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Abstract. In this paper we consider C∞-generic families of area-preserving
diffeomorphisms of the torus homotopic to the identity and their rotation sets. Let
ft : T2

→ T2 be such a family, f̃t : R2
→ R2 be a fixed family of lifts and ρ( f̃t ) be their

rotation sets, which we assume to have interior for t in a certain open interval I . We
also assume that some rational point (p/q, l/q) ∈ ∂ρ( f̃t ) for a certain parameter t ∈ I ,
and we want to understand the consequences of the following hypothesis: for all t > t ,
t ∈ I , (p/q, l/q) ∈ int(ρ( f̃t )). Under these very natural assumptions, we prove that there
exists a f q

t -fixed hyperbolic saddle Pt such that its rotation vector is (p/q, l/q). We also
prove that there exists a sequence ti > t , ti → t , such that if Pt is the continuation of Pt
with the parameter, then W u(P̃ti ) (the unstable manifold) has quadratic tangencies with
W s(P̃ti )+ (c, d) (the stable manifold translated by (c, d)), where P̃ti is any lift of Pti
to the plane. In other words, P̃ti is a fixed point for ( f̃ti )

q
− (p, l), and (c, d) 6= (0, 0)

are certain integer vectors such that W u(P̃t ) do not intersect W s(P̃t )+ (c, d), and these
tangencies become transverse as t increases. We also prove that, for t > t , W u(P̃t ) has
transverse intersections with W s(P̃t )+ (a, b), for all integer vectors (a, b), and thus one
may consider that the tangencies above are associated to the birth of the heteroclinic
intersections in the plane that do not exist for t ≤ t .
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dynamics
2010 Mathematics Subject Classification: 37E30, 37E45 (Primary); 37C20, 37C25, 37C29
(Secondary)

1. Introduction
1.1. General explanations. In this paper, in a certain sense, we continue the study
initiated in [3]. There, we looked at the following problem. Suppose f : T2

→ T2 is
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a homeomorphism homotopic to the identity, and its rotation set—which is supposed
to have interior—has a point ρ in its boundary with both coordinates rational. The
question studied was the following. Is it possible to find two different arbitrarily small
C0-perturbations of f, denoted f1 and f2 in such a way that ρ does not belong to the
rotation set of f1, and that ρ is contained in the interior of the rotation set of f2? In
other words, is the rational mode locking found by de Carvalho, Boyland and Hall [4]
in their particular family of homeomorphisms, in a certain sense, a general phenomenon
or not? Our main theorems and examples from the earlier work showed that the answer
to this question depends on the set of hypotheses assumed. For instance, regarding C2-
generic families, we proved that if ρ ∈ ∂ρ( f̃t ) for some t , and if for t < t, close to t ,
ρ /∈ ρ( f̃t ), then for all sufficiently small t − t > 0, ρ /∈ int(ρ( f̃t )). Now, in the current
paper, we are interested in the dynamical consequences of a situation that may be obtained
as a continuation of the previous situation. Suppose that ft : T2

→ T2 is a one-parameter
family of diffeomorphisms of the torus homotopic to the identity, for which the rotation
set ρ( f̃t ) at a certain parameter t = t, has interior, some rational vector ρ ∈ ∂ρ( f̃t ) and,
for all sufficiently small t > t , ρ ∈ int(ρ( f̃t )).We want to understand what happens for the
family ft , t > t . In other words, we are assuming that at t = t the rotation set is ready to
grow locally in a neighborhood of ρ.

The usual situation for (generic) families is as follows. As the parameter changes, the
rotation set hits a rational vector; this vector stays for a while in the boundary of the rotation
set until, finally, it is consumed by the rotation set, i.e. it becomes an interior point.

Here we consider C∞-generic area-preserving families in the sense of Meyer [19], and
that also satisfy other generic conditions. Suppose that, for instance, ft : T2

→ T2 is a
family satisfying the above generic conditions and such that the rotation set at t = t has
interior, (0, 0) ∈ ∂ρ( f̃t ) and for all sufficiently small t > t, (0, 0) ∈ int(ρ( f̃t )). Then our
main theorem implies that f̃t : R2

→ R2 has a hyperbolic fixed saddle P̃t , and if P̃t is the
continuation of P̃t with the parameter t , then there exists a sequence ti > t , converging to t ,
such that W u(P̃ti ) has heteroclinic tangencies with certain special integer translates of the
stable manifold, W s(P̃ti )+ (a, b), (a, b) ∈ Z2, which unfold (i.e. become transversal) as t
increases. The integer vectors (a, b)mentioned above belong to a set KZ2 ⊂ Z2 and satisfy
the following. For t ≤ t , W u(P̃t ) cannot have intersections with W s(P̃t )+ (a, b)whenever
(a, b) ∈ KZ2 . Moreover, the sequence ti → t depends on the choice of (a, b) ∈ KZ2 .

So, increasing the parameter until the critical value at t = t is reached (the moment when
the rotation set is ready to grow locally), this critical parameter is accumulated from the
other side by parameters at which there are heteroclinic tangencies in the plane (homoclinic
in the torus) not allowed to exist when t ≤ t . In fact, as we will prove, for any t > t,

W u(P̃t ) has transverse intersections with W s(P̃t )+ (a, b) for all (a, b) ∈ Z2. (1)

In this way, the creation of the heteroclinic intersections for integers (a, b) in (1) that do
not exist for t ≤ t also produces tangencies.

In order to state things clearly and to present our main result precisely, a few definitions
are necessary.
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1.2. Basic notation and some definitions.
(1) Let T2

= R2/Z2 be the flat torus and let p : R2
−→ T2 be the associated covering

map. Coordinates are denoted as z̃ ∈ R2 and z ∈ T2.

(2) Let Diffr
0(T

2) be the set of Cr diffeomorphisms (r = 0, 1, . . . ,∞) of the torus
homotopic to the identity and let Diffr

0(R
2) be the set of lifts of elements from

Diffr
0(T

2) to the plane. Maps from Diffr
0(T

2) are denoted f and their lifts to the
plane are denoted f̃ .

