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Abstract

We consider two-degree-of-freedom Hamiltonian systems with a saddle-center loop,

namely an orbit homoclinic to a saddle-center equilibrium (related to pairs of pure

real, 7n; and pure imaginary, 7oi; eigenvalues). We study the topology of the sets
of orbits that have the saddle-center loop as their a and o limit set. A saddle-center

loop, as a periodic orbit, is a closed loop in phase space and the above sets are

analogous to the unstable and stable manifolds, respectively, of a hyperbolic periodic

orbit.
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1. Introduction

This paper concerns a problem quite similar to the one of describing the dynamics
near an unstable hyperbolic periodic orbit of a Hamiltonian system with two
degrees of freedom. In order to explain the problem let us consider as a model the
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two-degree-of-freedom Hamiltonian system given by

H ¼ 1
2

p21 þ p22 � n2q21 þ o2q22 þ bq21q
2
2 þ

q41 þ q42
2

� �
: ð1Þ

The origin of the system ðq1; q2; p1; p2Þ ¼ ð0; 0; 0; 0Þ is a saddle-center equilibrium
(namely, it is associated to pure real, 7na0; and pure imaginary, 7oia0;
eigenvalues). This system has an orbit G homoclinic to the origin contained in the
plane fq1; p1; q2 ¼ p2 ¼ 0g that satisfies q140 (there is another one that satisfies
q1o0; see Fig. 1). The union of G and the origin is called saddle-center loop and is
denoted as %G: The homoclinic orbit G is approximated by a family of periodic orbits
GE ; one for each energy E; as E-0: Each GE has energy Eo0 and is also contained
in the plane fq1; p1; q2 ¼ p2 ¼ 0g (see Fig. 1). To each periodic orbit GE we can define
a transversal section and an associated Poincaré map. Conservation of energy
implies that the study of the dynamics near GE restricted to the energy level E can be
reduced to the study of the dynamics of an area preserving, usually, twist map from a
two-dimensional disc to itself. The periodic orbit GE is represented by a trivial fixed
point of this map. The iso-energetic stability of the periodic orbit GE under the flow
is equivalent to the stability of this fixed point under iterations of the map. The
example above shows that it is quite natural to try to define a Poincaré map to the

saddle-center loop %G as it is done for the periodic orbits GE that accumulates on it.
Indeed, this can be done. The construction of a Poincaré map to a saddle-center loop
has ideas that go back to Conley [11,12], Churchill et al. [9,10] (see also earlier work
by the same authors), Llibre et al. [25], and it was first done by Lerman [24], and
subsequently, but independently, by Mielke et al. [26] (generalizations of this idea to
higher dimensions are presented in [22,23]). Several results on the dynamics of a
Poincaré map to a saddle-center loop can be found in the references above and

below. As for the periodic orbits GE ; a certain type of stability of %G is related to the
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Fig. 1. Diagram showing a pair of orbits of system (1) homoclinic to the equilibrium at the origin. These

orbits are contained in the invariant plane fq1; p1; q2 ¼ p2 ¼ 0g: GE is a periodic orbit with Eo0:
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stability of a trivial fixed point of the Poincaré map to %G [16]. In the present paper we
assume that this trivial fixed point is unstable. Our goal is to study the topology of

the orbits of the Poincaré map to %G that have the trivial fixed point as their a (or o)-
limit set. The answer to a similar question in the case of a hyperbolic periodic orbit is
given by the unstable (or stable) manifold theorem.
The hypotheses assumed in this paper are the following. Let (M;O;H) be a real

analytic Hamiltonian system where: M is a four-dimensional manifold, O is a
symplectic form and H is a Hamiltonian function. We suppose that

(H1) (M;O;H) has an equilibrium point p of saddle-center type (the eigenvalues
related to it are: 7na0 and 7oia0; n40; o40);

(H2) (M;O;H) has an orbit G homoclinic to p;

A third hypothesis requires some information on the energy level sets of H

near p: The ‘‘Morse lemma’’ implies that in a neighborhood of the saddle-center
critical point p there exists a coordinate system such that either H or �H can be
written as

Hð pÞ � x21 þ x22 þ x23 þ x24:

This implies that the intersection of the level set HðxÞ ¼ Hð pÞ with a small ball B

centered at p has two three-dimensional conical components, one with x140 another
with x1o0; that intersect only at the critical point p: The third hypothesis is:

(H3) The intersection of G and a sufficiently small ball B is contained in only one of
the above defined conical components.

