwise let $0 < \epsilon < \epsilon'$ be such that $v = \{c\} \times [0, \epsilon \subset \Gamma_{down}$ and $(c, \epsilon) \in \Gamma$.

Denote by Θ the "lowest" connected component of B^- in v and by

$$w = \{c\} \times [0, \delta] \subset v$$

the vertical such that $w \cap B^- = \emptyset$ and $(c, \delta) \in \Theta$. From theorem 5 we know that Θ satisfies the following conditions:

i)
$$\Theta$$
 is non-injective;
ii) $\tilde{f}(\Theta) \subset \Theta$;
iii) $p(\Theta) = A$;
(12)

If $\Theta \prec \Gamma$, then proposition 10 implies the existence of a real number d such that $\Theta \cap V_d^- \subset \Gamma_{down}$. As $dist(\Gamma, \mathbb{R} \times \{1\}) > 0$, we get that $dist(\Theta, \mathbb{R} \times \{1\}) > 0$, something that contradicts property iii) of expression (12).

So we can assume that $\Gamma \prec \Theta$. As in some of the previous results, let Ω be the connected component of $(\Theta \cup w)^c$ that contains $]-\infty, c[\times\{0\}]$. We know that

$$closure(\Omega) \supset closure(\Theta_{c,down})$$
 (13)

and, as $\Gamma \prec \Theta$, $[\Gamma \cap V_c^-] \subset \Theta_{c,down}$. So, using expression (13) we get that $\Gamma \subset \Omega$ because Γ is connected, $\Gamma \cap \Omega \neq \emptyset$ and $\Gamma \cap \partial\Omega \subset \Gamma \cap (\Theta \cup w) = \emptyset$. The rest of our proof will be divided in two steps:

Step 1: Here we are going to prove that for all integers n > 0 and $k \ge 0$, $\tilde{f}^n(\Gamma) + (k,0)$ is disjoint from Θ and $\tilde{f}^n(\Gamma) \subset \Omega \Rightarrow \tilde{f}^n(\Gamma) + (k,0) \prec \Theta$.

As $\Gamma \prec \Theta$, we get for any integer n > 0, that either $\tilde{f}^n(\Gamma) \subset \Theta$ or $\tilde{f}^n(\Gamma) \cap \Theta = \emptyset$ and $\tilde{f}^n(\Gamma) \prec \Theta$ (because $\tilde{f}(\Theta) \subset \Theta$), which implies that $\tilde{f}^n(\Gamma) \subset \Omega$. To begin, suppose $\tilde{f}(\Gamma) \subset \Theta$. This means that $\tilde{f}^{-1}(\Theta) \supset \Gamma$ and so, if $\tilde{f}^{-1}(\Theta) \cap V = \emptyset$ (remember that $V = \{0\} \times [0,1]$), then $\tilde{f}^{-1}(\Theta)$ is contained in a connected component of B^- , that is, $\tilde{f}^{-1}(\Theta) = \Gamma$, a contradiction because Γ is injective and Θ is not. So, $\tilde{f}^{-1}(\Theta) \cap V \neq \emptyset$. Let Γ' be the connected component of $\tilde{f}^{-1}(\Theta) \cap V \neq \emptyset$. Let Γ' be the connected implies that Γ' intersects V, is contained in B^- and contains Γ . So, $\Gamma' = \Gamma$ and this is a contradiction because $\Gamma \subset \Omega$ and $\Omega \cap V = \emptyset$. So, $\tilde{f}(\Gamma) \cap \Theta = \emptyset \Rightarrow \tilde{f}(\Gamma) \prec \Theta \Rightarrow \tilde{f}(\Gamma) \subset \Omega$.

Now note that $f(\Gamma)$ is itself a connected component of B^- . In order to prove the previous assertion, denote by Π the connected component of B^- that contains $\tilde{f}(\Gamma)$. If $\tilde{f}(\Gamma) \neq \Pi$, then $\tilde{f}^{-1}(\Pi) \supset \Gamma$ is not a connected component of B^- , so $\tilde{f}^{-1}(\Pi) \cap V \neq \emptyset$, which means that $\tilde{f}^{-1}(\Pi) \cap w \neq \emptyset$ because $\tilde{f}^{-1}(\Pi) \cap \Theta =$ \emptyset and $\tilde{f}^{-1}(\Pi) \cap \Omega \neq \emptyset$. If we denote by Γ^* the connected component of $\tilde{f}^{-1}(\Pi) \cap \Omega$ that contains Γ , then as $\tilde{f}^{-1}(\Pi)$ is connected, Γ^* intersects w and is contained in B^- , a contradiction.

