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Abstract

In this paper we consider twist mappings of the torus, T : T? — T2,
and their vertical rotation intervals pv(T) = [}, pi], which are closed
intervals such that for any w €]py;, pi[ there exists a compact T-invariant
set @, with pv(Z) = w for any T € Q,, where py(Z) is the vertical
rotation number of Z. In case w is a rational number, Qw is a periodic
orbit (this study began in [1] and [2]). Here we analyze how p;, and pj,
behave as we perturb T when they assume rational values. In particular
we prove that for analytic area-preserving mappings these functions are
locally constant at rational values.
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1 Introduction and main result

The dynamics of a homeomorphism of the circle has a well-known and very im-
portant invariant, the so called rotation number. Roughly speaking, it measures
the average speed the orbit of a point in the circle rotates around it and its ra-
tionality or not has strong implications on the dynamics of the homeomorphism
(see [14] for a nice didactic exposition). In particular when the rotation number
is rational, it is locally constant in the C° topology, provided that the mapping
is not conjugate to a rigid rotation. Similar results for circle endomorphisms
have been proved by Boyland in [8]. As it is well-known, endomorphisms of
the circle do not have a single rotation number, they have a closed interval of
rotation numbers (the rotation interval), with many interesting properties (see
[13] and [20]). The results proved by Boyland in [8] concern the behavior of the
extreme points of the rotation interval.

The aim of the present paper is to study a similar problem in the context
of twist mappings of the torus. First we remember that twist mappings of the
torus have an invariant called vertical rotation interval (see [1], [2], [4] and [5]).
To be more precise, given a twist mapping T : S1xIR— S!xIR which induces a
diffeomorphism 7T : T? — T2 homotopic to the Dehn twist (¢, I) = (¢ + I mod
1,1 mod 1), there exists a closed interval py (T) = [py;, p{,] with the following
property:

For w € int(py (T')), there are 2 different situations.

1) w= § is a rational number. In this case there is a g-periodic point T for
T (in fact there are at least 2 such points) that lifts to a point z € S'xIR such
that T9(z) = z + (0, p).

2) w is an irrational number. Then there is a compact, T-invariant set
Q C T? that lifts to a set @ C S*xIR such that for any z € Q we have:

p2 o T"(z) — p2(2)

lim =w,
n— 00 n

where p, : S XxIR—IR is the projection in the vertical coordinate.

In [4] we have shown that pj; and p;, are continuous functions of T in the



C* topology (in fact a stronger result was proved there). Note that this is in
complete similarity with results for circle homeomorphisms and endomorphisms.

As we already said, the main result of this paper is inspired by the one
we mentioned for circle homeomorphisms with rational rotation number. If
T : S'xIR— S'xIR is an analytic area-preserving twist mapping which induces
a diffeomorphism T : T? — T? homotopic to the Dehn twist and py,(T) <
p‘J;(T) € Q, then p{? (T) is locally constant in the C topology, that is, it can not
be increased and decreased by appropriate C' small perturbations. A similar
result holds for p,(T') when it assumes a rational value and the vertical rotation
interval is not degenerate to a point.

In [5] we solved the complementary problem: There we proved that for a
C! twist mapping T, if py,(T) < pi,(T) ¢ Q, then pF(T + (0,a)) > pf(T) for
any a > 0. Note that this result is also analogous to what happens for a circle
homeomorphism with irrational rotation number. For a similar result in the
context of torus homeomorphisms homotopic to the identity see [7].

In [6] a partial version of the main result of this paper was proved. The
class of mappings studied there was, in a certain sense, a little restrictive, as for
instance, it did not contain the standard mapping (in fact, it did not contain

any area-preserving mapping):

S . ¢I:¢+II mod 1 (1)
M-l 1r=rI+ £ sin(2r¢) mod 1

Clearly, as Sy is analytic and area-preserving, the result proved here can be
applied to it.

Our main goal with all this analysis of how the vertical rotation interval
changes as we perturb T is a better understanding of the bifurcations that
happen in a family like Sj;.

As the research in this subject has shown, this is a very difficult task. The

main problems with our analysis are the following:

1. the particular family may not be "versal” for the bifurcation we are con-

sidering. For instance, even when p$ (T') can be increased by appropriate



perturbations, it may be the case that it remains constant or even de-

creases if the perturbations are restricted to a particular family.