This hypothesis ensures that any orbit with energy Hð pÞ sufficiently close to G
remains close to G after a passage near the critical point p (it could be that after
approaching p this orbit would follow the branch of the unstable manifold of p that
did not belong to G). System (1), for instance, satisfies these three hypotheses. Under
these hypotheses it is possible to define a transverse section to G and a Poincaré map
to it. The restriction of this Poincaré map to the energy level Hð pÞ; denoted by f ; can
be written in convenient coordinates as (see [15,24,26] or [16]):

f ðxÞ ¼ ARð�2g lnjjxjjÞx þ GðxÞ ¼def FðxÞ þ GðxÞ; ð2Þ

where xAR2 has sufficiently small norm; g ¼ o=n; jjGðxÞjjoK1jjxjj2; jjDGðxÞjjo
K2jjxjj; K140 and K240 are constants; and

RðyÞ ¼def
cos y �sin y
sin y cos y

� �
; A ¼def

a 0

0 1=a

� �
;

with aX1: The origin, x ¼ ð0; 0Þ; denoted as
%
0; represents the intersection of G and

the Poincaré section. The origin is by definition a fixed point of the Poincaré map f :
Notice that F and f are continuous but not differentiable at the origin while G is
differentiable and small near the origin.
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The dominant part of the Poincaré map, given by F ; is the composition of a twist
map and a linear stretching map. The twist part, given by Rð�2g lnjjxjjÞx; comes
from the passage of solutions near the saddle-center equilibrium. There, solutions
rotate with frequency o a number of times proportional to the time, �ð2=nÞlnjjyjj;
they spend near the equilibrium. The stretching part, given by A; is due to the travel
of solutions near G:
Map F depends on two parameters g ¼ o=n and a: Both numbers are symplectic

invariants related to the saddle-center loop (for the invariant character of a see
[5,14,21], and the discussion at the end of Section 2). The explicit computation of a
for system (1) can be found in [17]. It was proved in [16] that if, for a given g; the
parameter a is sufficiently close to one then the origin is a stable fixed point of f :
It was also proved in [16] that if gða� a�1Þ41 then the origin is an unstable fixed
point of f : In the rest of this paper we will suppose that: the origin is an unstable

fixed point of f : As shown in [16] important properties of the dynamics of the flow
near %G can be obtained from the dynamics of f : Therefore, from now on we just
consider the dynamics generated by f :
There are two main ideas behind our study of the dynamics of f : The first is

that in order to prove a result for f it is enough to prove it for F and then use that

these two maps are C1 close near the origin. So, the crucial point in the study of the
dynamics of f is to understand the dynamics of F : The second is that map F

although highly nonlinear has a discrete dilation symmetry given by Fðe�kp=gxÞ ¼
e�kp=gFðxÞ; kAZ; that in some sense replaces the homogeneity property of linear maps.
Map F is an area preserving twist map on the plane with infinite twist at the origin.

The dynamics of F is intimately related to the dynamics of a quotient map F̂ defined

on a two-dimensional torus in the following way. The mapping z : Z

R2\f0g-R2\f0g given by zkðxÞ ¼ ekp=gx defines a properly discontinuous action of

the group Z on the punctured plane R2\f0g: So, the quotient of R2\f0g by the orbits
of z is a two-dimensional manifold which is a two-torus denoted as T2: Notice that

each ring ekp=gpjjxjjoeðkþ1Þp=g; kAZ; is a fundamental region of z and the torus T2

can be represented by one of these rings with its boundary points identified as

ekp=gxBeðkþ1Þp=gx: We denote p :R2\f0g-T2 the projection that associates to each

point of R2\f0g its orbit under z: Notice that F restricted to the punctured plane

commutes with zkð�Þ; so it induces a diffeomorphism on T2; F̂ : T2-T2; through the

relation p3F ¼ F̂3p: Map F̂ can be understood as a mapping from the fundamental

region of z; e�p=gpjjxjjo1; to itself. Since zkð�Þ; ka0; is not area preserving we
conclude that F̂ does not preserve the area form of e�p=gpjjxjjo1: The dynamics of
F̂ is ‘‘dissipative’’.
One of our most interesting results for F ; that implies a similar one for f ; is the

following. For some values of ðg; aÞ F̂ has periodic attractors that correspond to orbits
of F that escape exponentially fast from the origin. This implies that a set of points of
positive measure escapes from a neighborhood of the origin under iterations of F

following (or clustering around) a finite number of orbits that are given by the pre-

image of the periodic attractors of F̂ by p: In order to get a better understanding of this
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statement and to appreciate the novelty of F̂ having discrete point set attractors let us
use that any linear map commutes with zk to analyze what happens to the map

induced by a hyperbolic map ðx1; x2Þ-ð2�1x1; 2x2Þ on the torus T2 above. In this
case the quotient map is dissipative and has four invariant curves represented by the

intersection of the x1 and x2 axis with the fundamental region e�p=gpjjxjjo1
(see Fig. 2). The two curves related to the x1-axis are repellers and the two
circles related to the x2-axis are attractors. The dynamics in these invariant curves are
topologically equivalent to rigid rotations. The quotient map does not have isolated
point set attractors. Notice that iterates under the linear map of a small ball of initial
conditions near the origin accumulate at the x2-axis, which represents the unstable
manifold of the fixed point. This is related to the fact that the x2-axis attracts the
iterates of the quotient map. This compression of a ball of initial conditions to a one
dimensional structure represented by the unstable manifold of a saddle-point has
important consequences in local and global dynamics (think, for instance, on the
consequences of the so called ‘‘l-lemma’’). The zero dimensional structures that
appear as attractors of F̂ are in great contrast to this usual hyperbolic scenario. The
global consequence on the dynamics of the original Hamiltonian system of these

isolated point set attractors of F̂ is an interesting problem for future studies.
This paper is organized as follows. In Section 2 we present the statements of our

main results as well as proofs of some simple facts. In Section 3 we present the proofs
of the theorems in Section 2.