So, $f(\Gamma) = \Pi \subset \Omega$ and an induction using the above argument implies that for every integer n > 0:

1)
$$f^{n}(\Gamma) \cap \Theta = \emptyset;$$

2) $\tilde{f}^{n}(\Gamma)$ is a connected component of $B^{-};$
3) $\tilde{f}^{n}(\Gamma) \subset \Omega;$
4) $\tilde{f}^{n}(\Gamma) \prec \Theta;$

As $\Gamma \subset B^-$ is an injective down connected component, the same holds for $\tilde{f}^n(\Gamma)$ (for any integer n > 0). So the assertion from step 1 holds.

Step 2: Here we perform the same construction as we did in lemma 11, see it for more details.

Let us fix some k' > 0 in a way that $\tilde{f}(\Gamma) + (k', 0)$ intersects w. Denote by Γ^* an unbounded connected component of $(\tilde{f}(\Gamma) + (k', 0)) \cap closure(\Omega)$. By the choice of k' > 0 and the connectivity of $\tilde{f}(\Gamma) + (k', 0)$, we get that Γ^* is not contained in B^- because it intersects w. So, there exists a positive integer $a_1 > 0$ such that $\tilde{f}^{a_1}(\Gamma^*)$ intersects $]0, +\infty[\times[0, 1]]$.

Step 1 implies that $\tilde{f}^{a_1}(\tilde{f}(\Gamma) + (k', 0)) = \tilde{f}^{a_1+1}(\Gamma) + (k', 0)$ does not intersect Θ and is smaller then it the order \prec . So, as

$$\Gamma^* \subset \widetilde{f}(\Gamma) + (k', 0) \ \Rightarrow \ \widetilde{f}^{a_1}(\Gamma^*) \cap \Theta = \emptyset \text{ and } \widetilde{f}^{a_1}(\Gamma^*) \prec \Theta.$$

The fact that $\tilde{f}^{a_1}(\Gamma^*)$ intersects $]0, +\infty[\times[0, 1]$ implies that $\tilde{f}^{a_1}(\Gamma^*) \cap closure(\Omega)$ has an unbounded connected component, Γ^{**} which intersects w. So, Γ^{**} is not contained in B^- and thus there exists an integer $a_2 > 0$ such that $\tilde{f}^{a_2}(\Gamma^{**}) \subset \tilde{f}^{a_2+a_1+1}(\Gamma) + (k', 0)$ intersects $]0, +\infty[\times[0, 1]]$. In exactly the same way as above, we obtain an unbounded connected component of $\tilde{f}^{a_2}(\Gamma^{**}) \cap closure(\Omega)$, denoted Γ^{***} which intersects w. So, Γ^{***} is not contained in B^- and there exists an integer $a_3 > 0$ such that $\tilde{f}^{a_3}(\Gamma^{***})$ intersects $]0, +\infty[\times[0, 1]]$ and so on.

Thus, if we define $n_i = a_1 + a_2 + \ldots + a_i + 1$, we get that $n_i \stackrel{i \to \infty}{\to} \infty$ and for all $i \ge 1$, $\tilde{f}^{n_i-1}(\tilde{f}(\Gamma) + (k', 0)) \supset \tilde{f}^{n_i-1}(\Gamma^*) = \tilde{f}^{a_2 + \ldots + a_i}(\tilde{f}^{a_1}(\Gamma^*)) \supset$ $\tilde{f}^{a_2 + \ldots + a_i}(\Gamma^{**}) \supset \ldots \supset \tilde{f}^{a_i}(\Gamma^{i-times})$ and $\tilde{f}^{a_i}(\Gamma^{i-times})$ intersects $]0, +\infty[\times[0, 1]]$. So,

 $\widetilde{f}^{n_i}(\Gamma)$ intersects $V - (k', 0) = V_{-k'}$

and this contradicts theorem 2 and thus proves theorem 6.

6 Appendix

Here we prove the results from section 3 used to define the order between elements of UnConn.

