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Abstract

We consider two-degree-of-freedom Hamiltonian systems with a saddle-center loop,
namely an orbit homoclinic to a saddle-center equilibrium (related to pairs of pure
real, +v, and pure imaginary, +wi, eigenvalues). We study the topology of the sets
of orbits that have the saddle-center loop as their « and o limit set. A saddle-center
loop, as a periodic orbit, is a closed loop in phase space and the above sets are
analogous to the unstable and stable manifolds, respectively, of a hyperbolic periodic
orbit.
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1. Introduction

This paper concerns a problem quite similar to the one of describing the dynamics
near an unstable hyperbolic periodic orbit of a Hamiltonian system with two
degrees of freedom. In order to explain the problem let us consider as a model the
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two-degree-of-freedom Hamiltonian system given by

qi‘+q‘z‘). )

1
H= (p? +03 =V + o+ baigs +

2
The origin of the system (q1,¢2,p1,p2) = (0,0,0,0) is a saddle-center equilibrium
(namely, it is associated to pure real, +v#0, and pure imaginary, +wi#0,
eigenvalues). This system has an orbit I" homoclinic to the origin contained in the
plane {qi,p1,9> = p» = 0} that satisfies ¢; >0 (there is another one that satisfies
¢1 <0, see Fig. 1). The union of I" and the origin is called saddle-center loop and is
denoted as I'. The homoclinic orbit I' is approximated by a family of periodic orbits
I'g, one for each energy E, as E— 0. Each I'g has energy E <0 and is also contained
in the plane {¢1,p1,¢> = p» = 0} (see Fig. 1). To each periodic orbit I'g we can define
a transversal section and an associated Poincaré map. Conservation of energy
implies that the study of the dynamics near I'g restricted to the energy level E can be
reduced to the study of the dynamics of an area preserving, usually, twist map from a
two-dimensional disc to itself. The periodic orbit I'g is represented by a trivial fixed
point of this map. The iso-energetic stability of the periodic orbit I'g under the flow
is equivalent to the stability of this fixed point under iterations of the map. The
example above shows that it is quite natural to try to define a Poincaré map to the
saddle-center loop I as it is done for the periodic orbits I'r that accumulates on it.
Indeed, this can be done. The construction of a Poincaré map to a saddle-center loop
has ideas that go back to Conley [11,12], Churchill et al. [9,10] (see also earlier work
by the same authors), Llibre et al. [25], and it was first done by Lerman [24], and
subsequently, but independently, by Mielke et al. [26] (generalizations of this idea to
higher dimensions are presented in [22,23]). Several results on the dynamics of a
Poincaré map to a saddle-center loop can be found in the references above and
below. As for the periodic orbits I'g, a certain type of stability of I is related to the
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Fig. 1. Diagram showing a pair of orbits of system (1) homoclinic to the equilibrium at the origin. These
orbits are contained in the invariant plane {q;,p1,¢> = p» = 0}. I'g is a periodic orbit with E<0.
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stability of a trivial fixed point of the Poincaré map to I" [16]. In the present paper we
assume that this trivial fixed point is unstable. Our goal is to study the topology of
the orbits of the Poincaré map to I” that have the trivial fixed point as their « (or w)-
limit set. The answer to a similar question in the case of a hyperbolic periodic orbit is
given by the unstable (or stable) manifold theorem.

The hypotheses assumed in this paper are the following. Let (M, Q, H) be a real
analytic Hamiltonian system where: M is a four-dimensional manifold, Q is a
symplectic form and H is a Hamiltonian function. We suppose that

(H1) (M, 2, H) has an equilibrium point p of saddle-center type (the eigenvalues
related to it are: £v#0 and +wi#0, v>0, w>0);
(H2) (M, Q, H) has an orbit I' homoclinic to p;

A third hypothesis requires some information on the energy level sets of H
near p. The “Morse lemma” implies that in a neighborhood of the saddle-center
critical point p there exists a coordinate system such that either H or —H can be
written as

H(p)—x%+x§+x§+xﬁ.

This implies that the intersection of the level set H(x) = H( p) with a small ball B
centered at p has two three-dimensional conical components, one with x; >0 another
with x; <0, that intersect only at the critical point p. The third hypothesis is:

(H3) The intersection of I" and a sufficiently small ball B is contained in only one of
the above defined conical components.

This hypothesis ensures that any orbit with energy H( p) sufficiently close to I’
remains close to I' after a passage near the critical point p (it could be that after
approaching p this orbit would follow the branch of the unstable manifold of p that
did not belong to I'). System (1), for instance, satisfies these three hypotheses. Under
these hypotheses it is possible to define a transverse section to I and a Poincaré map
to it. The restriction of this Poincaré map to the energy level H( p), denoted by £, can
be written in convenient coordinates as (see [15,24,26] or [16]):

f(x) = AR(=2yIn||x|))x + G(x) & F(x) + G(x), 2)

where xeR? has sufficiently small norm; y = w/v; ||G(x)||<K||x|]*, [|[PG(x)||<
K>||x||, K1 >0 and K, >0 are constants; and

def /€cOSO —sin def /o0 0
R 0 = A = R
©) (sin@ cos@)7 (0 l/a)

with o> 1. The origin, x = (0,0), denoted as 0, represents the intersection of I and
the Poincaré section. The origin is by definition a fixed point of the Poincaré map f.
Notice that F' and f are continuous but not differentiable at the origin while G is
differentiable and small near the origin.
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The dominant part of the Poincaré map, given by F, is the composition of a twist
map and a linear stretching map. The twist part, given by R(—2y In||x||)x, comes
from the passage of solutions near the saddle-center equilibrium. There, solutions
rotate with frequency w a number of times proportional to the time, —(2/v)In||y||,
they spend near the equilibrium. The stretching part, given by 4, is due to the travel
of solutions near I'.

Map F depends on two parameters y = w/v and o. Both numbers are symplectic
invariants related to the saddle-center loop (for the invariant character of o see
[5,14,21], and the discussion at the end of Section 2). The explicit computation of «
for system (1) can be found in [17]. It was proved in [16] that if, for a given y, the
parameter « is sufficiently close to one then the origin is a stable fixed point of f.
It was also proved in [16] that if y(¢ — «~')>1 then the origin is an unstable fixed
point of f. In the rest of this paper we will suppose that: the origin is an unstable
fixed point of f. As shown in [16] important properties of the dynamics of the flow
near I" can be obtained from the dynamics of f. Therefore, from now on we just
consider the dynamics generated by f.

There are two main ideas behind our study of the dynamics of f. The first is
that in order to prove a result for f it is enough to prove it for F' and then use that
these two maps are C' close near the origin. So, the crucial point in the study of the
dynamics of f is to understand the dynamics of F. The second is that map F
although highly nonlinear has a discrete dilation symmetry given by F(e *™/7x) =
e ¥/7F(x), ke Z, that in some sense replaces the homogeneity property of linear maps.