2. Main results

Before introducing our main results concerning map f it is necessary to present
some auxiliary results for F :
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Fig. 2. Diagram showing iterates of the map induced by ðx1;x2Þ-ð2�1x1; 2x2Þ on the two-torus T2:
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The logarithmic singularity of F can be removed with the following choice of polar
coordinates that blow up the origin:

x1 ¼ ez=ð2gÞcosðz � fÞ; x2 ¼ ez=ð2gÞsinðz � fÞ: ð3Þ

In these coordinates x0 ¼ FðxÞ; xa
%
0; writes as

f0 ¼ mðfÞ þ z0;

z0 ¼ z þ g ln½JðfÞ�; ð4Þ

where m is a circle map given by

mðfÞ ¼ arctan tanðfÞ
a2

� �
; with mð0Þ ¼ 0

and

JðfÞ ¼ a2 cos2ðfÞ þ a�2 sin2ðfÞ; with
dm
df

ðfÞ ¼ 1

JðfÞ:

Using these coordinates we can easily identify the punctured plane with a cylinder

ðf; zÞAS1 
 R: We will denote by F̃ the map defined on the cylinder by Eq. (4).

Analogously, we will denote by f̃ and *zk the maps obtained from f and zk;

respectively, through the change of coordinates (3). Maps f̃ and *zk are defined on a

semi-infinite and an infinite cylinder, respectively. Map *zk represents a vertical

translation on the cylinder and is given by *zkðf; zÞ ¼ ðf; z þ 2pkÞ: Notice that F̃ is a
twist map that preserves the measure

ez=g

2g
df4dz ð5Þ

and that the expression of F̃ is quite similar to that of the well-known ‘‘standard

map’’. In particular, both commute with *zk and induce twist maps on a two torus.
The difference between them is that the standard map preserves the area form

df4dz that is also invariant with respect to *zk while the invariant measure (5) is not

invariant under *zk:

Remark. Before continuing it is convenient to emphasize some notation used in this

paper: F is a map defined on the plane R2; F̂ is a map defined on a two-torus T2

(obtained from F through the quotient by orbits of z), and F̃ is defined on the

cylinder S1 
 R (obtained from F through the blow up coordinates (3)). Similarly, x;
x̂; and x̃ denote points on the plane, torus, and cylinder, respectively.
We say that F has a vertical periodic point xa

%
0 with vertical rotation number

r ¼ m=n; nAZ�; mAZ; if F nðxÞ ¼ emp=gx: The name vertical periodic point comes

from the fact that x̂ ¼ pðxÞ is a periodic point of F̂ and that the orbit of the

ARTICLE IN PRESS
S. Addas-Zanata, C. Grotta-Ragazzo / J. Differential Equations 197 (2004) 118–146 123



corresponding point x̃ in the cylinder moves vertically as zn ¼ z0 þ 2pm; fn ¼
f0 ðmod 2pÞ: In the physics literature, particularly in the context of the standard
map, these vertical periodic orbits are called accelerator orbits [8, Section 5.5]. This
notion of vertical rotation number naturally generalizes to an arbitrary orbit, not
necessarily periodic, if we distinguish between the limits for forward and backward

iterations of F :We say that an orbit of F ; and also the corresponding orbits of F̂ and

F̃; has forward vertical rotation number rþAR (or, equivalently, a point x of the

orbit has forward vertical rotation number rþðxÞ) if the following limit exists:

rþ ¼ g
p
lim

n-N

ln jjFnðxÞjj
n

: ð6Þ

Analogously, we say that an orbit of F has backward vertical rotation number r�AR

if the following limit exists:

r� ¼ g
p
lim

n-�N

ln jjF nðxÞjj
n

: ð7Þ

If the orbit of x is such that rþðxÞ ¼ r�ðxÞ then we just say it has vertical rotation
number rðxÞ: For vertical periodic orbits it is always true that rþ ¼ r� ¼ r: For
non-periodic orbits the limits rþ and r� can be different.
We say that FðF̃Þ has a rotational invariant curve if it has a homotopically non-

trivial invariant simple closed curve in the punctured plane (in the cylinder). It is
clear that if F has a rotational invariant curve then all orbits of F have null vertical
rotation numbers. The next theorem, which is a consequence of a more general result
proved in [2], shows that this is the only situation where all orbits of F have trivial
vertical rotation numbers.