Proof of proposition 2:

As we did in [1], let us consider the L, R-compactification of $\widetilde{A} = \mathbb{R} \times [0, 1]$, denoted by \widehat{A} (we compactify \widetilde{A} by adding two points to it, L and R, the left and right ends, respectively, getting a closed disk). For every object (point, set, etc) in \widetilde{A} , we denote the corresponding object in \widehat{A} by putting a on it.

etc) in \widetilde{A} , we denote the corresponding object in \widehat{A} by putting a on it. Let $z_n \in \Gamma \cap V_a^-$ be a sequence such that $p_1(z_n) \xrightarrow{n \to \infty} -\infty$, or equivalently, $\widehat{A} \ni \widehat{z_n} \xrightarrow{n \to \infty} L$.

Note that $\widehat{\Gamma}$ is connected, it intersects \widehat{V}_a and contains L, so each \widehat{z}_n belongs to a connected component of $\widehat{\Gamma} \cap \widehat{V}_a^-$, denoted $\widehat{\Gamma}_n$, which intersects \widehat{V}_a . Let $\widehat{\Gamma}_{n_i}$ be a convergent subsequence in the Hausdorff topology, $\widehat{\Gamma}_{n_i} \stackrel{n \to \infty}{\to} \widehat{\Gamma}^*$. This means that, given any open neighborhood \widehat{N} of $\widehat{\Gamma}^*$, for all sufficiently large i, $\widehat{\Gamma}_{n_i}$ is contained in \widehat{N} . So $\widehat{\Gamma}^*$ must contain L and must intersect \widehat{V}_a . Suppose that $\widehat{\Gamma}^*$ is not contained in $\widehat{\Gamma}$. This means that there exists $\widehat{P} \in \widehat{\Gamma}^*$, with $\widehat{P} \notin \widehat{\Gamma}$. As $\widehat{\Gamma}$ is closed, for some $\epsilon_0 > 0$, $B_{\epsilon_0}(\widehat{P}) \cap \widehat{\Gamma} = \emptyset$, where $B_{\epsilon_0}(\widehat{P}) =$ $\{\widehat{z} \in \widehat{A} : d_{Euclidean}(\widehat{z}, \widehat{P}) < \epsilon_0\}$ and $d_{Euclidean}(\bullet, \bullet)$ is the usual Euclidean distance in \widehat{A} . But as $\widehat{\Gamma}_{n_i} \stackrel{n \to \infty}{\to} \widehat{\Gamma}^*$ in the Hausdorff topology, for all sufficiently large $i, \widehat{\Gamma}^* \subset (\epsilon_0/2 - neighborhood of \widehat{\Gamma}_{n_i})$. Thus we get that $d_{Euclidean}(\widehat{P}, \widehat{\Gamma}) \leq$ $d_{Euclidean}(\widehat{P}, \widehat{\Gamma}_{n_i}) < \epsilon_0/2$, something that contradicts the choice of $\widehat{P} \in \widehat{\Gamma}^*$. So $\widehat{\Gamma}^* \subset \widehat{\Gamma}$ and the proposition is proved because although Γ^* may not be connected, it must contain an unbounded connected component which intersects V_a .

Proof of proposition 3:

Let $z \in \Gamma_{b,down}$. This means that there exists a simple continuous arc θ which connects z to a point $z_0 \in]-\infty, b[\times\{0\}, \ \theta \cap \Gamma = \emptyset$ and $\theta \subset \Gamma_{b,down} \subset$ $]-\infty, b[\times[0,1]$. As $a > b, \ \theta \cap \partial \Gamma_{a,down} \subset \theta \cap \Gamma = \emptyset$. As $z_0 \in \Gamma_{a,down}$, we get that $\theta \subset \Gamma_{a,down}$, which implies that $\Gamma_{b,down} \subset \Gamma_{a,down}$. The other inclusion is proved in a similar way. \Box

Proof of lemma 4:

Without loss of generality, let us suppose that $\Gamma_1, \Gamma_2 \subset V^-$. We first prove that $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,down} \cup \Gamma_{1a,up}$. Suppose this is not the case. Then, there exists an unbounded connected component of $\Gamma_2 \cap V_a^-$, denoted Γ_2^* , contained in a connected component of $\Gamma_1^c \cap] -\infty$, $a[\times [0, 1]$, different from $\Gamma_{1a,down}$ and $\Gamma_{1a,up}$. Denote this component by $\Gamma_{1a,mid}$. Fix some $P \in \Gamma_2^*$. As $P \notin \Gamma_1$, there exists $\epsilon > 0$ such that $B_{\epsilon}(P) \cap \Gamma_1 = \emptyset$. Now, let $\alpha' \subset \mathbb{R} \times]0, 1[$ be a simple continuous arc which connects P to (1, 0.5), totally contained in Γ_1^c , which is an open connected set that contains P and (1, 0.5). Moreover, as $]0, +\infty[\times [0, 1] \subset \Gamma_1^c$, we can take α' so that it does not intersect $]1, +\infty[\times \{0.5\}$. Finally, let α be a simple continuous arc given by $[1, +\infty[\times \{0.5\}]$ plus a continuous part of α' , whose endpoints are (1, 0.5) and some point in Γ_2^* , so that $\alpha \cap \Gamma_2^*$ consists of only its end point (clearly, this end point may not be P).