Map F is an area preserving twist map on the plane with infinite twist at the origin.
The dynamics of F is intimately related to the dynamics of a quotient map F defined
on a two-dimensional torus in the following way. The mapping (:Z x
R*\{0} - R*\{0} given by {;(x) = */"x defines a properly discontinuous action of
the group Z on the punctured plane R?\{0}. So, the quotient of R*\{0} by the orbits
of { is a two-dimensional manifold which is a two-torus denoted as T2. Notice that
each ring /7 <||x||<ek*"/7 keZ, is a fundamental region of { and the torus 77
can be represented by one of these rings with its boundary points identified as
/i x ~ ekt Dr/7x We denote m: R*\{0} — T? the projection that associates to each
point of R?\{0} its orbit under {. Notice that F restricted to the punctured plane
commutes with {;(-), so it induces a diffeomorphism on T2, F: T?— T2, through the
relation 7oF = Fom. Map F can be understood as a mapping from the fundamental
region of {, e™™7<||x||<]1, to itself. Since {(-), k#0, is not area preserving we
conclude that F does not preserve the area form of e~™/7 <||x|| < 1. The dynamics of
F is “dissipative”.

One of our most interesting results for F, that implies a similar one for f, is the
following. For some values of (7, a) F has periodic attractors that correspond to orbits
of F that escape exponentially fast from the origin. This implies that a set of points of
positive measure escapes from a neighborhood of the origin under iterations of F
following (or clustering around) a finite number of orbits that are given by the pre-
image of the periodic attractors of F by 7. In order to get a better understanding of this
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Fig. 2. Diagram showing iterates of the map induced by (x1,x2)— (27'x1,2x,) on the two-torus 7T?2.

statement and to appreciate the novelty of F having discrete point set attractors let us
use that any linear map commutes with {, to analyze what happens to the map
induced by a hyperbolic map (x1, x2) — (27 'x1,2x,) on the torus 72 above. In this
case the quotient map is dissipative and has four invariant curves represented by the
intersection of the x; and x, axis with the fundamental region e ™7<||x||<1
(see Fig. 2). The two curves related to the xj-axis are repellers and the two
circles related to the x,-axis are attractors. The dynamics in these invariant curves are
topologically equivalent to rigid rotations. The quotient map does not have isolated
point set attractors. Notice that iterates under the linear map of a small ball of initial
conditions near the origin accumulate at the x,-axis, which represents the unstable
manifold of the fixed point. This is related to the fact that the x,-axis attracts the
iterates of the quotient map. This compression of a ball of initial conditions to a one
dimensional structure represented by the unstable manifold of a saddle-point has
important consequences in local and global dynamics (think, for instance, on the
consequences of the so called “A-lemma”). The zero dimensional structures that
appear as attractors of F are in great contrast to this usual hyperbolic scenario. The
global consequence on the dynamics of the original Hamiltonian system of these
isolated point set attractors of F is an interesting problem for future studies.

This paper is organized as follows. In Section 2 we present the statements of our
main results as well as proofs of some simple facts. In Section 3 we present the proofs
of the theorems in Section 2.

2. Main results

Before introducing our main results concerning map f it is necessary to present
some auxiliary results for F.
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The logarithmic singularity of F can be removed with the following choice of polar
coordinates that blow up the origin:

x1 =&/ Peos(z — ¢), x = e/ Psin(z — ¢). (3)
In these coordinates x' = F(x), x#0, writes as

¢ = u(p) +7,

2 =z+yn[J(9)], (4)

where p is a circle map given by

u() = arctan (“ﬁ#) with (0} = 0
and
J(¢) = o® cos®(¢) + o« *sin*(¢), with Z_g (¢) = ﬁ

Using these coordinates we can easily identify the punctured plane with a cylinder
(¢,z)eS' x R. We will denote by F the map defined on the cylinder by Eq. (4).
Analogously, we will denote by f and ; the maps obtained from f and {,
respectively, through the change of coordinates (3). Maps f and £y are defined on a
semi-infinite and an infinite cylinder, respectively. Map ;. represents a vertical

translation on the cylinder and is given by (¢, z) = (¢, z + 2nk). Notice that Fis a

twist map that preserves the measure
&l
2y

dp ndz (5)

and that the expression of F is quite similar to that of the well-known “standard

map”. In particular, both commute with {; and induce twist maps on a two torus.
The difference between them is that the standard map preserves the area form

d¢ Adz that is also invariant with respect to {; while the invariant measure (5) is not
invariant under .

Remark. Before continuing it is convenient to emphasize some notation used in this
paper: F is a map defined on the plane R?, F is a map defined on a two-torus 72
(obtained from F through the quotient by orbits of (), and F is defined on the
cylinder S' x R (obtained from F through the blow up coordinates (3)). Similarly, x,
X, and X denote points on the plane, torus, and cylinder, respectively.

We say that F has a vertical periodic point x7#(Q with vertical rotation number
p=m/n, neZ,, meZ, if F*(x) = ¢"/7x. The name vertical periodic point comes
from the fact that X = 7(x) is a periodic point of F and that the orbit of the
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corresponding point X in the cylinder moves vertically as z, = zo + 2nm, ¢, =
¢ (mod 2n). In the physics literature, particularly in the context of the standard
map, these vertical periodic orbits are called accelerator orbits [8, Section 5.5]. This
notion of vertical rotation number naturally generalizes to an arbitrary orbit, not
necessarily periodic, if we distinguish between the limits for forward and backward
iterations of F. We say that an orbit of F, and also the corresponding orbits of F and
F, has forward vertical rotation number p + €R (or, equivalently, a point x of the
orbit has forward vertical rotation number p_ (x)) if the following limit exists:

7 WP »

P+ T n—> 0 n

Analogously, we say that an orbit of F has backward vertical rotation number p_ € R
if the following limit exists:

In ||[F"
27 WIP@I

T n—>—x n

(7)

If the orbit of x is such that p_ (x) = p_(x) then we just say it has vertical rotation
number p(x). For vertical periodic orbits it is always true that p, = p_ = p. For
non-periodic orbits the limits p, and p_ can be different.

We say that F(F) has a rotational invariant curve if it has a homotopically non-
trivial invariant simple closed curve in the punctured plane (in the cylinder). It is
clear that if F has a rotational invariant curve then all orbits of F have null vertical
rotation numbers. The next theorem, which is a consequence of a more general result
proved in [2], shows that this is the only situation where all orbits of F have trivial
vertical rotation numbers.

Theorem 1. Suppose that F does not have any rotational invariant circle. Then there
exists p> 0 such that for each p € [—p, p| there exists an orbit of F with vertical rotation
number p. If pe] — p, p| is rational then there are at least two vertical periodic orbits of
F with vertical rotational number p.

Remark. When p is irrational the above theorem implies the existence of a compact,
F-invariant set on the 2-torus such that the forward and backward vertical rotation
numbers are equal and assume the same value at all its points.