(3) Let p1,2 : R2
−→ R be the standard projections, respectively in the horizontal and

vertical components.
(4) Given f ∈ Diff0

0(T
2) (a homeomorphism) and a lift f̃ ∈ Diff0

0(R
2), the so-called

rotation set of f̃ , ρ( f̃ ), can be defined following Misiurewicz and Ziemian [20]
as

ρ( f̃ )=
⋂
i≥1

⋃
n≥i

{
f̃ n( z̃ )− z̃

n
: z̃ ∈ R2

}
. (2)

This set is a compact convex subset of R2 (see [20]), and it was proved in [12]
and [20] that all points in its interior are realized by compact f -invariant subsets of
T2, which can be chosen as periodic orbits in the rational case. By saying that some
vector ρ ∈ ρ( f̃ ) is realized by a compact f -invariant set, we mean that there exists
a compact f -invariant subset K ⊂ T2 such that, for all z ∈ K and any z̃ ∈ p−1(z),

lim
n→∞

f̃ n( z̃ )− z̃
n

= ρ. (3)

Moreover, the above limit, whenever it exists, is called the rotation vector of the
point z, denoted ρ(z).

1.3. Some background and the main theorem.

1.3.1. Prime ends compactification of open disks. If U ⊂ R2 is an open topological
disk whose boundary is a Jordan curve and f̃ : R2

→ R2 is an orientation-preserving
homeomorphism such that f̃ (U )=U, it is easy to see that f̃ : ∂U → ∂U is conjugate
to a homeomorphism of the circle, and so a real number ρ(U )= rotation number of f̃ |∂U

can be associated to this problem. Clearly, if ρ(U ) is rational there exists a periodic point
in ∂U . If it is not, then there are no such points. This has been known since Poincaré. The
difficulties arise when we do not assume ∂U to be a Jordan curve.

Prime ends compactification is a way to attach to U a circle called the circle of prime
ends of U, obtaining a space U t S1 with a topology that makes it homeomorphic to the
closed unit disk. If, as above, we assume the existence of a planar orientation-preserving
homeomorphism f̃ , such that f̃ (U )=U , then f̃ |U extends to U t S1. The prime ends
rotation number of f̃ |U , still denoted ρ(U ), is the usual rotation number of the orientation-
preserving homeomorphism induced on S1 by the extension of f̃ |U . However, things
may be quite different in this setting. In full generality, it is not true that when ρ(U ) is
rational, there are periodic points in ∂U and for some examples, ρ(U ) is irrational and
∂U is not periodic-point free. Nevertheless, in the area-preserving case which is the case
considered in this paper, many interesting results have been obtained. We refer the reader



4 S. Addas-Zanata

to [13, 14, 18] and [15]. To conclude, we present some results extracted from these works
and adapted to our hypotheses.

Assume h : T2
→ T2 is an area-preserving diffeomorphism of the torus, homotopic

to the identity such that, for each integer n > 0, h has finitely many n-periodic points.
Moreover, we also assume more technical conditions on h: for each n > 0, at all n-periodic
points a Lojasiewicz condition is satisfied, see [11]. In addition, if the eigenvalues of Dhn

at such a periodic point are both equal to 1, then the point is topologically degenerate; it
has a zero topological index. As explained in [3, §2], the dynamics near such a point is
similar to the one in Figure 2 (see later). In particular, h has one stable separatrix (like a
branch of a hyperbolic saddle) and an unstable one, both h-invariant. Topologically, the
local dynamics in a neighborhood of the periodic point is obtained by gluing exactly two
hyperbolic sectors.

Fix some h̃ : R2
→ R2, a lift of h to the plane. Given a h̃-invariant continuum K ⊂ R2,

if O is a connected component of K c, then O is a topological open disk in the sphere

S2 def.
= R2

t∞, the one point compactification of the plane. Assume that O is h̃-invariant
(it could be periodic with period larger than 1) and let α be the rotation number of the
prime ends compactification of O . From the hypothesis on h, we have the following.

THEOREM A. If α is rational, then ∂O has accessible h̃-periodic points. In addition, if
such a point has period n, the eigenvalues of Dh̃n at this periodic point must be real and
cannot be equal to −1. So, from the above properties assumed on h, in ∂O we either have
accessible hyperbolic periodic saddles or periodic points with both eigenvalues equal to 1,
with local dynamics as shown in Figure 2 (see later). Then, there exist connections between
separatrices of the periodic points, these separatrices being either stable or unstable
branches of hyperbolic saddles, or the unstable or stable separatrix of a point as shown in
Figure 2.

The existence of accessible h̃-periodic points can be found in [7]. The information about
the eigenvalues is a new result from [15] and the existence of connections in the above
situation can be found in [13, 18] and also [15].

THEOREM B. If α is irrational and O is bounded, then there is no periodic point in ∂O.

This is a result from [14].

1.3.2. Some results on diffeomorphisms of the torus homotopic to the identity. As the
rotation set of a homeomorphism of the torus homotopic to the identity is a compact convex
subset of the plane, there are three possibilities for its shape:

(1) it is a point;
(2) it is a linear segment;
(3) it has interior.

We consider the situation when the rotation set has interior.
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Whenever a rational vector (p/q, l/q) ∈ int(ρ( f̃ )) for some f̃ ∈ Diff2
0(R

2),

f̃ q(•)− (p, l) has a hyperbolic periodic saddle P̃ ∈ R2

such that W u(P̃), its unstable manifold, has a topologically transverse
intersection with W s(P̃)+ (a, b) for all integer vectors (a, b).

(4)

That is, the unstable manifold of P̃ intersects all integer translations of its stable manifold.
This result is proved in [1]. Now it is time to precisely define what we mean by a
topologically transverse intersection.

Definition. (Topologically transverse intersections) If f : M→ M is a C1 diffeo-
morphism of an orientable boundaryless surface M and p, q ∈ M are f -periodic saddle
points, then we say that W u(p) has a topologically transverse intersection with W s(q),
whenever the following happens. There exists a point z ∈W s(q) ∩W u(p) (z clearly can
be chosen arbitrarily close to q or to p) and an open topological disk B centered at z,
such that B\α = B1 ∪ B2, where α is the connected component of W s(q) ∩ B which
contains z, with the following property: there exists a closed connected piece of W u(p)
denoted β such that β ⊂ B, z ∈ β, and β\z has two connected components, one contained
in B1 ∪ α and the other contained in B2 ∪ α, such that β ∩ B1 6= ∅ and β ∩ B2 6= ∅. Clearly
a C1 transverse intersection is topologically transverse. See Figure 1 for a sketch of some
possibilities. Note that as β ∩ α may contain a connected arc containing z, the disk B may
not be chosen arbitrarily small.