Properties of $\alpha \cup \Gamma_2^*$:

- $\alpha \cup \Gamma_2^*$ is a closed, connected set, disjoint from $\mathbb{IR} \times \{0, 1\}$;
- $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$ are in different connected components of $(\alpha \cup \Gamma_2^*)^c$;
- α is limited to the left, that is, there exists a number M > 0 such that, for all points \tilde{z} in α , $p_1(\tilde{z}) > -M$;
- $(\alpha \cup \Gamma_2^*) \cap \Gamma_1 = \emptyset;$

Let us choose b < a such that $\alpha \subset V_{b+1/2}^+$. By proposition 3, $\Gamma_{1b,down} \subset \Gamma_{1a,down}$ and $\Gamma_{1b,up} \subset \Gamma_{1a,up}$, so we get that $\Gamma_2^* \cap (\Gamma_{1b,down} \cup \Gamma_{1b,up}) = \emptyset$. Now let $\beta_0 \subset \Gamma_{1b,down}$ and $\beta_1 \subset \Gamma_{1b,up}$ be simple continuous arcs which satisfy the following:

- β_0 connects a point of $] \infty, b[\times\{0\}$ to a point of Γ_1 ;
- β_1 connects a point of $]-\infty, b[\times\{1\}$ to a point of Γ_1 ;

So the following conditions hold

$$(\beta_0 \cup \beta_1) \cap \Gamma_2^* = \emptyset$$
 and $(\beta_0 \cup \beta_1) \subset V_h^- \Rightarrow (\beta_0 \cup \beta_1) \cap \alpha = \emptyset$

and thus

$$(\beta_0 \cup \Gamma_1 \cup \beta_1) \cap (\alpha \cup \Gamma_2^*) = \emptyset,$$

something that contradicts the fact that $(\beta_0 \cup \Gamma_1 \cup \beta_1)$ is a closed connected set and the "**Properties of** $\alpha \cup \Gamma_2^*$ " listed above. So, $[\Gamma_2 \cap V_a^-] \subset (\Gamma_{1a,down} \cup \Gamma_{1a,up})$.

Suppose now that for some $\Gamma_2^*, \Gamma_2^{**} \in [\Gamma_2 \cap V_a^-]$, we have $\Gamma_2^* \subset \Gamma_{1a,down}$ and $\Gamma_2^{**} \subset \Gamma_{1a,up}$. In the same way as above, there exists a simple continuous arc $\alpha \subset \mathbb{R} \times]0,1[$ which contains $[1, +\infty[\times\{0.5\}$ and connects some point of Γ_1 to

(1, 0.5), in a way that $\alpha \subset \Gamma_2^c$ and α intersects Γ_1 only at its end point. Clearly, $(\alpha \cup \Gamma_1)$ is a closed connected set, which satisfies: $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$ are in different connected components of $(\alpha \cup \Gamma_1)^c$.

Again, as above, let us choose b < a such that $\alpha \subset V_{b+1}^+$. Proposition 2 implies that $[\Gamma_2^* \cap V_b^-]$ and $[\Gamma_2^{**} \cap V_b^-]$ are non-empty. From what we did above, we get that $[\Gamma_2^* \cap V_b^-] \cup [\Gamma_2^{**} \cap V_b^-] \subset \Gamma_{1b,down} \cup \Gamma_{1b,up}$.