Before we state our results for / we need to introduce some more definitions. Map f is
defined in a small neighborhood U of the origin Q of the plane. We define the unstable
(stable) set wi (Wfs) of the fixed point 0 of /" as the set of points x e U such that f"(x)—0

asn— — oo (n— o0). We define W,” (W;’), p=0 (p<0), as the set of points xe U that

have backward (forward) vertical rotation number equal to p (we dropped the subscript
+ of p since p_ is always associated to wi and p__ is always associated to W;), namely

7 IS GO (p:l lim M)

T n—>x0 n

p:

T h—>—0 n
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For a given t>0 and for each C>1 we define the sets 7, i wr ) as the subset of

points x in W;‘p (W;-”), such that for all n<0 (n>0) the following inequality holds:

ZECI e <1 (x) | < G

xl;

). )

The same definitions hold for F" and are denoted by W3, W3, etc.
The apparent artificial definition of the sets I/V}””C and Wp"C deserves some

1 )
(g isli< < coreom

comments. The idea in the proof of the theorems below is that near 0 maps F and f
are close. So their unstable and stable sets may have the same properties. A first
problem with orbits of points xe W}’ is that although their iterates go exponentially
fast to zero as n— oo they can have values of ||F"(x)|| very large for some values of n.
The bounds in Eq. (8) are enough to overcome this sort of difficulty. A second
problem is that the intersection of W;" (or W;”) with any closed bounded ball
centered at the origin may not be compact. The issue related to this lack of
compactness also appears when we try to prove that the whole unstable manifold of
a hyperbolic fixed point, considered as a submanifold of the manifold where the
dynamics is defined, is homeomorphic to the unstable space of its corresponding
linear part, considered as a subspace of the tangent space at the fixed point. It is
always true that a compact part of the unstable space is homeomorphic to a compact
part of the unstable manifold. But, in general, it is false that the unstable space is
homeomorphic to the unstable manifold (due to the way the latter is generally

folded). Notice that Wi is compact for all  and C, and for any fixed >0

up uptC
wy =) wpe
Cc=1

So, our definition of W} is a way to select compact parts of Wp. The same

properties hold for W;’”C, W}pfc, etc.
For our next theorems it is important to know that the sets Wp"" and W3 are

nonempty for several values of p, t and C. Notice that if p is rational then any
vertical periodic orbit of F' with vertical rotation number p >0 (the case with p <0 is
similar), or any orbit asymptotic to it, is contained in W;”OC7 for some C>1. Since,
W€ < W€ if t <1’ we conclude that any periodic orbit with p>0 is contained in
W™ for all 1>0. An analogous result for invariant sets with irrational vertical
rotation number is given by the following lemma, proved in Section 3.1.

Lemma 1. Given an irrational number pe| — g, p[, where p is defined in Theorem 1,
there is a compact F-invariant set with vertical rotation number p such that all
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its points belong to either W;"OC, if p<0,or W;"OC, if p>0, for some C >0 sufficiently
large.

Theorem 1, Lemma 1, and the remarks above this lemma, have the following
corollary.

Corollary 1. Suppose that F does not have any rotational invariant circle. Then there
exists p>0 as in Theorem 1 such that for every pe] — p,0[ (p€|0, p|) there exists a C

depending on p such that W°C (W) is non-empty.

We say that F has a hyperbolic orbit %,, neZ, if the tangent space at %, has a
splitting E; ®E; such that DF(%,)E, = E,, |, DF(x,)Ef = E| |, and there exist
A_<1 and A, >1 such that |\DF()€,1)|E;||<L and ||DF(>€n)|E;H</1jrl. The same
definition of hyperbolic orbit holds for F. Using the periodicity of F with respect to
z, to obtain uniform estimates, we get from standard results in hyperbolic dynamics
(the “Hadamard—Perron” theorem, see [20, Lemma 6.2.7 and Theorem 6.28]) that
there are local smooth manifolds W, (W,), neZ, containing X, with the same
dimension as E; (E;) such that F(W;) =W, (F(W,)= W,,,) and if we W,/
(we W,) then ||F~1(w) — £, || <ATH|w — %] (|[F(w) — £p1|| <A_||w — £,]|) where
1<, <Ay (A_<J_<1). In order to prove the existence of hyperbolic orbits for f it
is convenient to extend it to the whole plane. In the next section, we show that f
indeed, has such an extension f; from a neighborhood V,< U of 0 such that f; is
e-C'-close to F (obviously diam(V;) —0 as ¢—0). We denote by f; the corresponding
e-C'-close extension of fto the infinite cylinder. This extension and a standard result
on persistence of hyperbolic sets (see [20, Proposition 6.2.21]) imply the following
theorem.

Theorem 2. Suppose that F has a hyperbolic orbit that corresponds to an orbit of F in
W (W3r). Then f has also a hyperbolic orbit that corresponds to an orbit of f in W}m
(W;" ). Moreover, compact parts of the invariant manifolds associated to the hyperbolic

orbits of F and f get arbitrarily C'-close when restricted to half cylinders {(¢,z) :
z<Z} as the constant Z tends to minus infinity.

Remark. To say that two orbits x,, w,, n>0, of f and F, respectively, have their
corresponding orbits on the cylinder X,, W,, n>0, e-close, namely ||X, — W,|| <e,
n>0, means that x, and w, satisfy ||x, — w,|| <&C||x,||, where C>0 does not depend
on n and ¢. This is a consequence of the change of coordinates formulas (3). So, for a
constant ¢>0 the Euclidean distance between x, and w, will decrease if ||x,||— 0.
Theorem 2 concerns the relation between single orbits of F and f in W," (W}’
and W}”’ (W;p ) and their respective invariant manifolds. The next two theorems are

about the relation of the sets W," (W,’) and W;” (W/S.” ) as a whole. Unfortunately,
these theorems contain a restriction on the vertical rotation number that is not
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natural. However, this restriction makes the proofs quite simple and it seems difficult
to prove Theorem 3 only under the natural condition |p|>0. Notice that the
geometry of the sets Wi and W,’ is not known and it is probably very complex.

Theorem 3. Suppose that peR is such that
0<lp| 5= Infa(1 +29)] & 2¢ 9)

and Wi (W) is nonempty. For each t€|0,7| let I denotes the set of values of C such
that W™ (W) is a nonempty topological subspace of R>.

Then for each t€(0,71] and C eI, there exists a closed ball B, centered at the origin of
the plane, with positive radius depending on C, and a map h: Wy ~nB— W}”’

(h: W |nB— W), with the following properties:

(1) h is a homeomorphism over its image;
(i1) & is close to the identity near the origin, namely there exists K3;>0 such that

2
M) — <Kol
(iil) / conjugates f and F on W' A B (W A B), namely

/’lOF| W;/”(VOB :foh (hOF| W:?ICOB :foh),

where F|yuc  y denotes the restriction of F to W€ A B;

(iv) h and I, corresponding to two distinct pair of values of (t,C), coincide on the
intersection of their domains.

Theorem 3 implies that W}’p is non-empty if W;” is non-empty. The next theorem
shows that every point in W;” corresponds to some point in W;”. In order to give a
more precise statement let us define a subset W"" (W;™) of Wi’ (W;’) in the
following way. Any given point xe W (xe W;’) belongs to some Wy (xe ;™€)
for some 7€]0, 7] and Cel,. For a given x, let us fix such a pair 7, C (the following
definition does not depend on the choice of T and C due to property (iv) in Theorem
3). Under the hypotheses of Theorem 3 let B and /. ¢ be the ball and the map given in
this theorem for these values of t and C. The point x above belongs to W;"”
(W) if there exists an integer n>0 (n<0) such that F"(x)eB and
floh,coF (x)e U for all j=1,2,....,n (j=—1,-2,...,n). For this point x we
associate the point

h(x) = f"oh.coF " (x) (10)
which belongs to W}‘” (W}). The set Wi"” (W;™) is given by the totality of points

in xe W (xe W}’) that have the above property. Notice that W™ ~Bc W™
(WP AB=WY™) for all t€[0,7] and Cel. The function h:Wi* — Wyt
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(h: W” > W;p ) given by (10) is clearly injective. The next theorem shows that it is
also surjective.