In order to have a picture in mind, consider z close to q, so that z belongs to a connected
arc in W s(q) containing q, which is almost a linear segment. In this way, it is easy to find
B as stated above; it could be chosen as an open Euclidean ball. Clearly, this is a symmetric
definition: we can consider a negative iterate of z, for some n < 0 such that f n(z) belongs
to a connected piece of W u(p) containing p, which is also almost a linear segment. Then,
a completely analogous construction can be made, switching a stable manifold with an
unstable one. Choose an open Euclidean ball B ′ centered at f n(z), such that B ′\β ′ =
B ′1 ∪ B ′2, where β ′ is the connected component of W u(p) ∩ B ′ which contains z, with the
following property. There exists a closed connected piece of W s(q) denoted α′ (where α′ ⊂
B ′, f n(z) ∈ α′, and α′\ f n(z) has two connected components, one contained in B ′1 ∪ β

′

and the other contained in B ′2 ∪ β
′) such that α′ ∩ B ′1 6= ∅ and α′ ∩ B ′2 6= ∅. So, f −n(B ′),

f −n(β ′) and f −n(α′) are the corresponding sets at z.

The most important consequence of a topologically transverse intersection for us is a C0

λ-lemma: if W u(p) has a topologically transverse intersection with W s(q), then W u(p)
C0-accumulates on W u(q).

As pointed out in [2], the following converse of (4) is true. If g̃ def.
= f̃ q(•)− (p, l)

has a hyperbolic periodic saddle P̃ ∈ R2 such that W u(P̃) has a topologically transverse
intersection with W s(P̃)+ (ai , bi ), for integer vectors (ai , bi ), i = 1, 2, . . . , k, such that

(0, 0) ∈ ConvexHull{(a1, b1), (a2, b2), . . . , (ak, bk)},

then (0, 0) ∈ int(ρ(g̃))⇔ (p/q, l/q) ∈ int(ρ( f̃ )). This follows from the lemma shown
below.
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FIGURE 1. Four cases of topologically transverse intersections: (a) z is an odd-order tangency; (b) there is a
segment in the intersection of the manifolds; (c) a C1-transverse crossing; (d) z is accumulated on both sides by

even-order tangencies.

LEMMA 0. Let g ∈ Diff1
0(T

2) and g̃ : R2
→ R2 be a lift of g which has a hyperbolic

periodic saddle point P̃ such that W u(P̃) has a topologically transverse intersection with
W s(P̃)+ (a, b), for some integer vector (a, b) 6= (0, 0). Then ρ(g̃) contains (0, 0) and a
rational vector parallel to (a, b) with the same orientation as (a, b).

In order to prove this lemma, one just has to note that if W u(P̃) has a topologically
transverse intersection with W s(P̃)+ (a, b), then we can produce a topological horseshoe
for g̃ (see [2]), for which a certain periodic sequence will correspond to points with a
rotation vector parallel to, and with the same orientation as, (a, b). So, when (p/q, l/q) ∈
∂ρ( f̃ ) for some f̃ ∈ Diff2

0(R
2), it may be the case that f̃ q(•)− (p, l) has a hyperbolic

periodic saddle P̃ such that W u(P̃) has a topologically transverse intersection with
W s(P̃)+ (a, b), for some integer vectors (a, b), but not for all.

Moreover, if r is a supporting line at (p/q, l/q) ∈ ∂ρ( f̃ ) (which means that r is a
straight line that contains (p/q, l/q) and does not intersect int(ρ( f̃ ))) and if Ev is a
vector orthogonal to r, such that −Ev points towards the rotation set, then W u(P̃) has
a topologically transverse intersection with W s(P̃)+ (a, b), for some integer vector
(a, b)⇒ (a, b).Ev ≤ 0. If ρ( f̃ ) intersects r only at (p/q, r/q), then (a, b).Ev ≥ 0⇒
(a, b)= (0, 0).
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FIGURE 2. Dynamics in a neighborhood of the degenerate periodic points.

Regarding the family ft and the rational ρ = (p/q, l/q), which is in the boundary of
the rotation set ρ( f̃t ) at the critical parameter t = t, without loss of generality, we can
assume ρ to be (0, 0). Instead of considering ft and its lift f̃t , we simply have to consider
f q
t and the lift f̃ q

t − (p, l). This is a standard procedure for this type of problem. We just
have to be careful because we will assume some hypotheses for the family ft , f̃t and we
must ensure that they also hold for f q

t , f̃ q
t − (p, l). We look at this next.

1.3.3. Hypotheses of the main theorem. Assume ft ∈ Diff∞0 (T
2) is a generic C∞-

family of area-preserving diffeomorphisms (t ∈ ]t − ε, t + ε[ for some parameter t and
ε > 0), among other things, in the sense of Meyer [19] such that:

(1) ρ( f̃t ) has interior for all t ∈ ]t − ε, t + ε[;
(2) (p/q, l/q) ∈ ∂ρ( f̃t ), r is a supporting line for ρ( f̃t ) at (p/q, l/q), Ev is a unitary

vector orthogonal to r, such that −Ev points towards the rotation set;
(3) (p/q, l/q) ∈ int(ρ( f̃t )) for all t ∈ ]t, t + ε[;
(4) the genericity in the sense of Meyer implies that if, for some parameter t ∈

]t − ε, t + ε[, a ft -periodic point has 1 as an eigenvalue, then it is a saddle-elliptic
type of point—one which will give birth to a saddle and an elliptic point when the
parameter moves in one direction and will disappear if the parameter moves in the
other direction. As the family is generic, for each period there are only finitely
many periodic points. Moreover, as is explained on p. 3 of the summary of [11],
we can assume that at, all periodic points a Lojasiewicz condition is satisfied. In
particular, this holds at each n-periodic point (for all integers n > 0) which has 1, 1
as eigenvalues (the point is isolated among the n-periodic points and must have zero
topological index). So, as explained in [3, §2], the dynamics near such a point is as
shown in Figure 2.