If, $[\Gamma_2^* \cap V_b^-] \cap \Gamma_{1b,up} \neq \emptyset \Rightarrow \Gamma_2^* \cap \Gamma_{1b,up} \neq \emptyset$, which implies, by proposition 3, that $\Gamma_2^* \cap \Gamma_{1a,up} \neq \emptyset$, a contradiction. So, $[\Gamma_2^* \cap V_b^-] \cap \Gamma_{1b,up} = \emptyset$ and a similar argument gives $[\Gamma_2^{**} \cap V_b^-] \cap \Gamma_{1b,down} = \emptyset$. So, $[\Gamma_2^* \cap V_b^-] \subset \Gamma_{1b,down}$ and $[\Gamma_2^{**} \cap V_b^-] \subset \Gamma_{1b,up}$. Thus, there exists a simple continuous arc β_0 contained in $\Gamma_{1b,down}$ which connects a point of Γ_2^* to some point in $] - \infty, b[\times\{0\}$. Similarly, there exists a simple continuous arc β_1 contained in $\Gamma_{1b,up}$ which connects a point of Γ_2^{**} to some point in $] - \infty, b[\times\{1\}$. But $(\beta_0 \cup \Gamma_2 \cup \beta_1)$ is a closed connected set and by construction of β_0 and β_1 ,

$$(\beta_0 \cup \Gamma_2 \cup \beta_1) \cap (\alpha \cup \Gamma_1) = \emptyset,$$

which is a contradiction, completing the proof of the lemma. \Box

Proof of lemma 5:

As in the previous lemma, let us suppose that $\Gamma_1, \Gamma_2 \subset V^-$. From lemma 4, either $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,down}$ or $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$. In the first possibility, $\Gamma_2 \prec_a \Gamma_1$. So we are left to show that, if $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$, then $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,down}$, which means that $\Gamma_1 \prec_a \Gamma_2$.

Thus, let us suppose that $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$ and $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,up}$. If we arrive at a contradiction, the lemma will be proved.

The argument here is very similar to the one used in the proof of lemma 4. First, choose a simple continuous arc $\alpha \subset \mathbb{R} \times]0, 1[$ which contains $[1, +\infty[\times \{0.5\}$ and connects some point of Γ_1 to (1, 0.5), in a way that $\alpha \subset \Gamma_2^c$ and α intersects Γ_1 only at its end point. Clearly, $(\alpha \cup \Gamma_1)$ is a closed connected set, which satisfies: $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$ are in different connected components of $(\alpha \cup \Gamma_1)^c$.

As $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$, there exists an element of $[\Gamma_2 \cap V_a^-]$, denoted Γ_2^* , which by definition is closed, connected, unbounded to the left and is contained in $\Gamma_{1a,up}$. Again, let us choose b < a such that $\alpha \subset V_{b+1}^+$.

As in the end of the proof of lemma 4, we get that $[\Gamma_2^* \cap V_b^-] \subset \Gamma_{1b,up}$. So, there exists a simple continuous arc β_1 contained in $\Gamma_{1b,up}$ which connects a point of Γ_2^* to some point in $] - \infty, b[\times\{1\}$. Clearly, $\beta_1 \cap \Gamma_1 = \emptyset$.

As $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,up}$, an argument similar to the one used to prove proposition 2 implies:

Proposition 10 : There exists a real number $c \leq b$, such that $(\Gamma_1 \cap V_c^-) \cap \Gamma_{2a,down} = \emptyset$.

Proof:

Suppose by contradiction, that the proposition is not true. Then, there is a sequence of points $z_n \in \Gamma_1 \cap \Gamma_{2a,down}$, such that $p_1(z_n) \xrightarrow{n \to \infty} -\infty$, or equivalently,

 $\widehat{A} \ni \widehat{z}_n \xrightarrow{n \to \infty} L$. Now, the proof goes exactly as in proposition 2 and we thus obtain an unbounded connected component of $\Gamma_1 \cap \Gamma_{2a,down}$, a contradiction with $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,up}$. \Box

Now let us look at $\Gamma_{2c,down} \subset \Gamma_{2b,down}$, where *c* comes from proposition 10. Clearly, $\Gamma_1 \cap \Gamma_{2c,down} = \emptyset$. So, there exists a simple continuous arc β_0 which connects a point of Γ_2 to some point in $] - \infty, c[\times\{0\}, \text{ in a way that } \beta_0 \cap \Gamma_2$ is one extreme of β_0 , denoted m_0 , and $\beta_0 \setminus \{m_0\} \subset \Gamma_{2c,down}$, which implies that $\beta_0 \cap \Gamma_1 = \emptyset$ and $\beta_0 \cap \alpha = \emptyset$. So, $(\beta_0 \cup \Gamma_2 \cup \beta_1)$ is a closed connected set, which intersects $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \{1\}$. And, by construction

$$(\beta_0 \cup \Gamma_2 \cup \beta_1) \cap (\alpha \cup \Gamma_1) = \emptyset,$$

a contradiction. So if $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$, then $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,down}$, which implies that $\Gamma_1 \prec_a \Gamma_2$ and the lemma is proved. \Box