Theorem 4. Suppose that the hypotheses of Theorem 3 are verified. Then the function
h: W™ W (h: W™ — W}’ given by (10) satisfies:

(1) h is a bijection;
() h restricted to W™ nB (W3'* AB) is the map defined in Theorem 3 on the
same set.

The sets W’ “C and Wy “C for various values of p, 1, and C, can have a very
complex topology. In [1] it is proved the existence of homoclinic bifurcations for the
invariant manifolds of vertical periodic orbits of F. This implies that for rational
vertical rotation numbers p the sets W;” and W, can have complicated hyperbolic
invariant sets, Hénon attractors, etc. Numerical investigations show that not only
the topology of the sets Wy and W} is complicated but also their dependence on
variations of (y, o). We are far from a good understanding of the topology of and the
dynamics in Wy and W;. Nevertheless, Theorem 1 shows that when F has no
invariant curve (what is true, for instance, if y(a — o~ ')>1[16]) then W}” and W}’
are not empty for intervals of values of p. Then Corollary 1 ensures that for all

values of p in this interval and for t = 0 there are values of C where W’ ¢ and

Wi ¢ are not empty. In order to apply Theorems 2 and/or 3 it is still necessary to
check the hyperbolicity hypothesis and/or condition (9), respectively. This can be
done explicitly for several vertical periodic points of F, as for example, for the
following pair. The stability properties of these points, which is important in our
next theorems, are also discussed. The fact that the action of F on the plane
preserves area and the action of x—e™7x expands the area form by a factor ¢*/7
imply that the eigenvalues A; and A, of DF"()E) at an n-periodic point X of F with
p = +m/n satisfy 21/, = e¥?™/7. So a periodic point with p>0 can never be a
source and one with p <0 can never be a sink. Explicit hyperbolic periodic sinks and
saddle points of low period can be found easily. For instance, imposing z; = zy + 27
and ¢, = ¢, + 27 in equation (4) we find two equations for (¢, zo):

In J () = In[e cos (o) + o> sin2<¢o>]:27”, = do—u(dy). (1)

For o = ¢"/7 these equations have two solutions (¢g,z0) = (0,0) and (¢g,z0) =
(m,0). Both periodic points have an eigenvalue equal to one and vertical rotation
number p = 1. Notice that for these orbits and for y < 1.9 inequality (9) is verified, so
Theorem 3 can be applied (indeed in this case Theorem 3 can be applied to all sets
given by Corollary 1 that have rotation number satisfying inequality (9)). If y is kept
constant and o is increased then these periodic points unfold saddle-node
bifurcations. It is easy to check that the periodic point that appears from this
bifurcation with ¢-coordinate slightly larger than zero is a hyperbolic sink and the
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one with ¢-coordinate slightly smaller than zero is a hyperbolic saddle. Depending
on the values of the parameters « and y map F may have several hyperbolic sinks
with positive vertical rotation number. In [1,6] the reader finds more information
about the existence of periodic and non-periodic attractors for F. In fact, in [6], we
prove that for every positive rational number {—’17 there is an open set in the parameter

space (7, ) such that F has a topological sink with vertical rotation number g.
In [4], we study how the extreme points of the vertical rotation interval behave as a

function of the twist mapping. As in this paper we are considering a particular family
of mappings, the supremum of the vertical rotation interval is a function of (y, «):

max (, _ . pzoF"(x) —pz(x)
Py (y @) = sup| lim =———" ==,

where the supremum is taken over all x e R? such that the above limit exists. It can be
proved that this function is continuous (see [3]) and it is easy to see that for a fixed
>0 (a>1), lim pP**(y,a) = 00, as a— o0 (y— o0). Suppose now that for some
(yo,20) PP™ is not locally constant. Then the continuity of p** and a method
developed in [6] imply that by an arbitrarily small perturbation in the parameters we
can create topological sinks for F. So as an attempt to prove the density of
topological attractors in the parameter space, in the future we will try to understand
what happens when pP** is locally constant.

In particular, what we said above implies the following. From results due to
Birkhoff we know that the subset of the parameter space (7,«) for which F has at
least one rotational invariant curve is closed. This can also be proved by noticing
that, from Theorem 1, this set is equal to [p®]'(0), which is obviously closed. In
this way, given any point (y*,¢*) in the boundary of [p’{}ax]*l(O) we can create
topological sinks for F by an arbitrarily small perturbation in the parameters. So
when F has at least one rotational invariant curve, there are 2 possibilities:

(1) By any sufficiently small perturbation in the parameters, F still has at least one
rotational invariant curve.

(2) By arbitrarily small perturbations in the parameters we can create topological
sinks for F with positive vertical rotation number (the origin looses stability
under iterations of F).

Now we turn to our main theorems. Before stating them we need to define a
function on points of W} to distinguish among them those that come from attractors
of F. Let us denote by m(V) the Lebesgue measure of a set ¥ =R? and by By an open
ball of radius e /7, keZ, centered at the origin of R?. We define the ““density”
or(x) of a point xe W} as

or(x) = inf lim inf (B0 Uy F(V)) (12)

k— oo m(Bk) ’
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where the infimum is taken over all open neighborhoods V' of x. Notice that given a
small neighborhood V of x, ar(x) €[0, 1] is an estimate of the density of points y in a
small ball Bj; that have some positive iterate F”(y) passing near x, namely
F"(y)nV #0, for some n>0. The same definition holds for o/(x) with the obvious
modification that all sets By, V', must be contained in U, the domain of definition
of f. It is easy to check that op(x) = or(F(x)) so o is the same for all points
in the same orbit. This property also holds for . We remark that our definition
of o resembles the definition of lower derivatives for set functions (see [28],
Chapter 8, [29]). The definition of ¢ can be extended to any area preserving map
with an unstable fixed point. The particular family of balls B, chosen above can
also be changed or generalized considerably without changing the value of the
density ¢. In order to get some familiarity with our definition of ¢ let us compute
a similar quantity ¢ (x) for a linear hyperbolic map L: (x1,x2)— (2x1,27'x;) and
x = (1,0). We change the family of balls above by a family of squares By of side 1/k
centered at the origin. Let V), be a rectangle centered at (1,0) of width »>0 small
and height equal to 1. Then, for k large, m(BxnL™"(V})) = 0 if n<j, where j >0 is

the smallest integer such that 27 <[k(2 — b)]"", and

mBen U, L7"(Vp) 1 b & . 2b
< Z 27 = 22 <27
2-b

Wl(Bk) \m(Bk)k

n=j

Taking the limit as k— oo and then »—0 we get o, (X) = 0. From the same type of
argument we can get that any point in the local unstable manifold of a hyperbolic
point of a two-dimensional diffeomorphism has density equals to zero with respect
to any family of squares. This is a consequence of the geometrical fact presented in
the introduction (see Fig. 2) that the map induced by a linear hyperbolic map on the
torus 772 has one-dimensional attractors and no isolated attracting points.