(5) Saddle-connections are a phenomenon of infinity codimension (see [10]). Therefore,
as we are considering C∞-generic 1-parameter families, we can also assume that,
for all t ∈ ]t − ε, t + ε[, ft does not have connections between invariant branches of
periodic points, which can be either hyperbolic saddles or degenerate as in Figure 2.
This is not explicitly described in the literature on this subject, but a proof for this

more general situation can be obtained in exactly the same way as the proof for the
case when only hyperbolic saddles are considered.

(6) Moreover, as explained in [21, §6 of Ch. II], a much stronger statement holds: for
C∞ 1-parameter generic families ft , if a point z ∈ T2 belongs to the intersection
of a stable and an unstable manifold of some ft -periodic hyperbolic saddles and
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the intersection is not C1-transverse, then it is a quadratic tangency, that is, it is
not topologically transverse. This implies that every time an unstable manifold has
a topologically transverse intersection with a stable manifold of some hyperbolic
periodic points, this intersection is actually C1-transverse. In addition, when a
tangency appears, it unfolds generically with the parameter (with positive speed,
see [21, Remark 6.2]). This means that if some hyperbolic periodic saddles qt and
pt , such that W u(qt ′) and W s(pt ′) have a quadratic tangency at a point zt ′ ∈ T2 for
some parameter t ′, then for t close to t ′, in suitable coordinates near zt ′ = (0, 0),
we can write W u(qt )= (x, f (x)+ (t − t ′)) and W s(pt )= (x, 0), where f is a
C∞ function defined in a neighborhood of 0 such that f (0)= 0, f ′(0)= 0 and
f ′′(0) > 0. This implies that if the parameter varies in a neighborhood of the
tangency parameter, then to one side a C1-transverse intersection is created and to
the other side the intersection disappears.

This is stated for families of general diffeomorphisms in [21], but the same result
holds for families of area-preserving diffeomorphisms. It is not hard to see that in
order to avoid degenerate tangencies (of order ≥3), the kind of perturbations needed
can preserve area.

If ft , f̃t satisfy the above hypotheses, then f q
t , f̃ q

t − (p, l) clearly satisfy the same
set of hypotheses with respect to ρ = (0, 0). Note that the supporting line at (0, 0) for
ρ( f̃ q

t − (p, l)) is parallel to r, the supporting line for ρ( f̃t ) at (p/q, l/q). So there is no
restriction in assuming (p/q, l/q) to be (0, 0).

1.3.4. Statement of the main theorem.

THEOREM 1. Under the six hypotheses assumed in §1.3.3 for the family ft with
(p/q, l/q)= (0, 0), the following holds: f̃t has a hyperbolic fixed saddle P̃t such
that W u(P̃t ) has a topologically transverse (and therefore a C1-transverse) intersection
with W s(P̃t )+ (a, b) for some integer vector (a, b) 6= (0, 0). In addition, there exists
K ( f ) > 0 such that, for any (c, d) ∈ Z2 for which (c, d).Ev > K ( f ), if P̃t is the

continuation of P̃t for t > t , then there exists a sequence ti > t , ti
i→∞
→ t , such that W u(P̃ti )

has a quadratic tangency with W s(P̃ti )+ (c
′, d ′), for some (c′, d ′) ∈ Z2 that satisfies

|(c′ − c, d ′ − d).Ev| ≤ K ( f )/4, and the tangency generically unfolds for t > ti . The vector
(c′, d ′) is within a bounded distance from (c, d) in the direction of Ev, but may be far in the
direction of Ev⊥. These tangencies are heteroclinic intersections for f̃ti that cannot exist at
t = t . Finally, we point out that, for all t > t and for all integer vectors (a, b), W u(P̃t ) has
a C1 transverse intersection with W s(P̃t )+ (a, b).

Remarks
• As mentioned above, the tangencies given in the previous theorem are precisely for

some integer vectors (c′, d ′) which could not exist at t = t . This will become clear in
the proof.

• We were not able to produce tangencies at t = t, even when (c′, d ′).Ev > 0 was small.
In fact, ongoing work by Jager, Koropecki and Tal suggests that, for the particular
family they are studying, these tangencies may not exist at the bifurcating parameter.



A consequence of the growth of rotation sets 9

Actually, it is easy to see this for an area-preserving diffeomorphism of the sphere.
If it has a hyperbolic saddle fixed point p and W u(p) intersects W s(p), then there is
a topologically transverse intersection between W u(p) and W s(p). So, for a generic
family of such maps, a horseshoe is not preceded by a tangency: the existence of
a tangency already implies a horseshoe. This is clearly not true out of the the area-
preserving world and shows how subtle is the problem of the birth of a horseshoe in
the conservative case.

• Intuitively, as the rotation set becomes larger, one would expect the topological entropy
to grow, at least for a tight model. In fact, in Kwapisz [17], some lower bounds for the
topological entropy related to the two-dimensional size of the rotation set are presented
(it is conjectured there that the area of the rotation set could be used, but what is
actually used is a more technical computation on the size of the rotation set). Our main
theorem says that every time the rotation set locally grows near a rational point, then
nearby maps must have tangencies, which generically unfold as the parameter changes.
This is a phenomenon which is associated to the growth of topological entropy, see [5]
and [23]. More precisely, in these two papers it is proved that, generically, if a surface
diffeomorphism f has arbitrarily close neighbors with larger topological entropy,
then f has a periodic saddle point with a homoclinic tangency. Both these results
were not stated in the area-preserving case. In fact they may not be true in the area-
preserving case, but they indicate that whenever topological entropy is ready to grow,
it is expected to find tangencies nearby.

• The unfolding of the above tangencies create generic elliptic periodic points, see [9].
• An analytic version of the above theorem can also be proved. We have to assume that:

(1) the family has no connections between separatrices of periodic points;
(2) for each period, there are only finitely many periodic points;
(3) if a periodic point has a negative topological index, then it is a hyperbolic saddle.
These conditions are generic among C∞-1-parameter families, but this author does
not know the situation for analytic families. The tangencies obtained in this case have
finite order, but are not necessarily quadratic. To prove such a result, first remember
that all isolated periodic points for analytic area-preserving diffeomorphisms satisfy
a Lojasiewicz condition, see [3, §2]. Moreover, if an isolated periodic point has a
characteristic curve (see [11] and again [3, §2]), then from the preservation of area, the
dynamics in a neighborhood of such a point is obtained, at least in a topological sense,
by gluing a finite number of saddle sectors.