Theorem 1. Suppose that F does not have any rotational invariant circle. Then there

exists %r40 such that for each rA½� %r; %r� there exists an orbit of F with vertical rotation

number r: If rA� � %r; %r½ is rational then there are at least two vertical periodic orbits of

F with vertical rotational number r:

Remark. When r is irrational the above theorem implies the existence of a compact,
F̂-invariant set on the 2-torus such that the forward and backward vertical rotation
numbers are equal and assume the same value at all its points.
Before we state our results for f we need to introduce some more definitions. Map f is

defined in a small neighborhood U of the origin
%
0 of the plane. We define the unstable

(stable) setWu
f (W

s
f ) of the fixed point %

0 of f as the set of points xAU such that f nðxÞ-
%
0

as n-�N (n-N). We defineW
ur
f (W

sr
f ), rX0 (rp0), as the set of points xAU that

have backward (forward) vertical rotation number equal to r (we dropped the subscript
7 of r7 since r� is always associated toWu

f and rþ is always associated toW s
f ), namely

r ¼ g
p
lim

n-�N

lnjj f nðxÞjj
n

r ¼ g
p
lim

n-N

lnjj f nðxÞjj
n

� �
:
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For a given tX0 and for each CX1 we define the sets W
urtC
f (W

srtC
f ) as the subset of

points x in W
ur
f (W

sr
f ), such that for all no0 (n40) the following inequality holds:

1

C
enðrþtÞp=gjjxjjpjj f nðxÞjjpCenðr�tÞp=gjjxjj;

1

C
enðr�tÞp=gjjxjjpjj f nðxÞjjpCenðrþtÞp=gjjxjj

� �
: ð8Þ

The same definitions hold for F and are denoted by Wu
F ; W s

F ; etc.

The apparent artificial definition of the sets W
urtC
f and W

urtC
F deserves some

comments. The idea in the proof of the theorems below is that near
%
0 maps F and f

are close. So their unstable and stable sets may have the same properties. A first

problem with orbits of points xAW
sr
F is that although their iterates go exponentially

fast to zero as n-N they can have values of jjF nðxÞjj very large for some values of n:
The bounds in Eq. (8) are enough to overcome this sort of difficulty. A second

problem is that the intersection of W
ur
F (or W

ur
f ) with any closed bounded ball

centered at the origin may not be compact. The issue related to this lack of
compactness also appears when we try to prove that the whole unstable manifold of
a hyperbolic fixed point, considered as a submanifold of the manifold where the
dynamics is defined, is homeomorphic to the unstable space of its corresponding
linear part, considered as a subspace of the tangent space at the fixed point. It is
always true that a compact part of the unstable space is homeomorphic to a compact
part of the unstable manifold. But, in general, it is false that the unstable space is
homeomorphic to the unstable manifold (due to the way the latter is generally

folded). Notice that W
urtC
F is compact for all t and C; and for any fixed t40

W
ur
F ¼

[
CX1

W
urtC
F :

So, our definition of W
urtC
F is a way to select compact parts of W

ur
F : The same

properties hold for W
urtC
f ; W

srtC
F ; etc.

For our next theorems it is important to know that the sets W
urtC
F and W

srtC
F are

nonempty for several values of r; t and C: Notice that if r is rational then any
vertical periodic orbit of F with vertical rotation number r40 (the case with ro0 is
similar), or any orbit asymptotic to it, is contained in W

ur0C
F ; for some CX1: Since,

W
urtC
F CW

urt0C
F if tpt0 we conclude that any periodic orbit with r40 is contained in

W
urtC
F for all tX0: An analogous result for invariant sets with irrational vertical

rotation number is given by the following lemma, proved in Section 3.1.

Lemma 1. Given an irrational number rA� � %r; %r½; where %r is defined in Theorem 1,

there is a compact F̂-invariant set with vertical rotation number r such that all
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its points belong to either W
sr0C
F ; if ro0; or W

ur0C
F ; if r40; for some C40 sufficiently

large.

Theorem 1, Lemma 1, and the remarks above this lemma, have the following
corollary.

Corollary 1. Suppose that F does not have any rotational invariant circle. Then there

exists %r40 as in Theorem 1 such that for every rA� � %r; 0½ ðrA�0; %r½Þ there exists a C

depending on r such that W
sr0C
F ðWur0C

F Þ is non-empty.

We say that F̃ has a hyperbolic orbit x̃n; nAZ; if the tangent space at x̃n has a

splitting E�
n "Eþ

n such that DF̃ðx̃nÞE�
n ¼ E�

nþ1; DF̃ðxnÞEþ
n ¼ Eþ

nþ1; and there exist

l�o1 and lþ41 such that jjDF̃ðx̃nÞjE�
n
jjpl� and jjDF̃ðx̃nÞj�1Eþ

n
jjpl�1þ : The same

definition of hyperbolic orbit holds for F : Using the periodicity of F̃ with respect to
z; to obtain uniform estimates, we get from standard results in hyperbolic dynamics
(the ‘‘Hadamard–Perron’’ theorem, see [20, Lemma 6.2.7 and Theorem 6.28]) that

there are local smooth manifolds Wþ
n (W�

n ), nAZ; containing x̃n with the same

dimension as Eþ
n (E�

n ) such that F̃ðWþ
n Þ ¼ Wþ

nþ1 (F̃ðW�
n Þ ¼ W�

nþ1) and if wAWþ
n

(wAW�
n ) then jjF̃�1ðwÞ � x̃n�1jjo%l�1þ jjw � x̃njj (jjF̃ðwÞ � x̃nþ1jjo%l�jjw � x̃njj) where

1o%lþplþ (l�p%l�o1). In order to prove the existence of hyperbolic orbits for f it
is convenient to extend it to the whole plane. In the next section, we show that f

indeed, has such an extension fe from a neighborhood VeCU of
%
0 such that fe is

e-C1-close to F (obviously diamðVeÞ-0 as e-0). We denote by f̃e the corresponding

e-C1-close extension of f̃ to the infinite cylinder. This extension and a standard result
on persistence of hyperbolic sets (see [20, Proposition 6.2.21]) imply the following
theorem.