In the next section we will prove the following two theorems. They show that the
unstable set of a saddle-center loop may have a finite number of orbits such that a
relatively large set of solutions initially close to the saddle-center loop escape from it
through trajectories that follow these orbits.

Theorem 5. Let xe W} and X = n(x) be a topological periodic sink of F. Then o (x) is
strictly positive. Moreover if S is the set of points in the annulus of =
{x:e ™"<||x||<1} that correspond to points in the basin of attraction of X with
respect to iterates of F then

~ m(S)
ar(x) = ()’

Theorem 6. Let X be a hyperbolic periodic sink of F. Then there exists xe we,
with X = n(x) and ||x|| sufficiently small, and ye W} corresponding to x according
to Theorem 2 such that 6¢(y)=0op(x). In case X is only a topological periodic sink,
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up

there exists ye W such that o(y)>0, where p is the vertical rotation number

associated to X.

In order to illustrate the consequences of Theorems 5 and 6 in the dynamics of F
(and also of f), we show in Fig. 3 three sets of iterates of map F. The three sets were
generated by the same initial conditions, namely a small ball of points centered at
the origin, have the same number of iterates, and are presented on the same scale.
The value y = 2 was kept constant in all cases and the values of parameter o were 2,
2.3, and 3.2, in Figs. 3(a), (b), and (c), respectively. Mapping F has no (at least
expressive) sinks in cases 3(a) and 3(c) and has a low period sink in case 3(b).
The escaping points in Fig. 3(b) are much less spread than in the other two figures,
since according to Theorem 5 the iterates accumulate on the pre-image of the sink
by map =.

We finish this section with some remarks on the way to compute the function
or(x) in a coordinate system that is not the special one used in this paper. Let
u:R>—>R? be a twice continuously differentiable change of coordinates such that

x = u(z) = Pz+ 0(||z||*). In the new coordinates it is easy to check, using the same
ideas as in Section 3.2, that both F and f can be written as

Z = P'APP™'R(—2y In||Pz||) Pz + O(]|z||%).
Let us define
B=P'4P, A(0)=P 'R(O)P, M =P'P, (13)

where P' denotes the transpose of matrix P. So, in any coordinate system f can be
written as

f(2)=BAO)z+ O(|=|1"), O(z) = -2y In|lz]], (14)
where

(a) M is a symmetric positive matrix such that (-, M) defines an inner product on
RY and |[2I[}, = (2,2),, = (=, M2);

(®) A(0) is an isometry of {R?, (-, M-)} (the matrix identity A(0)'MA(0) = M
holds);

(¢) Bis a symmetric positive transformation of {R?, (-, M-)} (the matrix identity
B'M = MB holds).

Notice that the metric (-, M-) and the transformations A(f) and B are uniquely
determined by f. This is a consequence of the invariance of the logarithmic
singularity of f under differentiable change of variables and the uniqueness property
of the polar decomposition of non-singular transformations of a vector space with
inner product. As we said the dominant part F of f is characterized by two numbers
y and . In any coordinate system the number 7y is related to the dilation invariance of
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Fig. 3. Three sets of iterates of map F. For all three sets: the value of y is 2, the initial conditons are in a
small ball centered at the origin, the number of iterates is the same, and the figure scale is the same. The
parameter « in (a), (b), and (c), is respectively: 2 (“no sink™), 2.3 (“low period sink™), and 3.2 (“no sink™).
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the dominant part of /. A coordinate independent geometric interpretation of « is
given by the following argument. Let us consider the ellipsis ||z||;, = 1 and its image
under the dominant part F of f, ||F~!(z)|| = 1. Let O, be the area inside ||z||,, = 1,
05 be the area inside ||[F~!(z)|| = 1 but outside ||z]|,, = 1, and A = Q;/Q, be the
ratio between them. We claim that o>1 is the number given by

a+a! TrB 1
2 2 cos(4m/2)

(15)

To prove this we first show by explicit computation that (15) is true when M is the
identity. Then we use that A is invariant under any linear isomorphism P and Tr4 =
Tr PAP~! = Tr B.

Finally, in order to compute o7 in any coordinate system z it is necessary first to
find the matrix M and then replace the definition of the family of balls B, appearing
in Eq. (12) by By = {z:||z||,, <e ™/7}. If we start from the original Hamiltonian
flow then matrix M is determined by the quadratic part of the Hamiltonian function
at the saddle-center equilibrium (see for instance [5]).

3. Proofs of the main results
3.1. Proof of Lemma 1

At first, let us choose rational numbers p, p,, such that —p<p; <p<p, <p. From
Theorem 1 there are periodic orbits Q; and @, such that their vertical rotation
numbers are, respectively, p; and p,. Let Q = Q; U Q>. Now we blow-up each xe Q
to acircle S,. Let 7, é be the compact manifold (with boundary) thereby obtained; Té
is the compactification of 72\Q, where S, is a boundary component where x was
deleted. Now we extend F: T2\Q— T?\Q to Fy Tg— T by defining Fp:S,— S, via
the derivative; we just have to think of S, as the unit circle in 7,72 and define

S (o) = lex(v)
Fel) ={pE (o)

for ve S. Fy is continuous on T3 because Fis C' on T? (this construction is due to
Bowen, see [7]). Now we have the following

Theorem 7. The map FQ: Té—» Té is isotopic to a pseudo-Anosov homeomorphism

GQ . Té%Té

The above theorem is proved using Nielsen—Thurston theory of classification of
homeomorphisms of surfaces, see [2] for a proof and [13,19] for more information on

the theory. As GQ : Té - Té is pseudo-Anosov, it admits a Markov partition, see for
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example, [13,30]. Now let IRE) be a cover of Té which simply is R? with an infinite
family of holes deleted and let Gg: Ré—> RzQ be a lift of GQ. It can be proved, see
Proposition 1.1 of [19], that ]p,, p,[ is contained in the vertical rotation set of GQ.
Also, using the fact that GQ admits a Markov partition, one can prove that (see
[13,30]) 3C; >0 and a point x; € R2Q such that (p;: R2Q—>[R§ is the projection on the
vertical direction):

p20GG(x1) — pa(x1) — mpl[< Cr, Vn>0.

Now by a result due to Handel on shadowing of pseudo-Anosov homeomorphisms
(see [18]), there exists a point x, € RZQ and a constant C, >0, such that

||p20G’é(X1) —pQOFg(X2)||<C2, Vn>0.

So we get that |[proFp(x2) — pa(x2) — np|[< C', for a sufficiently large C">0 and all
n>0. Now, if we define X, e T? as the projection of x,, we get that the w-limit set of
the orbit of X, by F satisfies the lemma hypothesis with C = 2C’.