Proof of lemma 6:

Suppose that b < a and $\Gamma_2 \prec_a \Gamma_1 \Leftrightarrow [\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,down}$. Proposition 10 tells us that $(\Gamma_2 \cap V_a^-) \cap \Gamma_{1a,up}$ is a limited set. So, as $\Gamma_{1b,up} \subset \Gamma_{1a,up}$, $[\Gamma_2 \cap V_b^-]$ must be contained in $\Gamma_{1b,down}$, which means that $\Gamma_2 \prec_b \Gamma_1$. The other implications are proved in a similar way. \Box

Proof of lemma 7:

Let $a \in \mathbb{R}$ be such that Γ_1, Γ_2 and Γ_3 intersect V_a . Then, $[\Gamma_1 \cap V_a^-] \subset \Gamma_{2a,down}$ and $[\Gamma_2 \cap V_a^-] \subset \Gamma_{3a,down}$. In the proof of lemma 5, we proved that if Θ and Λ are disjoint elements of UnConn and $a \in \mathbb{R}$ is such that Θ and Λ intersect V_a then, $[\Theta \cap V_a^-] \subset \Lambda_{a,down}$ implies $[\Lambda \cap V_a^-] \subset \Theta_{a,up}$. So, $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$ and $[\Gamma_3 \cap V_a^-] \subset \Gamma_{2a,up}$. Now, using proposition 10, let us choose $b \leq a$ such that the following inclusions hold:

$$\Gamma_3 \cap V_b^- \subset \Gamma_{2b,up} \Gamma_1 \cap V_b^- \subset \Gamma_{2b,down} \Gamma_2 \cap V_b^- \subset \Gamma_{3b,down}$$

$$(14)$$

Finally, let us prove that $\Gamma_{2b,down} \subset \Gamma_{3b,down}$.

If this is not the case, then there exists a simple continuous arc $\alpha \subset \Gamma_{2b,down}$ that connects a point from $] - \infty, b[\times\{0\}$ to a point $P \notin \Gamma_{3b,down}$. Thus α intersects Γ_3 , a contradiction with expression (14). So, $\Gamma_1 \cap V_b^- \subset \Gamma_{2b,down} \subset \Gamma_{3b,down}$, which implies that $[\Gamma_1 \cap V_b^-] \subset \Gamma_{3b,down} \Leftrightarrow \Gamma_1 \prec \Gamma_3$ and the lemma is proved. \Box

Proof of lemma 8:

Suppose that $f(\Gamma_2) \prec f(\Gamma_1)$. As $\Gamma_1 \prec \Gamma_2$, for any $a \in \mathbb{R}$ such that Γ_1 and Γ_2 intersect V_a , the proof of lemma 5 implies that $[\Gamma_2 \cap V_a^-] \subset \Gamma_{1a,up}$. From proposition 10, there exists a sufficiently small b < 0 such that:

Let c < b be such that $\tilde{f}^{\pm 1}(V_c) \cap V_b = \emptyset$. From our previous results, we get that

$$\begin{split} & \Gamma_1 \cap V_c^- \subset \Gamma_{2c,down} \\ & \Gamma_2 \cap V_c^- \subset \Gamma_{1c,up} \\ & \widetilde{f}(\Gamma_2) \cap V_c^- \subset \widetilde{f}(\Gamma_1)_{c,dowr} \end{split}$$

So, there exists a simple continuous arc $\alpha \subset \tilde{f}(\Gamma_1)_{c,down} \subset V_c^-$ that connects a point from $] -\infty, c[\times\{0\}$ to a point $P \in \tilde{f}(\Gamma_2)$. From the choice of $c, \tilde{f}^{-1}(\alpha) \subset V_b^-$ and it connects a point from $] -\infty, b[\times\{0\}$ to $\tilde{f}^{-1}(P) \in \Gamma_2$. As $\alpha \subset \tilde{f}(\Gamma_1)_{c,down}, \alpha \cap \tilde{f}(\Gamma_1) = \emptyset$, so $\tilde{f}^{-1}(\alpha) \cap \Gamma_1 = \emptyset$. Thus, $\tilde{f}^{-1}(\alpha) \subset \Gamma_{1b,down}$, which implies that $\Gamma_2 \cap \Gamma_{1b,down} \neq \emptyset$ and this contradicts (15). So, $\tilde{f}(\Gamma_1) \prec \tilde{f}(\Gamma_2)$. The other implication is proved in an analogous way. \Box