Theorem 2. Suppose that F̃ has a hyperbolic orbit that corresponds to an orbit of F in

W
ur
F (W

sr
F ). Then f̃ has also a hyperbolic orbit that corresponds to an orbit of f in W

ur
f

(W
sr
f ).Moreover, compact parts of the invariant manifolds associated to the hyperbolic

orbits of F̃ and f̃ get arbitrarily C1-close when restricted to half cylinders fðf; zÞ :
zoZg as the constant Z tends to minus infinity.

Remark. To say that two orbits xn; wn; n40; of f and F ; respectively, have their
corresponding orbits on the cylinder x̃n; w̃n; n40; e-close, namely jjx̃n � w̃njjoe;
n40; means that xn and wn satisfy jjxn � wnjjoe

%
Cjjxnjj; where

%
C40 does not depend

on n and e: This is a consequence of the change of coordinates formulas (3). So, for a
constant e40 the Euclidean distance between xn and wn will decrease if jjxnjj-0:
Theorem 2 concerns the relation between single orbits of F and f in W

ur
F (W

sr
F )

and W
ur
f (W

sr
f ) and their respective invariant manifolds. The next two theorems are

about the relation of the sets W
ur
F (W

sr
F ) and W

ur
f (W

sr
f ) as a whole. Unfortunately,

these theorems contain a restriction on the vertical rotation number that is not
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natural. However, this restriction makes the proofs quite simple and it seems difficult
to prove Theorem 3 only under the natural condition jrj40: Notice that the
geometry of the sets W

ur
F and W

sr
F is not known and it is probably very complex.

Theorem 3. Suppose that rAR is such that

0ojrj � g
2p
ln½að1þ 2gÞ� ¼def 2%t ð9Þ

and W
ur
F (W

sr
F ) is nonempty. For each tA½0; %t� let It denotes the set of values of C such

that W
urtC
F (W

srtC
F ) is a nonempty topological subspace of R2:

Then for each tA½0; %t� and CAIt there exists a closed ball B; centered at the origin of

the plane, with positive radius depending on C; and a map h :W
urtC
F -B-W

ur
f

(h : W
srtC
F j-B-W

sr
f ), with the following properties:

(i) h is a homeomorphism over its image;
(ii) h is close to the identity near the origin, namely there exists K340 such that

jjhðxÞ � xjjoK3jjxjj2;
(iii) h conjugates f and F on W

urtC
F -B (W

srtC
F -B), namely

h3F j
W
urtC

F
-B

¼ f 3h ðh3F j
W
srtC

F
-B

¼ f 3hÞ;

where F j
W
urtC

F
-B

denotes the restriction of F to W
urtC
F -B;

(iv) h and h0; corresponding to two distinct pair of values of ðt;CÞ; coincide on the

intersection of their domains.

Theorem 3 implies that W
ur
f is non-empty if W

ur
F is non-empty. The next theorem

shows that every point in W
ur
f corresponds to some point in W

ur
F : In order to give a

more precise statement let us define a subset W
urN
F (W

srN
F ) of W

ur
F (W

sr
F ) in the

following way. Any given point xAW
ur
F (xAW

sr
F ) belongs to someW

urtC
F (xAW

srtC
F )

for some tA�0; %t� and CAIt: For a given x; let us fix such a pair t;C (the following
definition does not depend on the choice of t and C due to property (iv) in Theorem
3). Under the hypotheses of Theorem 3 let B and htC be the ball and the map given in

this theorem for these values of t and C: The point x above belongs to W
urN
F

(W
srN
F ) if there exists an integer nX0 (np0) such that F�nðxÞAB and

f j
3htC3F

�nðxÞAU for all j ¼ 1; 2;y; n ð j ¼ �1;�2;y; nÞ: For this point x we
associate the point

hðxÞ ¼ f n
3htC3F

�nðxÞ ð10Þ

which belongs toW
ur
f (W

sr
f ). The setW

urN
F (W

srN
F ) is given by the totality of points

in xAW
ur
F (xAW

sr
F ) that have the above property. Notice that W

urtC
F -BCW

urN
F

(W
srtC
F -BCW

srN
F ) for all tA½0; %t� and CAIt: The function h :W

urN
F -W

ur
f
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ðh :W srN
F -W

sr
f Þ given by (10) is clearly injective. The next theorem shows that it is

also surjective.

Theorem 4. Suppose that the hypotheses of Theorem 3 are verified. Then the function

h :W
urN
F -W

ur
f ðh :W srN

F -W
sr
f Þ given by (10) satisfies:

(i) h is a bijection;
(ii) h restricted to W

urtC
F -B ðW srtC

F -BÞ is the map defined in Theorem 3 on the

same set.