Another important ingredient is the main result of [15] quoted here as Theorem A,
which, among other things, says that for an area-preserving diffeomorphism f of the
plane, which for every n > 0 has only isolated n-periodic points, if it has an invariant
topological open disk U with compact boundary, whose prime ends rotation number
is rational, then ∂U contains periodic points, all of the same period k > 0 and the
eigenvalues of (D f k) at these periodic points contained in ∂U are real and positive.
So, if such a map f is analytic, the k-periodic points in ∂U satisfy a Lojasiewicz
condition. If a certain periodic point, for instance denoted P, has topological index 1,
then the eigenvalues of (D f k

|P ) are both equal to 1. Under these conditions, the main
result of [24] implies the existence of periodic orbits rotating around P with many



10 S. Addas-Zanata

different velocities with respect to an isotopy It from the Id to f. Additionally, a
technical result in [15] says that if a periodic point belongs to ∂U, then this cannot
happen. So, the topological indexes of all periodic points in ∂U are less than or equal
to zero and thus, from [3, §2], they all have characteristic curves. Therefore, locally,
all periodic points in ∂U are saddle-like. They may have two sectors (index zero) or
four sectors (index −1). From [18], if ∂U is bounded, connections must exist. Thus,
the hypothesis that there are no connections between separatrices of periodic points
implies the irrationality of the prime ends rotation number for all open invariant disks
whose boundaries are compact.

Finally, the last result we need is due to Churchill and Rod [8]. They show
that for analytic area-preserving diffeomorphisms, the existence of a topologically
transverse homoclinic point for a certain saddle implies the existence of a C1-
transverse homoclinic point for that saddle. Using these results in the appropriate
places of the proof in the next section, an analytic version of the main theorem can
be obtained.

In the next section of this paper we prove our main result.

2. Proof of the main theorem
The proof will be divided in two steps.

2.1. Step 1. Here we prove that f̃t has a hyperbolic fixed saddle such that its unstable
manifold has a topologically transverse intersection (therefore, C1-transverse) with its
stable manifold translated by a non-zero integer vector (a, b). Clearly, from Lemma 0,
(a, b).Ev ≤ 0.

First of all, note that since (0, 0) ∈ ∂ρ( f̃t ) and for all t > t , (0, 0) ∈ int(ρ( f̃t )), then f̃t
has (finitely many) fixed points up to Z2 translations, and it cannot be fixed-point free.
The finiteness comes from the generic assumptions. If all of these fixed points had a zero
topological index, as explained before the statement of Theorem 1, the dynamics near each
of them would be as in Figure 2. In this situation, [3, Theorem 1] implies that (0, 0) /∈
int(ρ( f̃t )) for any t close to t .

So there must be f̃t -fixed points with a non-zero topological index. From the Nielsen–
Lefschetz index theorem, we obtain a fixed point for f̃t with a negative index. From the
genericity of our family, the only negative index allowed is −1 and fixed points with
topological indices equal to −1 are hyperbolic saddles. Assume there are k > 0 such
points in the fundamental domain [0, 1[2, denoted {P̃1

t , . . . , P̃k
t }. So, in [0, 1[2 f̃t has

k hyperbolic fixed saddle points.
Now let us choose a rational vector in int(ρ( f̃t )).Without loss of generality, conjugating

f with some adequate integer matrix if necessary, we can suppose that this rational vector
is of the form (0,−1/n) for some n > 0.

By some results from [1], let Q̃ ∈ R2 be a periodic hyperbolic saddle point for ( f̃t )
n
+

(0, 1) such that W u(Q̃) has a topologically transverse intersection with W s(Q̃)+ (a, b)
for all integer vectors (a, b). In this case, W u(Q̃)=W s(Q̃)= RI( f̃t ), the region of
instability of f̃t , a f̃t -invariant equivariant set such that, if D̃ is a connected component
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of its complement, then D̃ is a connected component of the lift of a ft -periodic open
disk in the torus and for every ft -periodic open disk D ⊂ T2, p−1(D)⊂ (RI( f̃t ))

c. Also,
for any rational vector (p/q, l/q) ∈ int(ρ( f̃t )), there exists a hyperbolic periodic saddle
point for ( f̃t )

q
− (p, l), such that its unstable manifold also has topologically transverse

intersections with all integer translates of its stable manifold, and so the closure of its
stable manifold is equal the closure of its unstable manifold and they are both equal
RI( f̃t ). As we said, these results were proved in [1] and similar statements hold for
homeomorphisms [16].

If, for some 1≤ i∗ ≤ k,W u(P̃ i∗
t ) and W s(P̃ i∗

t ) are both unbounded subsets of the plane,
then it can be proved that W u(P̃ i∗

t ) must have a topologically transverse intersection with
W s(Q̃), and W s(P̃ i∗

t ) must have a topologically transverse intersection with W u(Q̃). But,
as the rotation vector of Q̃ is not zero, this gives what we want in Step 1. More precisely,
the following fact holds.

Fact. If W u(P̃ i∗
t ) and W s(P̃ i∗

t ) are both unbounded subsets of the plane, then W u(P̃ i∗
t )

has a topologically transverse intersection with W s(P̃ i∗
t )− (0, 1).

Proof. As W s(Q̃) has a topologically transverse intersection with W u(Q̃)+ (a, b) for all
integer vectors (a, b), this implies that if W u(P̃ i∗

t ) is unbounded, then W u(P̃ i∗
t ) has a

topologically transverse intersection with W s(Q̃). This follows from the following idea:
there is a compact arc λu in W u(Q̃) that contains Q̃ and a compact arc λs in W s(Q̃) that
also contains Q̃, such that λu has topologically transverse intersections with λs + (0, 1)
and λs + (1, 0). This implies that the connected components of the complement of⋃

(a,b)∈Z2

λu ∪ λs + (a, b)

are all open topological disks, with diameter uniformly bounded from above. So, if
W u(P̃ i∗

t ) is unbounded, it must have a topologically transverse intersection with some
translate of λs . As W s(Q̃) C0-accumulates on all its integer translates, we finally get that
W u(P̃ i∗

t ) has a topologically transverse intersection with W s(Q̃).
So, as for some integer m > 0,