2. there is not a nice topological characterization (at least not to our knowl-
edge) of all the possible dynamics in the neighborhood of an index one
periodic point of an area-preserving mapping. This problem is related to
the following one: If pJ‘Q(T) can be increased by appropriate perturbations,
then new index one periodic orbits appear. Is the appearance of these or-
bits associated to invariant sets of positive Lebesgue measure? In other
words, is the appearance of these orbits associated to non-ergodicity with

respect to Lebesgue measure for the perturbed torus mapping?

3. when p}(T) is locally constant at a rational value, are there non-trivial
invariant sets with this vertical rotation number? (by non-trivial we mean

with positive Lebesgue measure)

This paper is organized as follows. In the first section we present some basic
definitions and the precise statement of our main result, in the second section
we present a brief summary of the results used in the paper and in the third

section we prove our main theorem.

Notation and definitions :

0) Let (¢, I) denote the coordinates for the cylinder S'xIR=(IR/Z) xR,
where ¢ is defined modulo 1. Let (5, i) ) denote the coordinates for the
universal cover of the cylinder, IR2. For all mappings T : S'xIR— S'xIR
we define (¢, I') = T(¢,I) and (¢, ') = T(¢, 1), where T : IR> — IR? is
a lift of T

1) D}(IR?) = {T : R2 > IR? / T is a C' diffeomorphism of the plane,
I'(¢,1) Tﬁ—>i°° +00, 67%’> 0 (twist to the right), ¢'(¢, 1) I~_>—j>:°° +o0 and
T is the lift of a C? diffeomorphism T : 1 xIR— S*xIR}.

2) Diff} (§* x R)={ T : S*xIR— S'xIR / T is induced by an element of
D!(IR?)}.



3) Let p; : R2 - IR and p> : IR2 — IR be the standard projections, re-
spectively in the ¢ and I coordinates (pl(gg, I) = é and p2($, I)=1). We
also use p; and p, for the standard projections of the cylinder.

4) Let Dpenn = {T € Diff!(S* x R) : T induces a mapping T : T2 — T2
homotopic to the Dehn twist (¢,I) — (¢ + I mod 1,1 mod 1)}, where
T? = IR?/7Z? is the 2-torus (coordinates in the torus are denoted by (¢, I))

5) Let pro: S' x R — T2 and 7 : R? —+S* x IR be given by:

pro(, I) = (¢, I mod 1)
W(aaf) = (‘; mod laf)

6) Given a point T € T?, we define its vertical rotation number as (when

the limit exists):

pv (@) = lim P2° T™(z) = pa(2)

n—00 n

, for any z € pro= (%) (2)
Now we are ready to state our main result:

Theorem 1 : Let T € Dpenn be an analytic area-preserving mapping such that
pv(T) = [py, g], with g Q, (p,q9) =1 and p;, < g. Then, if V C Dpenn 15 any
sufficiently small neighborhood of T in the C* topology, one and only one of the
following possibilities holds:

1) for all G € V, pi(G) < p/q

2) for all G € V, p7(G) = p/q

3) for all G € V, pi;(G) 2 p/q

2 Basic tools
In this part of the paper we state some results we use and present references.

2.1 Some results for twist mappings

First we recall some topological results for twist mappings essentially due to Le

Calvez (see [15] and [16]). Let T € Diff!(S* x IR) and T € DZ(IR?) be a lift of



T to the plane. For every pair (s,q), s € Z and ¢ € IN* we define the following

sets:

Kiisi(s,0) = {5, ) € R? pr o T9(3,1) = §+ 5
and (3)
K(s,q) = mo Kyift(s,q)

Then we have the following:

Lemma 1 : For every s € 7Z and ¢ € IN*, K(s,q) D C(s,q), a connected

compact set that separates the cylinder.

For all s € Z and q € IN* we can define the following functions on S':

p~(¢) = min{ps(2): z € K(s,q) and p1(2) = ¢}
pt(¢) = max{ps(2): z € K(s,q) and p;(2) = ¢}

And we can define similar functions for T9(K (s, q)):

v (¢) = min{p2(2): 2 € T?0 K(s,q) and p1(2) = ¢}
v+ (6) = max{ps(2): 7 € T4 K(s,q) and py (2) = ¢}

Lemma 2 : Defining Graph{u*}={(¢, u*(¢)) : € S} we have:
Graph{u} U Graph{u*} C C(s,q)
So for all € S* we have (¢, u*(9)) € C(s,q).
The next lemma is a fundamental result in all this theory:
Lemma 3 : T%(¢, u(8)) = (¢,v"(¢)) and T(¢, u*(8)) = (¢, v (9))-
For proofs of the previous results see Le Calvez [15] and [16].