3.2. Some propositions concerning Theorem 2

As we have already mentioned, Theorem 2 is a consequence of standard results in
hyperbolic dynamics and C! bounds on the difference between F and f (that will be
given in Proposition 2). So, in the following we study the C! closeness of F and f. Let
By R? be a ball of radius y centered at the origin. From [16] we have that / can be
written as the composition of two maps f = go/, where g: B¢—>R2 is an analytic
mapping for some Yy >0 and ¢ : B, — By. Map ¢ is the “local map” associated to the
passage of trajectories of the flow near the saddle-center singularity and ¢ is the

“global map” associated to the trajectories of the flow near the homoclinic orbit I'.
Map /7 is given by (see [16] Eqs. (6)—(8)):

X' =/(x) = R(0(x))x, (16)
where
2
) =~ P =B

v(I) =9I +o5(I)>0 for I€(0,],

5(I) = O(I*) is an analytic function from (—, ) to R, and >0 is some constant.
The expression for 0 can be written in a more convenient form as

0(x) = =2y In||x|| + ¢1 + I[a(I)In(I) 4+ b(1)],



S. Addas-Zanata, C. Grotta-Ragazzo | J. Differential Equations 197 (2004) 118—146 135

where @ and b are real analytic functions in (—y,¥), and ¢; is some constant.
Therefore / can be written as

/(x) = R(=2y In[|x][ + c1)x + n(x),
where

n(x) = R(=2y1In||x|| + ¢1)[R{I[a(I)In(I) + b(I)]} — Identity]x.

Notice that (x) = O(||x|*), n is continuously differentiable in a neighborhood of
(0,0) and ||Dn(x)||<cz2||x||, for ||x|| small. Notice also that the derivative of the
function x— R(—2y In||x]||)x is

R(—2y In||x||) (Identity + 2yA(x)),

where

1 X1X2 x2
A(x) = — ) 2 ). (17)
X7\ —=x1 —x1x2

Matrix A(x) has norm 1 for any x#0 since A(x)A4(x)" is a matrix with determinant

zero and trace one. This implies that the norm of derivative (17) is less than or equal
to 1 + 2y for x#0. So, although the derivative of 7 is not defined at Q we have that it
is bounded in a neighborhood of the origin, where the following inequality holds:

1D/ ()| <1+ 2y + ea|x]], (18)

for some ¢, >0. Now, let us write g(x) = AR(c3)x + g(x) where AR(c3) is the polar
decomposition of Dg(0) and g(x) = O(||x||*). Then f = go/ can be written as

S (x) = AR(=2yIn|[x|[ + ¢1 + ¢3)x + AR(c2)n(x) + §(/(x)).

Rescaling x as x—xexp|(¢; + ¢3)/(y2)] we can eliminate the constant term in the
argument of the rotation matrix of the dominant term of f. So, in the following we
will just omit this constant. Using that ||D/|| is bounded near zero and ||Dg(x)|| =
O(||x||) we conclude that there exists a constant ¢4 >0 such that ||Dge/ (x)|| <ca||x||.
Therefore we can write

f(x)=F(x)+ G(x), with F(x) = AR(-2y In||x||)x, (19)
where
G(x) = Dg(Q)n(x) + §(/(x)) (20)
is continuously differentiable in a neighborhood of the origin and satisfies

Gl <Killxl[’,  IDG(x)[| < Kallx], (21)
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for some positive constants K;>0 and K,>0. Now we have the following
proposition concerning the extension of f to the whole plane.

Proposition 1. Given an ¢>0 there exists 0>0 and a homeomorphism f, : R> — R?
fo(x) = F(x) + Gy(x)

with the following properties:

(1) f. is C* except at the origin and it is analytic outside the sets x = 0, 0 <||x|| <26;
(i) f; coincides with f inside a ball of radius 6 centered at the origin,
(iii) f; coincides with F outside a ball of radius 26 centered at the origin;

(iv) f, is e — C'-close to F on the plane, namely sup{||G,(x)|| + ||DG.(x)|| : xe R*} <&
and, moreover, for ||x|| <9, G, satisfies inequalities (21).

Proof. Given 6>0let £: R—>R be a C* function such that &(s) = 1 if |s| <0, &(s) =
0 if |s|>20, and the derivative, &', of ¢ satisfies |&'(s)| <)/ for some ¢ >0. Then
define f;(x) = F(x) 4+ G¢(x) where G:(x) = &(]|x||)G(x) = (0,0) if &(||x||) =0. The
proposition follows from inequalities (21) that imply

16(x) G (x)]| < K146,

(DE(IxID) G (x) + <(I[xINDG(x)]| <%1K1452 +K25. O (22)

Let us denote the extension f, written in coordinates (3) by f,. Writing the change
of coordinates (3) in a concise way as x = H (%), with X = (¢,z), we define G, =
H™'o(FoH + G,oH) — F, where F = H~'oFoH. Proposition 1 can be written in these
new coordinates as the following.

Proposition 2. Given an ¢>0 there exists 0 >0 and a homeomorphism

fi(®) = F(Z) + G,(3) (23)
with the following properties:

() £ is C* in the whole cylinder and real analytic outside the annulus 2y1In <
z<2y1n(29),
(1) £, coincides with f for z<2y1Ind,
(iii) £, coincides with F for z=2yIn(24),
(iv) £, is & — C'-close to F on the cylinder with & = 2(c7 4 ¢3)d, namely sup{||G,(%)|| +
|IDG,(3)||: £€S' x R} <& and, moreover, ||G,(X)||<c7¢”/®) and ||DG,()||<
cge”/ ) where ¢7 and cg are positive numbers that depend on y, o, and 0.

Proof. This proposition is a consequence of Proposition 1, the change of variables
formula (3), and a simple but long computation which will be omitted. [
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3.3. Proof of Theorem 3

Let f. be the extension of f given by Proposition 1. The idea in the proof of
Theorem 3 is to show that for a given but fixed ¢>0, independent of t and C, the
sequence of functions &, = f"oF~": W™ - R? converges as n— oo to a function A,
that has properties (i)—(iv) of Theorem 3 after replacing f by f;. Then, using that f'(x)
and f;(x) coincide for ||x||<J and that A, is close to the identity near the origin we
conclude that in a sufficiently small ball B centered at the origin the function A
appearing in the theorem is given by the restriction of 4, to B. The diameter of this
ball may depend on C and may vanish as C— co. We remark that the proof in the
case where W’ “C is replaced by Wy *C is essentially the same. It is enough to
change the definition /%, = f]'-F~" by h,, = f,"-F" and follow the same steps. So

in the following we just consider the case of W’ " and prove the theorem for the
extension f; of f.

Proposition 3. Function F is Lipschitz with Lipschitz constant k) <o(l + 2y).
Moreover, for any given & >0 there exists ¢ >0 such that f, is Lipschitz with Lipschitz
constant ky<o(l+2y) +¢;.

Proof. For F we have
[[F(x) = F(»)|| =[AR(=2y In[|x|[)x — AR(=2y In||y[|)»||

< A R(=2y In[|x[[)x — R(=2y In|y[[)y]]-

Using that ||4|| = « and that x— R(—2y In||x||)x is continuous and has a derivative
with norm less than 1+2y if ||x||#0 (see Eq.(17) and the paragraph
below) we conclude that F is Lipschitz and has Lipschitz constant less than
o(1+2y). The estimate on the Lipschitz constant of f; is a consequence of
Proposition 1 item (iv). [

The next lemma contains the main point of the proof.