( f̃t )
m.n(Q̃)= Q̃ − (0, m),

W u(P̃ i∗
t ) C0-accumulates on compact pieces of W u(Q̃)− (0, k j ) for a certain sequence

k j →∞. That is, given a compact arc θ̃ contained in W u(Q̃), there exists a sequence
k j →∞ such that, for some arcs θ̃ j ⊂W u(P̃ i∗

t ), θ̃ j + (0, k j )→ θ̃ in the Hausdorff
topology as j→∞. An analogous argument implies that if W s(P̃ i∗

t ) is unbounded,
then W s(P̃ i∗

t ) has a topologically transverse intersection with W u(Q̃). So if we choose
a compact arc κu contained in W u(Q̃) which has a topologically transverse intersection
with W s(P̃ i∗

t ), we get that W u(P̃ i∗
t ) accumulates on κu − (0, k j ) and thus it has a

topologically transverse intersection with W s(P̃ i∗
t )− (0, k j ) for some k j > 0 sufficiently

large. As we pointed out after the definition of topologically transverse intersections, all
the above follows from a C0-version of the λ-lemma that holds for topologically transverse
intersections. Now consider a compact subarc of a branch of W u(P̃ i∗

t ), denoted αu,
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starting at P̃ i∗
t and a compact subarc of a branch of W s(P̃ i∗

t ), denoted αs, starting at P̃ i∗
t

such that

αu has a topologically transverse intersection with αs
− (0, k j ) for some k j > 0. (5)

Using Brouwer’s lemma on translation arcs exactly as in [1, Lemma 24], we get that
either αu has an intersection with αs

− (0, 1) or αu
− (0, 1) has an intersection with αs .

If αu had only non-topologically transverse intersections with αs
− (0, 1) and αu

− (0, 1)
had only non-topologically transverse intersections with αs, then we could C0-perturb αu

and αs in an arbitrarily small way such that (αu
per ∪ α

s
per) ∩ ((α

u
per ∪ α

s
per)− (0, 1))= ∅

and αu
per ∩ (α

s
per − (0, k j )) 6= ∅ (because of the topologically transverse assumption (5)).

However, this contradicts Brouwer’s lemma [6]. So, either αu has a topologically
transverse intersection with αs

− (0, 1) or αu
− (0, 1) has a topologically transverse

intersection with αs . The first possibility is what we want and the second is not possible
because Lemma 0 would imply that ρ( f̃t ) contains a point of the form (0, a) for
some a > 0. As (0,−1/n) ∈ int(ρ( f̃t )) these two facts contradict the assumption that
(0, 0) ∈ ∂ρ( f̃t ). �

In order to conclude this step, we need the following lemma.

LEMMA 2. There exists 1≤ i∗ ≤ k such that for any choice of λi∗
u and λi∗

s , one unstable
and one stable branch at P̃ i∗

t , they are both unbounded.

Proof. For each 1≤ i ≤ k, as P̃ i
t has a topological index equal to −1, the two stable and

the two unstable branches are each f̃t -invariant. Fix some unstable branch λi
u and some

stable branch λi
s and let

K i
u = λ

i
u and K i

s = λ
i
s .

Both are connected f̃t -invariant sets. Let K i be equal to either K i
u or K i

s and assume
it is bounded. Without loss of generality, suppose that K i

= K i
u . First, we collect some

properties about K i .

• If K i intersects a connected component D̃ of the complement of RI( f̃t ), then, from
[13, Lemma 6.1], λi

u\P̃
i
t is contained in D̃, which then is a f̃t -invariant bounded

open disk (see [1] and [16]). As the family of diffeomorphisms considered is generic
(in particular, it does not have connections between stable and unstable separatrices
of periodic points), the rotation number of the prime ends compactification of D̃,
denoted β, must be irrational by Theorem A. So, if P̃ i

t ∈ ∂ D̃, as λi
u\P̃

i
t ⊂ D̃, this

would be a contradiction with the irrationality of β, because f̃t (λ
i
u)= λ

i
u . Thus, P̃ i

t
is contained in D̃ and the topological index of f̃t with respect to D̃ is +1 (because β
is irrational, therefore not zero). By the topological index of f̃t with respect to D̃ we
mean the sum of the indices at all the f̃t -fixed points contained in D̃. This information
will be used in the end of the proof.

• Suppose now that K i
= K i

u is contained in RI( f̃t ). It is not possible that K i
u ∩ λ

i
s

= P̃ i
t because that would imply that the connected component M of (K i )c which

contains λi
s\P̃

i
t has a rational prime ends rotation number and, as we have already

said, this does not happen under our generic conditions. So, from Oliveira [22,
Lemma 2], we get that either K i

u ⊃ λ
i
s or λi

u intersects λi
s . If λi

u intersects λi
s, then
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λi
s intersects RI( f̃t ), so it is contained in RI( f̃t ) and we can find a Jordan curve τ

contained in λi
u ∪ λ

i
s, P̃ i

t ∈ τ. Theorem B implies that there is no periodic point in
the boundary of a connected component of the complement of RI( f̃t ), because such a
component is ft -periodic when projected to the torus and it has an irrational prime ends
rotation number, by Theorem A. So, interior(τ ) intersects RI( f̃t ), and thus interior(τ )
intersects both W u(Q̃) and W s(Q̃), something that contradicts the assumption that K i

u
is bounded because λi

u must intersect W s(Q̃), which implies that it is unbounded.
Moreover, if K i

u ⊃ λ
i
s, then from our assumption that K i

u is bounded, we get that
K i

s = λ
i
s is also bounded. Arguing as above, we obtain that K i

s ∩ λ
i
u 6= P̃ i

t .

Otherwise, if M∗ is the connected component of (K i
s )

c that contains λi
u\P̃

i
t , as

f̃t (λ
i
u)= λ

i
u, the rotation number of the prime ends compactification of M∗ would be

rational. As this implies connections between separatrices of periodic points, which
do not exist under our hypotheses, K i

s must intersect λi
u\P̃

i
t . Again, from Oliveira [22,

Lemma 2], K i
s ⊃ λ

i
u or λi

u intersects λi
s and we are done.

Thus, the almost-final situation we have to deal is when K i
u ⊃ λ

i
s and K i

s ⊃ λ
i
u .

However, it is contained in the proof of the main theorem of [22] that these relations
imply that λi

u intersects λi
s . As we explained above, this is a contradiction with the

assumption that K i
u is bounded. If K i

= K i
s and K i

s ⊂ RI( f̃t ), an analogous argument
could be applied in order to arrive at similar contradictions.