2.2 Results previously obtained by the author:

The first theorem we present asserts the existence of the vertical rotation interval

and present some of its properties:

Theorem 2 : To each mapping T € Dpenn, we can associate a closed interval
pv(T) = [py,py], possibly degenerated to a single point, such that for every

w €lpy, py[ there is a compact T-invariant set @, C T? with py(T) = w, for



allT € Gw. If w is a rational number %, then Qw s a g-periodic orbit. In fact,
in this case there are at least 2 such orbits. If they are finite, then at least one

has positive index and another one has negative indez..
For a proof, see theorem 6 of the appendix of [3] and theorem 5 of [2].

Theorem 3 : The functions py;,py, : Dpenn — IR are continuous in the C*

topology.

Lemma 4 : Given T € Dpenn, let f : R — R be given by: f(a) = pH(T +

(0,a)). Then f is a non-decreasing function of a.

For proofs of the above results, see [4]. To conclude we present a lemma
from [5] similar to the main result of [17], which says that we do not need to
think of general perturbations in this setting. Vertical translations are enough

for most applications. In the following, T, (¢, I) def. T(¢,I) + (0, ).

Lemma 5 : Let T € Dpenn be such that py(T) = [w™,w™]. Suppose that by an
arbitrarily C*-small perturbation applied to T, we can change wt, that is, there
exists T* arbitrarily C*-close to T, such that p$ (T*) # w*. Then for any given
€ > 0, at least one of the following inequalities must hold:

1) 5 (TL) # w*, or

2) pi(T-) # wt.

Moreover, given T € Dpenn with py (T) = [w™,w™], there exists a neighbor-
hood T € U C Dpenn such that for any T* € U, pf(T*) = w*, if and only if,
Je > 0 such that pf,(Ta) = wt, for all o € [—¢,€].

2.3 On the dynamics near fixed points of analytic diffeo-
morphisms of the plane

The dynamics near singularities of analytic vector fields of the plane is very well
understood (see for instance [10]). It can be proved that, if the singularity is not
a focus or a center, then the dynamics can be obtained from a finite number of

sectors, glued in an adequate way. Topologically, these sectors can be classified



in 4 types: elliptic, hyperbolic, expanding and attracting. Dumortier et al.
studied this problem for planar diffeomorphisms near fixed points, see [11].

The situation we want to understand in this section is the following: Is there
a topological picture of the dynamics near an index zero isolated fixed point of
an analytic area-preserving diffeomorphism of the plane?

It turns out that the area-preservation together with the zero index hy-
potheses imply that the eigenvalues of the derivative of the diffeomorphism at
the fixed point are both equal to 1. The area-preservation implies that in a suf-
ficiently small neighborhood of the fixed point, the diffeomorphism is the time
one mapping of a formal vector field (defined by a formal series), see [19]. So we
are able to apply results from [11], which say that at least in a topological sense,
the dynamics near the fixed point can be obtained as in the vector field setting,
gluing a finite number of sectors. As we are supposing that area is preserved by
the diffeomorphism, there can not be elliptic, expanding and attracting sectors.
As the topological index of the fixed point is zero, it can not be a center and so
there must be exactly 2 hyperbolic sectors and the dynamics is topologically as

in figure 1.

3 Proof of the main theorem

In this section we are going to prove the main theorem. Our proof is by contra-
diction. We suppose that there is a mapping T satisfying the theorem hypothesis
and such that the following holds:

For every o # 0, py(Ta) # p/q, where To(¢,1) = T(¢,1) + (0,a)  (4)

Using lemma 5, we get that theorem 1 is true if and only if the above assertion
is impossible. Thus we are left to show that (4) is impossible. As p;, < p/q and
p(Ts) > p/q for all a > 0 (see lemma 4), we get from theorems 2 and 3 that
Ty has g-periodic points with py = p/q.