The sets W
urtC
F and W

srtC
F for various values of r; t; and C; can have a very

complex topology. In [1] it is proved the existence of homoclinic bifurcations for the

invariant manifolds of vertical periodic orbits of F̂: This implies that for rational

vertical rotation numbers r the sets W
ur
F and W

sr
F can have complicated hyperbolic

invariant sets, Hénon attractors, etc. Numerical investigations show that not only
the topology of the sets Wu

F and W s
F is complicated but also their dependence on

variations of ðg; aÞ:We are far from a good understanding of the topology of and the
dynamics in Wu

F and W s
F : Nevertheless, Theorem 1 shows that when F has no

invariant curve (what is true, for instance, if gða� a�1Þ41 [16]) then W
ur
F and W

sr
F

are not empty for intervals of values of r: Then Corollary 1 ensures that for all
values of r in this interval and for t ¼ 0 there are values of C where W

ur0C
F and

W
sr0C
F are not empty. In order to apply Theorems 2 and/or 3 it is still necessary to

check the hyperbolicity hypothesis and/or condition (9), respectively. This can be

done explicitly for several vertical periodic points of F̂; as for example, for the
following pair. The stability properties of these points, which is important in our
next theorems, are also discussed. The fact that the action of F on the plane

preserves area and the action of x-ep=gx expands the area form by a factor e2p=g

imply that the eigenvalues l1 and l2 of DF̂nðx̂Þ at an n-periodic point x̂ of F̂ with

r ¼ 7m=n satisfy l1l2 ¼ e82pm=g: So a periodic point with r40 can never be a
source and one with ro0 can never be a sink. Explicit hyperbolic periodic sinks and
saddle points of low period can be found easily. For instance, imposing z1 ¼ z0 þ 2p
and f1 ¼ f0 þ 2p in equation (4) we find two equations for ðf0; z0Þ:

ln Jðf0Þ ¼ ln½a2 cos2ðf0Þ þ a�2 sin2ðf0Þ� ¼
2p
g
; z0 ¼ f0 � mðf0Þ: ð11Þ

For a ¼ ep=g these equations have two solutions ðf0; z0Þ ¼ ð0; 0Þ and ðf0; z0Þ ¼
ðp; 0Þ: Both periodic points have an eigenvalue equal to one and vertical rotation
number r ¼ 1: Notice that for these orbits and for go1:9 inequality (9) is verified, so
Theorem 3 can be applied (indeed in this case Theorem 3 can be applied to all sets
given by Corollary 1 that have rotation number satisfying inequality (9)). If g is kept
constant and a is increased then these periodic points unfold saddle-node
bifurcations. It is easy to check that the periodic point that appears from this
bifurcation with f-coordinate slightly larger than zero is a hyperbolic sink and the
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one with f-coordinate slightly smaller than zero is a hyperbolic saddle. Depending
on the values of the parameters a and g map F̂ may have several hyperbolic sinks
with positive vertical rotation number. In [1,6] the reader finds more information

about the existence of periodic and non-periodic attractors for F̂: In fact, in [6], we
prove that for every positive rational number p

q
; there is an open set in the parameter

space ðg; aÞ such that F̂ has a topological sink with vertical rotation number p
q
:

In [4], we study how the extreme points of the vertical rotation interval behave as a
function of the twist mapping. As in this paper we are considering a particular family
of mappings, the supremum of the vertical rotation interval is a function of ðg; aÞ:

rmaxV ðg; aÞ ¼ sup lim
n-N

p23F̃
nðxÞ � p2ðxÞ
p:n

� �
;

where the supremum is taken over all xAR2 such that the above limit exists. It can be
proved that this function is continuous (see [3]) and it is easy to see that for a fixed
g40 ða41Þ; lim rmaxV ðg; aÞ ¼ N; as a-N ðg-NÞ: Suppose now that for some
ðg0; a0Þ rmaxV is not locally constant. Then the continuity of rmaxV and a method

developed in [6] imply that by an arbitrarily small perturbation in the parameters we

can create topological sinks for F̂: So as an attempt to prove the density of
topological attractors in the parameter space, in the future we will try to understand
what happens when rmaxV is locally constant.

In particular, what we said above implies the following. From results due to

Birkhoff we know that the subset of the parameter space ðg; aÞ for which F̂ has at
least one rotational invariant curve is closed. This can also be proved by noticing

that, from Theorem 1, this set is equal to ½rmaxV ��1ð0Þ; which is obviously closed. In
this way, given any point ðg�; a�Þ in the boundary of ½rmaxV ��1ð0Þ we can create
topological sinks for F̂ by an arbitrarily small perturbation in the parameters. So

when F̂ has at least one rotational invariant curve, there are 2 possibilities:

(1) By any sufficiently small perturbation in the parameters, F̂ still has at least one
rotational invariant curve.

(2) By arbitrarily small perturbations in the parameters we can create topological

sinks for F̂ with positive vertical rotation number (the origin looses stability
under iterations of F ).