Proof of proposition 4:

Suppose there exists $s_0 > 1$ (the smallest one) such that $\Gamma - (s_0, 0) \subset \Gamma$. This means that $\Gamma, \Gamma - (1, 0), ..., \Gamma - (s_0 - 1, 0)$ are all disjoint.

As $\Gamma - (1,0) \subset \Gamma_{up}$ (which implies that $\Gamma \prec (\Gamma - (1,0))$), we get that $(\Gamma - (s,0)) \cap (\Gamma - (s+1,0)) = \emptyset$ and $\Gamma - (s,0) \prec \Gamma - (s+1,0)$, for all integers s > 0. So, in particular, using lemma 7, we obtain the following implications:

1)
$$\Gamma \prec \Gamma - (1,0) \prec \Gamma - (2,0) \prec \Gamma - (3,0) \prec \dots \prec \Gamma - (s_0 - 1,0)$$

2) $\Gamma - (s_0 - 1,0) \prec \Gamma - (s_0,0).$
(16)

So, as $\Gamma - (s_0, 0) \subset \Gamma$ and $\Gamma \cap (\Gamma - (s_0 - 1, 0)) = \emptyset$, we get from 2) of (16) that $\Gamma - (s_0 - 1, 0) \prec \Gamma$, a contradiction with 1) of (16). Thus for all integers $\dot{i} > 0$, $\Gamma \cap (\Gamma - (i, 0)) = \emptyset$ and so

$$\Gamma \prec \Gamma - (1,0) \prec \Gamma - (2,0) \prec \Gamma - (3,0) \prec \ldots \prec \Gamma - (i,0).$$

But this clearly implies that $\Gamma - (i, 0) \subset \Gamma_{up}$, because $(\Gamma - (i, 0)) \cap V_{m_{\Gamma}} = \emptyset$. \Box

Proof of lemma 9:

In both cases, the proof is analogous, so suppose Γ is a down component. This means that $\Gamma - (1,0)$ is contained in Γ_{up} .

Thus, for any $\tilde{x} < m_{\Gamma}$ (see expression (3) for the definition of m_{Γ}), if we consider the segment $\{\tilde{x}\} \times [0, \tilde{y}^*]$, where

$$\widetilde{y}^* = \widetilde{y}^*(\widetilde{x}) = \sup\{\widetilde{y} \in]0, 1[: \Gamma \cap \{\widetilde{x}\} \times [0, \widetilde{y}] = \emptyset\},$$
(17)

we get that $(\Gamma - (1, 0)) \cap {\widetilde{x}} \times [0, \widetilde{y}^*] = \emptyset$.

Now, consider a point $(m_{\Gamma} - 1, \tilde{y}_{\Gamma}) \in \Gamma - (1, 0)$ and a simple continuous arc $\gamma \subset int(\tilde{A})$, such that:

i) $\gamma \cap (\Gamma - (1,0)) = (m_{\Gamma} - 1, \widetilde{y}_{\Gamma})$

ii) $\gamma \cap \Gamma = \emptyset$

iii) the endpoints of γ are $(m_{\Gamma} - 1, \tilde{y}_{\Gamma})$ and $(m_{\Gamma} + 1, 0.5)$

iv) $\gamma \cap \{m_{\Gamma} + 1\} \times [0, 1] = (m_{\Gamma} + 1, 0.5)$

As $\Gamma - (1,0) \subset \Gamma_{up}$ and $(\Gamma \cup (\Gamma - (1,0)))^c$ is connected, it is possible to choose γ as above.