Lemma, 4 again implies that for any a < 0, pJVC (Tw) < p/q = the g-periodic

points of Ty with py = p/q are degenerate. Moreover, in the following we are



going to prove that they are finite. As T is an analytic mapping, the same
argument used in the proof of theorem 3 of [3] implies that if the g-periodic
points of T with py = p/q are infinite, then there exists a simple closed curve
v C 8! x IR such that for all z € v, T9(z) = z + (0,p). Clearly vy belongs to
K(s,q), for a certain s € Z. And this curve can not be homotopically non-trivial,
because py,(T) < p/q. To see this, note that if v is homotopically non-trivial,
and T%(y) = v + (0,p), as T induces a mapping on the torus homotopic to the

Dehn twist, then the following is true:
Ty + (0,m)) = v+ (0,m) + (0,p), for all m € Z

As py(T) = § < p/q, there exists a point z € S* x IR such that py(z) <
p/q. Now choose m € Z such that z is above v + (0,m) = T™(z) is above
v + (0,m) + (0,n.p) for all n > 0, which contradicts the fact that py(z) < p/q.
So 7 is homotopically trivial and thus crosses some vertical twice, at say, z
and z' (p1(z) = pi1(z') = ¢). Suppose that pa(z) < p2(z'). The definition
of 4~ and lemma 3, which says that T9(¢, u=(¢)) = (¢,v+(¢)), imply that
u~(#) < p2(z). Thus we get that v+ (¢)—p~ (¢) > p+(p2(z')—p2(z)), something
that contradicts the fact that pf,(Tn) < p/g for all @ < 0, because C(s,g) and
T%(C(s,q)) are upper semi-continuous functions of 7" in the Hausdorff topology
(see [17]). So the g-periodic points of T with py = p/q are finite.

Let us denote them

{]_9(1),]_9%, "'7@5—1} ) {ﬁgaﬁ%a "'71_73—1} PR {Tgévaf_jiv7 "'71_7(]1V—1} ’ (5)

where pi = (85, T;) for i € {1,2,..., N} and j € {0,1,...,¢ — 1}.

Define F,(¢,1) def- (TL)%(4,I) — (0,p). Clearly F, induces a torus diffeo-
morphism F, with pj,(F,) < 0 < pi;(Fy), for all sufficiently small a > 0 and
all the points in (5) are fixed points for Fy with zero vertical rotation number.

Now for each point of (5) let us choose open neighborhoods Wy, k =

1,2, ..., N.q, such that:

1. closure (FO(Wk) UWy UFal(Wk)) N closure(W;) = 0, for all k # I,
k,le{1,2,..,N.q}.



2. as each P} is fixed for Fp and has zero topological index, the dynamics
inside each Wy, is as in figure 1. So Wy D Engo U Ezy o, where Eny g
and Ewk,o are two open connected sets, free under F (disjoint from their
images), such that every time the orbit of a point enters in Wy, it must
enter through Enj o and leave through Ezy 9. Moreover, if we choose W,
properly, we can suppose that closure(Eng) N closure(Ezyo) = ) and
that there exists a point z;, € B,(Zx) C Enk,o, where » > 0 is the same for
all k € {1,2,..., N.q}, such Fo(zx) € Bs(Fo(zx)) C Ezy,, also for some
fixed s > 0, see figure 2.

If we choose sufficiently small neighborhoods W, then there exists a; > 0,
such that for 0 < a < a;, F, has periodic orbits with negative vertical rotation
number, disjoint from :Llélj W . This follows from py; (F) < 0 = pi (Fp).

Let By C Wy be a open neighborhood of the Fg-fixed point which is inside
W, that satisfies:

Wi D closure(ﬁo_2(§k) U FJI(F;C) U By, U Fo(By) U F?) (Br)) (6)

The above condition implies that
closure(By) N closure(Fo(Engo) U EngoU Ezgo) = 0. (7

Following figure 2, let us denote the boundary of W, as follows: W =
Ol U dby U Ory, U Oty. Let Vg, Vi, C Wy be 2 small open neighborhoods,
respectively of 9b; and 9ty such that the following conditions hold (n > 0
is a sufficiently small number and B,,(Vb,k U Vt,k) is the n-neighborhood of
Vi UVik):



1) {2z, Fo(zx)} N closure(Vy, UV ) = 0

2) there exists N > 0 such that for all T € B, (Vi U V),
for some n = n(z) < N, Fy(z) ¢ Wy and
for 0 < i < n, Fo(T) ¢ closure(B},) (8)

3) there exists M > 0 such that for all Z € B, (VU Vi k),
for some m = m(z) < M, Fy " (z) ¢ W}, and

for 0 <i<m, F, (%) ¢ closure(B})
Now choose as > 0 such that for 0 < a < ay,
1. all fixed points for F, with zero vertical rotation number are contained

N.q — . Ng__ —
in kU1 By, and there is an isotopy supported in kU1 By, beetwen F, and a

homeomorphism without fixed points of zero vertical rotation number
2. the three conditions in (8) hold when, instead of Fy, we use F,.