Thus, if K i is bounded, it must be contained in the complement of RI( f̃t ). In order to
conclude the proof, we are left to consider the case when, for every 1≤ i ≤ k, we can
choose K i equal to either K i

u or K i
s , such that it is bounded and contained in a connected

component D̃i of the complement of RI( f̃t ).As we already obtained, the topological index
of f̃t restricted to D̃i is +1. This clearly contradicts the Nielsen–Lefschetz index formula
because the sum of the indices of ft at its fixed points which have (0, 0) rotation vector
would be positive. So, for some 1≤ i∗ ≤ k, both unstable and both stable branches at P̃ i∗

t
are unbounded. �

This concludes Step 1.

2.2. Step 2. From the previous step we know that there exists a f̃t -fixed point denoted
P̃t such that W u(P̃t ) has a topologically transverse, and therefore a C1-transverse,
intersection with W s(P̃t )− (0, 1).

So, there exists a compact connected piece of a branch of W u(P̃t ), starting at P̃t ,

denoted λt
u, and a compact connected piece of a branch of W s(P̃t ), starting at P̃t ,

denoted λt
s, such that λt

u ∪ (λ
t
s − (0, 1)) contains a continuous curve connecting P̃t to

P̃t − (0, 1). The end point of λt
u, denoted w, belongs to λt

s − (0, 1) and it is a C1-
transverse heteroclinic point. The main consequence of the above is the following fact.

Fact. The curve γ̃ t
V connecting P̃t to P̃t − (0, 1) contained in λt

u ∪ (λ
t
s − (0, 1)) projects

to a (not necessarily simple) closed curve in the torus, homotopic to (0,−1) and it has
a continuous continuation for t ≥ t sufficiently small. That is, for t − t ≥ 0 sufficiently
small, there exists a curve γ̃ t

V connecting P̃t to P̃t − (0, 1) made by a piece of an unstable
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branch of W u(P̃t ) and a piece of a stable branch of W s(P̃t )− (0, 1) such that t→ γ̃ t
V is

continuous for t − t ≥ 0 sufficiently small.

Proof. The proof is immediate from the fact that w is a C1-transversal heteroclinic point
which has a continuous continuation for all diffeomorphisms C2-close to f̃t . �

As (0,−1/n) is contained in int(ρ( f̃t )), there are rational points in int(ρ( f̃t )) with
positive horizontal coordinates. Thus, if we define

0t
V,a

def.
= · · · ∪ γ̃ t

V + (a, 2) ∪ γ̃ t
V + (a, 1) ∪ γ̃ t

V + (a, 0) ∪ γ̃ t
V + (a,−1) ∪ · · ·

for a ∈ Z,

we get that, for all sufficiently large integers n > 0, ( f̃t )
n(0t

V,0) intersects 0t
V,1

transversely and, moreover, we obtain a curve γ̃ t
H connecting P̃t to P̃t + (1, 0) of the

following form: it starts at P̃t , and goes through the branch of W u(P̃t ) that contains λt
u

until it hits, in a topologically transverse way (so in a C1-transverse way), λt
s + (1, b) for

some integer b. If b < 0, we add to this curve the following one:

γ̃ t
V + (1, 0) ∪ γ̃ t

V + (1,−1) ∪ · · · ∪ γ̃ t
V + (1, b + 1) (6)

and if b ≥ 0, we add the following curve:

γ̃ t
V + (1, 1) ∪ γ̃ t

V + (1, 2) ∪ · · · ∪ γ̃ t
V + (1, b) ∪ λt

s + (1, b). (7)

In both cases, we omit a small piece of λt
s + (1, b) in order to get a proper curve

connecting P̃t and P̃t + (1, 0). This follows from the fact that when we consider iterates
( f̃t )

n(0t
V,0) for some large n > 0, the arcs contained in stable manifolds are shrinking and

arcs contained in unstable manifolds are getting bigger. As there are orbits moving to the
right under positive iterates of f̃t , the above holds. So, γ̃ t

H is a continuous curve whose
end points are P̃t and P̃t + (1, 0), made of a connected piece of an unstable branch of
W u(P̃t ) added to either one of the two vertical curves above, (6) or (7),with a small piece
of λt

s + (1, b) deleted. As the intersection between the branch of W u(P̃t ) that contains λt
u

with λt
s + (1, b) is C1-transverse and t→ γ̃ t

V is continuous for t − t ≥ 0 sufficiently small,
we get that t→ γ̃ t

H is also continuous for t − t ≥ 0 sufficiently small. See Figure 3(a)
and (b) for representations of these two possibilities.

Remember that r is the supporting line at (0, 0) ∈ ∂ρ( f̃t ) and Ev is an unitary vector
orthogonal to r such that −Ev points towards the rotation set.

Now we state a more general version of [2, Lemma 6]. It does not appear in that paper
in this form, but the proof presented there also proves this more abstract version.

LEMMA 6 OF [2]. Let K H and KV be two continua in the plane, such that K H contains
(0, 0) and (1, 0) and KV contains (0, 0) and (0, 1). For every vector Ew, it is possible to
construct a connected closed set M Ew which is equal to the union of well-chosen integer
translates of K H and KV such that:
(1) M Ew intersects every straight line orthogonal to Ew;
(2) M Ew is bounded in the direction orthogonal to Ew, that is, M Ew is contained between

two straight lines rM Ew and sM Ew , both parallel to Ew, and the distance between
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FIGURE 3. How to construct γ̃ t
H .

these lines is less then 3+ 2.max{diameter(K H ), diameter(KV )}. So, in particular,
(M Ew)c has at least two unbounded connected components, one containing rM Ew ,

denoted Ur (M Ew), and the other containing sM Ew , denoted Us(M Ew).

So, applying this lemma in the context of this paper gives us a path-connected closed
set θ t

Ev⊥
⊂ R2 which is obtained as the union of certain integer translates of γ̃ t

V or γ̃ t
H in a

way that:

(1) θ t
Ev⊥

intersects every straight line parallel to Ev;

(2) θ t
Ev⊥

is bounded in the direction of Ev, that is, θ t
Ev⊥

is contained between two straight

lines l− and l+, both parallel to Ev⊥, and the distance between these lines is less
then 3+ 2.max{diameter(γ̃ t

V ), diameter(γ̃ t
H )}. Moreover, (θ t

Ev⊥
)c has at least two

unbounded connected components, one containing l−, denoted U , and the other
containing l+, denoted U+.