Now we turn to our main theorems. Before stating them we need to define a
function on points ofWu

F to distinguish among them those that come from attractors

of F̂: Let us denote by mðVÞ the Lebesgue measure of a set VCR2 and by Bk an open

ball of radius e�pk=g; kAZ; centered at the origin of R2: We define the ‘‘density’’
sF ðxÞ of a point xAWu

F as

sF ðxÞ ¼ inf
V
lim inf

k-N

mðBk-½
S

N

n¼0 F�nðVÞ�Þ
mðBkÞ

; ð12Þ
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where the infimum is taken over all open neighborhoods V of x: Notice that given a
small neighborhood V of x; sF ðxÞA½0; 1� is an estimate of the density of points y in a
small ball Bk that have some positive iterate FnðyÞ passing near x; namely

FnðyÞ-Va|; for some nX0: The same definition holds for sf ðxÞ with the obvious
modification that all sets Bk; V ; must be contained in U ; the domain of definition
of f : It is easy to check that sF ðxÞ ¼ sF ðFðxÞÞ so sF is the same for all points
in the same orbit. This property also holds for f : We remark that our definition
of sF resembles the definition of lower derivatives for set functions (see [28],
Chapter 8, [29]). The definition of s can be extended to any area preserving map
with an unstable fixed point. The particular family of balls Bk chosen above can
also be changed or generalized considerably without changing the value of the
density s: In order to get some familiarity with our definition of s let us compute
a similar quantity sLðxÞ for a linear hyperbolic map L : ðx1; x2Þ-ð2x1; 2�1x2Þ and
x ¼ ð1; 0Þ:We change the family of balls above by a family of squares Bk of side 1=k

centered at the origin. Let Vb be a rectangle centered at ð1; 0Þ of width b40 small
and height equal to 1: Then, for k large, mðBk-L�nðVbÞÞ ¼ 0 if noj; where j40 is
the smallest integer such that 2�jp½kð2� bÞ��1; and

mðBk-
S

N

n¼j L�nðVbÞÞ
mðBkÞ

p
1

mðBkÞ
b

k

XN
n¼j

2�n ¼ kb22�jo
2b

2� b
:

Taking the limit as k-N and then b-0 we get sLðx̂Þ ¼ 0: From the same type of
argument we can get that any point in the local unstable manifold of a hyperbolic
point of a two-dimensional diffeomorphism has density equals to zero with respect
to any family of squares. This is a consequence of the geometrical fact presented in
the introduction (see Fig. 2) that the map induced by a linear hyperbolic map on the

torus T2 has one-dimensional attractors and no isolated attracting points.
In the next section we will prove the following two theorems. They show that the

unstable set of a saddle-center loop may have a finite number of orbits such that a
relatively large set of solutions initially close to the saddle-center loop escape from it
through trajectories that follow these orbits.

Theorem 5. Let xAWu
F and x̂ ¼ pðxÞ be a topological periodic sink of F̂: Then sF ðxÞ is

strictly positive. Moreover if S is the set of points in the annulus A ¼
fx : e�p=gpjjxjjo1g that correspond to points in the basin of attraction of x̂ with

respect to iterates of F̂ then

sF ðxÞ ¼
mðSÞ
mðAÞ:

Theorem 6. Let x̂ be a hyperbolic periodic sink of F̂: Then there exists xAWu
F ;

with x̂ ¼ pðxÞ and jjxjj sufficiently small, and yAWu
f corresponding to x according

to Theorem 2 such that sf ðyÞXsF ðxÞ: In case x̂ is only a topological periodic sink,
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there exists yAW
ur
f such that sf ðyÞ40; where r is the vertical rotation number

associated to x̂:

In order to illustrate the consequences of Theorems 5 and 6 in the dynamics of F

(and also of f ), we show in Fig. 3 three sets of iterates of map F : The three sets were
generated by the same initial conditions, namely a small ball of points centered at
the origin, have the same number of iterates, and are presented on the same scale.
The value g ¼ 2 was kept constant in all cases and the values of parameter a were 2,
2.3, and 3.2, in Figs. 3(a), (b), and (c), respectively. Mapping F̂ has no (at least
expressive) sinks in cases 3(a) and 3(c) and has a low period sink in case 3(b).
The escaping points in Fig. 3(b) are much less spread than in the other two figures,
since according to Theorem 5 the iterates accumulate on the pre-image of the sink
by map p:
We finish this section with some remarks on the way to compute the function

sf ðxÞ in a coordinate system that is not the special one used in this paper. Let

u :R2-R2 be a twice continuously differentiable change of coordinates such that

x ¼ uðzÞ ¼ Pz þ Oðjjzjj2Þ: In the new coordinates it is easy to check, using the same
ideas as in Section 3.2, that both F and f can be written as

z0 ¼ P�1APP�1Rð�2g lnjjPzjjÞPz þ Oðjjzjj2Þ:

Let us define

B ¼ P�1AP; LðyÞ ¼ P�1RðyÞP; M ¼ PwP; ð13Þ

where Pw denotes the transpose of matrix P: So, in any coordinate system f can be
written as

f ðzÞ ¼ BLðYÞz þ Oðjjzjj2Þ; YðzÞ ¼ �2g ln jjzjjM ; ð14Þ

where

(a) M is a symmetric positive matrix such that ð�;M�Þ defines an inner product on
R2 and jjzjj2M ¼ ðz; zÞM ¼ ðz;MzÞ;

(b) LðYÞ is an isometry of fR2; ð�;M�Þg (the matrix identity LðYÞwMLðyÞ ¼ M

holds);
(c) B is a symmetric positive transformation of fR2; ð�;M�Þg (the matrix identity

BwM ¼ MB holds).