—+1 — = —+1 — =
3. F, (6bk) NWi C Vi and F, (5tk) NWe CVyipg

4. condition (6) holds when instead of Fg we use F,. As before, this implies
that closure(By,) Nclosure(F o (Eng,a)UEng o UEzy o) = 0, where Eny o

and Ezy , are the analogous of Eny o and Exy g for a > 0
5. Zi € Enk,a and Fa(fk) € Ea;k,a

6. if we denote the connected component of Eny, o \closure(Vy, UV ;) whose
boundary intersects W by Enj , and, in the same way, the connected
component of Exy o \closure(Vy ; UV} ;) whose boundary intersects W,
is denoted by Em}cia, then Eny , C En}c’a UB,(Vpx UViy) and Ezy o C
Ez), ,UBy(Vy UV¢}). Moreover, closure(Eny, ) N closure(Ex), ) = 0,

see figure 3
7. closure (Fa(Wk) u F;I(Wk)) N closure(W;) = 0, for all k # 1

8. Z € En;c’a and F,(Zx) € Em}c’a
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A simple continuity argument implies that all the above conditions are sat-
isfied for sufficiently small a > 0.

Now fix 0 < o < min{a;,a2}. Our hypothesis imply that pj, (F,) < 0 <
p3(Fy). From the choice of a; > 0, there exists Z_ € T2 and n > 0 such that
(Fo)™(Z-) = _, pv(Z-) < 0 and the orbit of T_ is disjoint from :gi Wi.
Let m > 0 be an integer such that 0 < 1/m < p{;(F,) and let 7 € T? (the
existence of T, follows from theorem 2) be such that (F,)™(Z,) = T, and
pv(Z4) = 1/m. If the orbit of Z is disjoint from :L;Jli By, then we are done.

So, suppose that Orbit(T,) = {ZT4, Fo(Ty), (Fa)?(@1), .., (Fa)™ (@4}
intersects :L,:J(i Bj. From the fact that the three conditions in (8) hold for
F, without loss of generality we can suppose that T, € Ex’l,a C Wi. As
(Fo)™(T4) = T4, there exists m’ < m such that (Fo)™ (Z1) € Enj , C W1.
Now let {z, W1, Wa, ..., Wn ,} C S' x[0,1) be lifts of z; and W1, Ws,..., Wy 4
to the cylinder. From the choice of T, we get that (F,)™(zy) = =z + (0,1).
If we consider all the intermediate pieces of the orbit of x, then the following

observation is true:

Observation 1 : There exists 1y = (F,)(z+) and r; = (F,)?(z ), forsome 0 < i < j <m'
such that ry € Ex},; , +(0,5) C Wi1 +(0,5) and r; € Eny, ,+(0,5+1) C
W1+ (0,s+1), for some 1 < k1 < N.q and s,l € Z, with [ > 0. And when
for 2 points z = (F,)%(z4), v = (Fa)¢(z4), 1 < d < e < j, pro(z) and
pro(y) belong to the same By, then z € B;+(0,m) and y € B;+(0,m+a),
for m,a € Z with a < 0. Moreover, {fo (1), (Fo) (1)} N Brr = 0.

In order to find points 7y and r; as above, we just have to start with z €
Eg, C Wy and (F,)™ (z4) € En} , + (0,1) C W1 + (0,1) and check if the
conditions in the observation are satisfied for the intermediate points of the
orbit. If they are not, then we pick the convenient subset of the orbit from z
to (F,)™ (z1) and check again. After a finite number of attempts, r; and
are found.