Assume that l+ and U+ were chosen so that if (c, d) is an integer vector such that
θ t
Ev⊥
+ (c, d) belongs to U+, then

(c, d).Ev > 0. (8)

It is not hard to see that for integer vectors (c, d) for which θ t
Ev⊥
+ (c, d) belongs either to

U+ or U−, an inequality like (8) needs to hold.

For this, note that if Ev is a rational direction for which (c, d).Ev = 0, then from the way
θ t
Ev⊥

is constructed, we get that θ t
Ev⊥
+ (c, d) intersects θ t

Ev⊥
, so θ t

Ev⊥
+ (c, d) does not belong

to (θ t
Ev⊥
)c. And in case Ev is an irrational direction, (c, d).Ev 6= 0. In particular, an integer

vector (c, d) satisfying the inequality in (8) has the property that any positive multiple of
it does not belong to ρ( f̃t ). This will be important in the remainder of the proof.
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Moreover, if (c, d).Ev > 3+ 2.max{diameter(γ̃ t
V ), diameter(γ̃ t

H )}, then θ t
Ev⊥
+ (c, d)

belongs to U+. Now we are ready to finish the proof of the main theorem.
As both t→ γ̃ t

V and t→ γ̃ t
H are continuous for t − t ≥ 0 sufficiently small, the same

holds for t→ θ t
Ev⊥
. Given any integer vector (c, d) such that

(c, d).Ev > K ( f ) def.
= 4.(3+ 2.max{diameter(γ̃ t

V ), diameter(γ̃ t
H )})+ 10,

if a t∗ > t sufficiently close to t is fixed, we can assume that

θ t
Ev⊥
+ (c, d) ∩ θ t

Ev⊥
= ∅ for all t ∈ [t, t∗].

In addition, as (0, 0) ∈ int(ρ( f̃t∗)), there exists an integer N > 0 such that

( f̃t∗)
N (θ t∗

Ev⊥
) has a topologically transverse intersection with θ t∗

Ev⊥
+ (c, d).

However, as (0, 0) /∈ int(ρ( f̃t )), and (c, d).Ev is sufficiently large, we get that

( f̃t )
N (θ t

Ev⊥
) ∩ θ t

Ev⊥
+ (c, d)= ∅.

The previous property follows from the existence of (a, b) ∈ Z2 such that

θ t
Ev⊥
+ (a, b) is contained between θ t

Ev⊥
and θ t

Ev⊥
+ (c, d)

and
(a, b).Ev > 2.(3+ 2.max{diameter(γ̃ t

V ), diameter(γ̃ t
H )})+ 5.

If we prove that ( f̃t )
N (θ t

Ev⊥
) cannot have a topologically transverse intersection with θ t

Ev⊥
+

(a, b), then it clearly cannot intersect θ t
Ev⊥
+ (c, d). So, if there were such a topologically

transverse intersection, as θ t
Ev⊥
+ (a, b) is disjoint from θ t

Ev⊥
and arcs of stable manifolds

shrink under positive iterates of f̃t , there would be some (a′, b′), (a′′, b′′) ∈ Z2, such
that P̃t + (a′, b′) belongs to θ t

Ev⊥
and its unstable manifold has a transverse intersection

with the stable manifold of P̃t + (a′′, b′′) which belongs to θ t ′
Ev⊥
+ (a, b). As θ t

Ev⊥
is

bounded in the direction of Ev by 3+ 2.max{diameter(γ̃ t
V ), diameter(γ̃ t

H )}, we get that
(a′′ − a′, b′′ − b′).Ev > 0, so Lemma 0 implies the existence of a rotation vector outside
ρ( f̃t ), a contradiction.

Thus, from the continuity of t→ θ t
Ev⊥

and t→ f̃t , there exists t ′ ∈ ]t, t∗[ such that

( f̃t ′)
N (θ t ′

Ev⊥
) has a non-topologically transverse intersection with θ t ′

Ev⊥
+ (c, d) and, for

all t ∈ ]t ′, t∗], the intersection is topologically transverse. As above, from the fact that
stable manifolds shrink under positive iterates of f̃t ′ , the intersection that happens for
t = t ′ corresponds to a tangency between the unstable manifold of some translate of
P̃t ′ which belongs to θ t ′

Ev⊥
with the stable manifold of some translate of P̃t ′ which

belongs to θ t ′
Ev⊥
+ (c, d). In other words, there is a tangency between W u(P̃t ′) and

W s(P̃t ′)+ (c∗, d∗) for some integer vector (c∗, d∗) such that |(c∗ − c, d∗ − d).Ev| ≤
3+ 2.max{diameter(γ̃ t

V ), diameter(γ̃ t
H )}. This estimate follows from the fact that if
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P̃t + (e, f ) belongs to θ t
Ev⊥
, then |(e, f ).Ev| ≤ 3+ 2.max{diameter(γ̃ t

V ), diameter(γ̃ t
H )}.

Here we are using the fact that P̃t ∈ θ
t
Ev⊥
.

As t∗ > t is arbitrary, if we remember that for a generic family as we are considering,
topologically transverse intersections are C1-transverse and tangencies are always
quadratic, then the proof of the main theorem is almost complete. We are left to deal
with the last part of the statement, which says that, for all parameters t > t,

W u(P̃t ) has transverse intersections with W s(P̃t )+ (a, b) for all (a, b) ∈ Z2.

As for t > t, (0, 0) ∈ int(ρ( f̃t )), the main result of [1] implies that (for each t > t) f̃t

has a hyperbolic periodic saddle (not necessarily fixed) Z̃ t ∈ R2 such that W u(Z̃ t ) has
transverse intersections with W s(Z̃ t )+ (a, b), for all (a, b) ∈ Z2. So, as W u(P̃t ) and
W s(P̃t ) are both unbounded, exactly as we did in the proof of the fact from Step 1 of
this proof, W u(P̃t ) has transverse intersections with W s(Z̃ t ) and W s(P̃t ) has transverse
intersections with W u(Z̃ t ). Thus an application of the λ-lemma concludes the proof.
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