Lemma 2. Suppose that p, o, and y satisfy inequality (9) of Theorem 3 and 7 is defined
as in (9). Then there exists >0, depending on p, o, and y, such that for any given r>0,
1€(0,7], and Cel,, the sequence hy,(x) = f'oF " (x) converges to h.(x) uniformly with
respect to x, for xe W™ and ||x||<r. Moreover, the limit function h,: Wy*"C - R? is
continuous and satisfies f.oh, = hoF.

Remarks. The topology in W3 is that induced by the topology of R?.
Since in the rest of this section we will only work with the extension f; of /" we will
omit the index ¢ both in f; and #,.

Proof. The following argument was taken from [27, Section 3]. In order to prove the
lemma it is enough to show that /,, ne N, is a Cauchy sequence, namely given an
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£3>0 there exists N>0 such that ||f,4;(x) — h,(x)||<e3 if n=N, j=0, for all

xe W2 and ||x||<r. Using that the Lipschitz constant of f is k, we get

1 (x) = B ()| = ([ f"efToF 77" (x) = f"oF " (x)|

S k|| f1oF 77 (x) = F" ()l = K311 (v) =

where y = F7/7"(x). Now, denoting fof as ff, etc., we get

W =FN =17 = f 7' F+f°fF — f2FF ... + fF" = FF"!]

S PR I — R (S - F

<K |G| + K5 GF|| + - + kS| GFIY|| = Z K| GF).

(24)

From these inequalities, Proposition 1, ||G,(x)||<K||x||* (inequality (21)), and the

definition of W™ (inequality (8)) we get

s (x) = ha(X) | < K[|/ () = P0) | <k 5 IGF ()]

=1

o o '
SKKTY INIFTT 0P = Kk Yk IFTT ()P

=1 1=1

‘ ‘ j
< C2||x||2K1k;+fe—2(.1+n+1)(p—f)n/v Z kz—leﬂ(p—f)ﬂ/v
=1

J
= C2||x||2K1872(P*I)n/"}e*/f(n+j) Z M

_ Cl|PKie

- e Pr(1 —e P,

where

def 2(p — 1)1

ﬁ_ —lnkz.
v

Inequality (9), the definition of 7 in (9), the inequality 0<t<7, and Proposition 3
imply that we can choose an &> 0 sufficiently small, not depending on r, 7, and C,
such that f>0. So, we consider f with this choice of ¢. Then it is clear from the
inequality above that given any r>0 and any & >0 we can find an integer N
sufficiently large such that ||/, ;(x) — h,(x)|| <e3 for all ||x||<r, n>N, and j>0.
The statements in the lemma about the continuity of & and the property foh = hoF
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follow from the uniform convergence of the limit /, -/ with respect to x and the
continuity of f and F. O

Lemma 3. Let h be the function defined in Lemma 2. Then there exists K3 >0 such that
h(x) = x4+ R(x) where ||R(x)]| <K3||XH2 for xe W;/)TC.

Proof. Let R,(x) = h,(x) — x for xe W™, Notice that R,— R as n— oo. More-
over, if y = F7"(x) then

n

[Ra(x)[| = ([ /"oF " (x) = x| = [|/"() = F'OII< Y &5IGF ),

I=1

where we used inequality (24). Thus the same reasoning as used in (25) leads us to

[Ru()lI< Y K IGF (x| < Kiks D k|| F1 " ()2
=1 =1

n
< C2K1 ki21672(n+l)(pfr)n/7 Z k;l€2l(pf‘r)n/y | |X| |2
=1
C2K e 2p—)n/y
_ _ o hn 2
== (1=
Using that >0 as in Lemma 2 and taking the limit as n— oo in this last inequality

we get [|R()|| < [(C2Kie 1) /(1 = e P)]|I* < Ks|lxd>. O

Lemmad. Let h: Wp° “C L R? be the Sfunction defined in lemma 2 and let X be the set of
image points of h. Then there exists a continuous function ™' : = — W which is the
inverse of h (again the topology in X is that induced by the topology of R?).

Proof. Let s, = F"of ™" be a sequence of functions defined over X and r>0 be any
given number. We claim that the limit ||i,oh(x) — x||>0 as n— co converges

uniformly with respect to xe W for ||x||<r. Therefore v, »h~" as n— oo and 1!
is continuous.
Lemma 2 implies

Woh(x) = x| = ||F"f "oh(x) = x|| = [[F"hoF ™" (x) = x]|.

Defining y = F~"(x), using that the Lipschitz constant of F is k; (Proposition 3),
using Lemma 3, and the definition of W3 we get

[1W,oh(x) = x|| = [|F"h(y) = F" )| <K{|IA(r) = | < Kskf| vl

= K3k{||F " (x)| [ < K3 CP||x| Pk 007 S K x| e,
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where in the last inequality we used that k; <k,. Since >0 we prove the claim and
also the lemma. [

We still have to show that the set 2 is contained in W}’". This is essentially a
consequence of Lemmas 2 and 3 that imply

o Wy Il )l

lim
T n—o>—0 n T n—>—0o0 n
n n n n
_7 oy DIE) A+ REN o WnE )

T n——w0 n T n—>—o0 n
7o L fIIFM(x) + RIF"(x)]|l
2 lim -1 =p.

TR “{ [F ()] g

Finally, property (iv) is an immediate consequence of our definition of /i(x) =
lim,,, o f"oF "(x).

3.4. Proof of Theorem 4

Property (ii) stated in Theorem 4 and the injectivity of mapping /A, given in
Eq. (10), are immediate consequences of the definition of /. So, in order to prove the

theorem it is enough to show that / is surjective. Again we restrict attention to the

case where / is defined on W;’™ the other one (/ defined on W;’™) is analogous.

Here f stands for the mapping defined on U and not for its extension as in the
previous section.
Let , = F"of ™ be a sequence of functions defined on I/V/}r")7 for n=0,1, ....

Given ye W;p and 1€]0, 7], where 7 is defined in Eq. (9), there exists a value of C
such that f"(y) satisfies inequality (8). Then an argument similar to the one used to
prove Lemma 2 implies that the limit y(y) = lim,_ , ¥,(y) = xeR? exists and

Foj = e

Lemma 5. /(y)e W;’ for every ye I/V/‘-“’.