Let us denote the orbit segment from 7 to 7; by

T} = %0,Z1, - Tj—i =T, where T, = (Fo)"(Ty) (9)

11



N.q — — — —
and suppose that it intersects kul By, in Bys, Bgs, ..., Brr. From the fact that
expression (8) is true also for F,, in each W, 2 < m < L, there are points

Trm_first € BNy o C Wi and Trm_iast € B2y, o C Wiim, defined as follows:

® Tim_rirst is the first point of the sequence (9) such that (Fo)"(Tkm_first)
belongs to Wiy, for n = 0,1,...,nmax, (Fa)™"* (Zkm_first) € Brm for
some 0 < Ngpip < Nmax and of course (F,)™mex (Tkm_pirst) € Ez}m’a

® Tpmiast is the last point of the sequence (9) such that (Fo) ' (Trm_tast)
belongs to W, for I = 0,1, ..., lmax, (Fa) ' (Tkm_tast) € Brm for some

0 < lerit < lmax and of course (Fo) '™ (Tpm jast) € En;cm’a

To understand the above definitions, one just has to remember that every
time the orbit of a point falls into some B}, then it must have entered W
through Enj , and it will leave W}, through Ez, .

The next step is to perform 2 deformations in each Wy, (m > 1), one
supported in En;cm,a and the other supported in Eac}cm’a. For 2 < m < L,
let pf gm C Enjcm,a be a simple arc whose endpoints are Ty, first and Zim,
such that, apart from Zym,_tirst, it does not contain any other point of sequence
(9). Let Vigm C En}gm,a be an open neighborhood of i i, which also does
not contain any other point of sequence (9). In the same way, let w gm C
Em}sm,a be a simple arc whose endpoints are Tym_jas¢ and Fo(Zgm), such that,
apart from Ty, 45, it does not contain any other point of sequence (9). Let
Viem C Em}cm’a be an open neighborhood of y;_t, which also does not contain
any other point of sequence (9). As Enj,,

and Ezy,, , are disjoint and free

a a

under F,, the same is true for V¢ _km and Vj_gm. So, let us define the following

homeomorphisms Ay, .. : T = T? and hy,,,, : T? - T%:

EVf_km | (Vim)e ™ id

EVf_km (Ekm_first) = Zkm
and (10)

_ Evﬁm |(Vl_km)c: id
th.km (Fa(zkm)) = Tkm_last

For m = 1, we perform an analogous construction. Let pf 1 C Enjcl,a be

a simple arc whose endpoints are 7; and Zy;, which, apart from 7;, avoids all
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points of sequence (9). Let Vi1 C En;cl,a be an open neighborhood of p¢ 1
which also does not contain any other point of sequence (9). In the same way,
let py_r1 C Ex}, , be a simple arc whose endpoints are 77 and Fo(Zk1), which,
apart from 7, avoids all points of sequence (9). Let V; 41 C Em;cl,a be an open
neighborhood of y; 1 which also does not contain any other point of sequence

(9). Then we define:

E‘_/f_kl |(Vf_k1)C: id
hv; 1 (1) = Zra
and (11)

EVl_kl |(Vl_lc1)C: id

hvi i (Fa(Zr1)) =Ty

Denote by h : T? — T? the homeomorphism which agrees with all the hy, .
and hy, ., 1 < m < L. From the choice of as > 0, we know that there is an
isotopy supported in :(:J‘i By, between F, and a homeomorphism without fixed
points of zero vertical rotation number. Let us denote the final mapping of this
isotopy by F... By construction F., coincides with F, outside :LI_J(i By, so we
get that the mapping G “ 5o F, has a periodic point with positive vertical
rotation number, that comes from the orbit segment between 7; and 7y, see
Observation 1. The deformation A is supported in a disjoint union of free sets
for F,, so as F,, has no fixed points of zero vertical rotation number, the same
is true for G.

As G coincides with F, outside :gi Wy, G also has periodic points with
negative vertical rotation number. But this contradicts a generalization of some
results of [12] to this context. To be more precise, it contradicts the next theorem

due to H.E.Doeff (see [9], theorem 5.3).

Theorem 4 : If G : T2 — T? is a homeomorphism homotopic to (¢,I) —
(¢+n.I mod 1,1 mod 1), for a certain n € IN* and there are points T, ,Z_ € T?
such that py (T_) < 0 < py (T, ), then G has fized points of zero vertical rotation

number.

So it is not possible that pi(T,) # % for all o # 0 and the proof is complete.O
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Figure captions.

Figure 1. Diagram showing the dynamics near a fixed point of zero index
Figure 2. Diagram showing the sets W D Engo U Ezyo U By,

Figure 3. Diagram showing the sets Enj , U Ex},
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