The complement of the closed connected set $(\Gamma - (1, 0)) \cup \gamma \cup \{m_{\Gamma} + 1\} \times [0, 1]$ has exactly two connected components in $] - \infty, m_{\Gamma} + 1[\times[0, 1], \text{ one containing}] - \infty, m_{\Gamma} + 1[\times\{0\}, \text{ denoted } ((\Gamma - (1, 0)) \cup \gamma)_{down} \text{ and the other containing}] - \infty, m_{\Gamma} + 1[\times\{1\}, \text{ denoted } ((\Gamma - (1, 0)) \cup \gamma)_{up}.$ Note that this construction is not unique, because we may have more then one point in $(\Gamma - (1, 0)) \cap \{m_{\Gamma} - 1\} \times [0, 1]$. Nevertheless, for any such choice, $\Gamma \subset ((\Gamma - (1, 0)) \cup \gamma)_{down}$. This follows from the fact that, for any

 $\widetilde{x} < \min\{m_{\Gamma}, \min\{\widetilde{x} \in \mathbb{R} : (\widetilde{x}, \widetilde{y}) \in \gamma, \text{ for some } 0 < \widetilde{y} < 1\}\} - 10,$

the segment $\{\tilde{x}\} \times [0, \tilde{y}^*]$ (see (17)) does not intersect $(\Gamma - (1, 0)) \cup \gamma \cup \{m_{\Gamma} + 1\} \times [0, 1]$ and $(\tilde{x}, \tilde{y}^*) \in \Gamma$.

Now suppose, by contradiction, that $dist(\Gamma, \mathbb{R} \times \{1\}) = 0$. As Γ is closed and $\Gamma \cap \mathbb{R} \times \{1\} = \emptyset$, we get that for every

 $M \le M_0 = \min\{m_{\Gamma} - 10, \min\{\widetilde{x} \in \mathbb{R} : (\widetilde{x}, \widetilde{y}) \in \gamma, \text{ for some } 0 < \widetilde{y} < 1\}\} - 10$

there exists $\epsilon > 0$ such that if $\tilde{z} \in \Gamma \cap \mathbb{R} \times [1 - \epsilon, 1]$, then $p_1(\tilde{z}) < M$. So, for M_0 and $\epsilon > 0$ as above, let us choose a point $\tilde{z}_0 \in \Gamma \cap \mathbb{R} \times [1 - \epsilon, 1]$ such that $p_1(\tilde{z}_0) \ge p_1(\tilde{z})$ for all $\tilde{z} \in \Gamma \cap \mathbb{R} \times [1 - \epsilon, 1]$ and

$$\begin{aligned} &dist(\widetilde{z}_0, \mathbb{R} \times \{1\}) < dist(\widetilde{z}, \mathbb{R} \times \{1\}) \text{ for all } \\ &\widetilde{z} \in \Gamma \cap \{p_1(\widetilde{z}_0)\} \times [1 - \epsilon, 1] \text{ with } \widetilde{z} \neq \widetilde{z}_0. \end{aligned}$$

Intuitively, if we start going left from $\{m_{\Gamma}\} \times [0, 1], \tilde{z}_0$ is the point of Γ with largest possible \tilde{x} and \tilde{y} coordinates, that belongs to $\mathbb{R} \times [1 - \epsilon, 1]$.

Now consider a closed vertical segment l contained in $\mathbb{R} \times [1-\epsilon, 1]$, starting at \tilde{z}_0 and ending at $\mathbb{R} \times \{1\}$. By construction of $l, l \cap \Gamma = \tilde{z}_0$. As $\Gamma \subset ((\Gamma - (1, 0)) \cup \gamma)_{down}$ and $l \cap (\gamma \cup \{m_{\Gamma} + 1\} \times [0, 1]) = \emptyset$, we get that $l \cap (\Gamma - (1, 0)) \neq \emptyset$. So, there exists $\tilde{z}_1 \in l \cap (\Gamma - (1, 0))$ which implies that $\tilde{z}_1 + (1, 0) \in (l + (1, 0)) \cap \Gamma$. And this contradicts the choice of \tilde{z}_0 . \Box

Acknowledgements: We would like to thank Professor Patrice Le Calvez for telling us to study the set B^- .

References

- [1] Addas-Zanata S. and Tal F. A. (2010) Homeomorphisms of the annulus with a transitive lift. to appear in *Math. Z.*
- [2] Alpern S. and Prasad V. (1991) Typical recurrence for lifts of mean rotation zero annulus homeomorphisms. *Bull. London Math. Soc.* 23, 477-481.
- [3] Alpern S.and Prasad V. (1995) Typical transitivity for lifts of rotationless annulus or torus homeomorphisms. *Bull. London Math. Soc.* 27, 79-81.
- [4] Bonatti C. and Crovisier S.(2004) Récurrence et généricité. Invent. Math. 158, 33-104.