Proof. Let R,(y;) =¥, (y;) —»;, where y; = f/(y0), j<0, and yy =y is any given
point in W;”. Let us choose a t€]0, ] such that t<p/3, and let C be a sufficiently

large number such that f7(y,), /<0, satisfies inequality (8) for these values of t and
C. We claim that ||R,(y;)|| < K'e¥*="%/7 for any j<0, n>0, where K’ is a number
that does not depend on j and n. Indeed, as in the proof of Lemmas 2 and 3 we have

IRl =[S ) = yill = [1E" (jn) =S G-l

<O KNG G <Kk L7 (o)
=1 =1
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n
< CEKipe 2T Ol S ey
=1

2 —2p—1)m/y
_ ORI |y | Pe¥ -

1 —e B
C2K e 2o=n)n/y V. o
<1_—6—/;Hyo|\2ezf<ﬂ Il — g He=0n/1

where we used the same reasoning as is in inequality (24), that ki <k,
(Proposition 3), and the definition of $>0 as in Lemma 2. Then, taking the limit

as n— oo we get R(y;) = ¥(y;) — y;, with ||R(y;)|| < K'e¥*=9%/7 where K’ does not
depend on j. Now, the relation F/oys(yy) = of’(yo) implies

q InllF/o q
Y gy 0 fﬂ(yo)llzi

of : , ,
| o SO0 3 iy RO
T J T j— =0 J T j—>—o0 J
1 4+ R(y;
—p+. lim —,1H{M}.
mim=e ] [l

In order to finish the proof we have to show that this last limit is zero. This is a
consequence of ||R(y;)||<K'e¥P~9%/7 inequality (8), and our choice of t<p/3,
which imply

0< ||R(y/)|| < K/ezj(p—‘lf)ﬂ/}’ _ K/e/(p_?’f)“/y
Sl T ey [yl

-0 asj— — o0. U]

Now, ¥(y)e Wy implies that y(y) e Wi’ for some t€(0,1], Cel,. Then, for a
sufficiently large n, F~"(/(y)) € B, where B is the ball given in Theorem 3 for this
values of T and C. Moreover, by Theorem 3 and Lemma 4, inside B the inverse of / is
given by . Therefore, for 0<j<n

SlohoF "o (y) = flohepef " (y) = f/~" () e W}". (26)
This implies that y(y)e W””. Finally, the definition of h: W;"” — W;” and the

reasoning in Eq. (26) with j = n imply that y = hoyy(y). So, & is surjective and its
inverse is given by .

3.5. Proof of Theorem 5

In order to simplify the notation we will suppose that X is a fixed point of F with
vertical rotation number equal to one. The proof in the case where X is an n-periodic

orbit of F is similar after replacing F by F”, F by F", etc.
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For a given open neighborhood V of xe Wy and ke N we define

m(Ben U2y F"(V)])
m(By)

OFVik (X) = (27)

If V<V’ then appi(x) <oppy(x) for all k>=0. So, in order to prove Theorem 5 it is
enough to show that given any neighborhood V7’ of x we can find another one V<V’
such that liminfy_, o, 6Fyx(x) = op(x). This set V is constructed in the following
way. The fact that X = n(x) is a sink and {_;oF(x) = x imply that we can find an
arbitrarily small neighborhood V of x such that F(¥)<={,(V). Let A, and S be the
following sets:

n=0o0
Ak = Brn U F"(V)| ={yeBi:F"(y)eV, for some n=>0}
n=0
and
Sk =B || G(S)| = Ben(n'S),
neZ

where S is the basin of attraction of ¥. Notice that

m(Sk) _ m(S)
m(Bk) = W’ and AkCSk
which imply
m(Ax) _ m(S)
m(By) ~m(/)

and liminfy_, » opk(x)<ar(x). Now, we will prove the opposite inequality.
Given any &>0 there exists a compact subset S, of S such that m(S,)>
m(S) — e. Let

Sex = B0 :Bkm(n;*lSAS),

U &(s)

ne”Z

We claim that Sy, < 4 if k is sufficiently large. Indeed, if y € S then there exists n, >0
and kyeZ such that F™ (y) €, (V). This implies that for k>k,

Fok=k(c (o)) eV = (i (y) e Ar.

Due to the compacity of S; the number K(&) = sup,.g k, is finite. Therefore
{_x(S;) = Ay, for k> K, which implies the claim. So, given &> 0 there exists K = K(¢)
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such that for all k=K

m(S)—s<m(S£) m(Sek)
m(o/) “m(sf)  m(By)

This implies lim infy _, o, oy (x) = 0p(x) which proves the theorem.
3.6. Proof of Theorem 6

First we consider the hyperbolic case:

As in the proof of Theorem 5 we suppose that X is a fixed point of F with vertical
rotation number equal to one.

Let ¥ be a small neighborhood of ¥ such that F(V)c V. Let {x;,keZ} = n~" (%)
and {Vi,keZ} =n"'(V) be such that xzeVj. Theorem 2 and Proposition 2
imply that we can choose ||xg|| sufficiently small such that to each x;, k<O,
there corresponds a y; according to Theorem 2 such that ye Vi and f({_ Vi) < V.

This last inclusion and Theorem 2 imply that f7 (Vo) = SV )dCf V{J, j=0, is a

sequence of nested neighborhoods of y, such that diam(¥7) -0 asj— oo. Let o v 7 (00)
be defined as in (27) after replacing F by . We will show that

lim liminf o k(yo) m(S)/m(f) = arp(yo). (28)

jo o k->w

This inequality and the fact oy (o) =i (o) if V' 2V imply the theorem. So in the
following we prove inequality (28).

Given ¢>0 let S, and S, be the sets defined in the proof of Theorem 5. Then there
exist positive integers /(g) >0, i(¢) >0, such that

F'(Suk) <U V)mBH,

neZ

This, the compacity of Sy, and Proposition 2 imply that there exists an integer k(e)
such that

f(Su) = (U Vn> N B,

n<o0

for all k> k. Using that f"(V_,)c V{), for n=j, we get that

S N By

U s

n=0
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if k>max{k,i +j}d:efK. Therefore, for any given ¢>0 and j>0 there exists K (e, /)
such that

m(Ben Uy F (V) _m(Su) _ m(S,) _m(S) — ¢

> T
m(By) m(By)  m( m(/)

O'fvék(yo) =

2

for all k> K. This implies that lim;_, o liminfy, o0 01, (v0) = (m(S)/m(7)) — € for
I
all é>0. So inequality (28) is true.

To prove the assertion related to the existence of a topological sink for F we have
to notice that:

There exists a small neighborhood ¥V of % such that F(V)c V. Again, as
we did above, let {x,keZ} =n"'(¥) and {Vi,keZ} =n""(V) be such that
xx€Vi. From the fact that F({_, 7)< Vi and [|f(x) — F(x)||<Ki|[x]|* we get
that if we choose ||xo|| sufficiently small, then f({_,Vi)<=V, for all k<O0.
The only thing that might be different from the hyperbolic case is

that Vé = ff(C,jVo), j=0, is a sequence of mnested neighborhoods such
that it is not necessarily true that diam(Vé)—>0 as j—oo. So we have 2

possibilities:
(1) diam(Vé) —0 as j— co. Exactly as above we get that

lim liminf afV()k(yo) = (m(S)/m(<Z))>0.

j—o o k- w

(i1) diam( V(’)) does not converge to 0 as j— oo. In this case, as X is a topological sink
for F, we

Claim. 3ye Vyy and an open neighborhood ye Uy< Vy, such that:

@ f(10p) < Uy, for all k<0,
(b) diam(Ué)—»O as j— oo, where ye Ué :f/(C—_j Up).

Clearly from what was done in the hyperbolic case and in the proof of Theorem 5,
we get that g¢(y)>0.
The above claim is a consequence of the following results from [6]:

(1) If x is a g-periodic point for F with vertical rotation number §> 0, then
det[DFY(x)] = e ?™/7 <1.

(2) The topological index of a periodic point for F with non-null vertical rotation
number can assume only the following values: —1,0, 1.

So the theorem is proved.
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