Notice that the metric ð�;M�Þ and the transformations LðyÞ and B are uniquely
determined by f : This is a consequence of the invariance of the logarithmic
singularity of f under differentiable change of variables and the uniqueness property
of the polar decomposition of non-singular transformations of a vector space with
inner product. As we said the dominant part F of f is characterized by two numbers
g and a: In any coordinate system the number g is related to the dilation invariance of
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Fig. 3. Three sets of iterates of map F : For all three sets: the value of g is 2, the initial conditons are in a
small ball centered at the origin, the number of iterates is the same, and the figure scale is the same. The

parameter a in (a), (b), and (c), is respectively: 2 (‘‘no sink’’), 2.3 (‘‘low period sink’’), and 3.2 (‘‘no sink’’).
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the dominant part of f : A coordinate independent geometric interpretation of a is
given by the following argument. Let us consider the ellipsis jjzjjM ¼ 1 and its image
under the dominant part

%
F of f ; jj

%
F �1ðzÞjj ¼ 1: Let Q1 be the area inside jjzjjM ¼ 1;

Q2 be the area inside jj
%
F �1ðzÞjj ¼ 1 but outside jjzjjM ¼ 1; and D ¼ Q1=Q2 be the

ratio between them. We claim that aX1 is the number given by

aþ a�1

2
¼ Tr B

2
¼ 1

cosðDp=2Þ: ð15Þ

To prove this we first show by explicit computation that (15) is true when M is the

identity. Then we use that D is invariant under any linear isomorphism P and TrA ¼
Tr PAP�1 ¼ Tr B:
Finally, in order to compute sf in any coordinate system z it is necessary first to

find the matrix M and then replace the definition of the family of balls Bk appearing

in Eq. (12) by Bk ¼ fz : jjzjjMpe�pk=gg: If we start from the original Hamiltonian

flow then matrix M is determined by the quadratic part of the Hamiltonian function
at the saddle-center equilibrium (see for instance [5]).

3. Proofs of the main results

3.1. Proof of Lemma 1

At first, let us choose rational numbers r1; r2; such that � %ror1oror2o %r: From
Theorem 1 there are periodic orbits Q1 and Q2 such that their vertical rotation
numbers are, respectively, r1 and r2: Let Q ¼ Q1,Q2: Now we blow-up each xAQ

to a circle Sx: Let T2Q be the compact manifold (with boundary) thereby obtained; T
2
Q

is the compactification of T2\Q; where Sx is a boundary component where x was

deleted. Now we extend F̂ : T2\Q-T2\Q to F̂Q : T
2
Q-T2Q by defining F̂Q : Sx-Sx via

the derivative; we just have to think of Sx as the unit circle in TxT2 and define

F̂QðvÞ ¼
DF̂xðvÞ

jjDF̂xðvÞjj
;

for vASx: F̂Q is continuous on T2Q because F̂ is C1 on T2 (this construction is due to

Bowen, see [7]). Now we have the following

Theorem 7. The map F̂Q : T
2
Q-T2Q is isotopic to a pseudo-Anosov homeomorphism

ĜQ : T
2
Q-T2Q:

The above theorem is proved using Nielsen–Thurston theory of classification of
homeomorphisms of surfaces, see [2] for a proof and [13,19] for more information on

the theory. As ĜQ :T
2
Q-T2Q is pseudo-Anosov, it admits a Markov partition, see for
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example, [13,30]. Now let R2Q be a cover of T2Q which simply is R
2 with an infinite

family of holes deleted and let GQ :R
2
Q-R2Q be a lift of ĜQ: It can be proved, see

Proposition 1.1 of [19], that �r1; r2½ is contained in the vertical rotation set of ĜQ:

Also, using the fact that ĜQ admits a Markov partition, one can prove that (see

[13,30]) (C140 and a point x1AR2Q such that (p2 :R
2
Q-R is the projection on the

vertical direction):

jjp23Gn
Qðx1Þ � p2ðx1Þ � nrjjpC1; 8n40:

Now by a result due to Handel on shadowing of pseudo-Anosov homeomorphisms

(see [18]), there exists a point x2AR2Q and a constant C240; such that

jjp23Gn
Qðx1Þ � p23F

n
Qðx2ÞjjpC2; 8n40:

So we get that jjp23Fn
Qðx2Þ � p2ðx2Þ � nrjjpC0; for a sufficiently large C040 and all

n40: Now, if we define x̂2AT2 as the projection of x2; we get that the o-limit set of
the orbit of x̂2 by F̂ satisfies the lemma hypothesis with C ¼ 2C0:

3.2. Some propositions concerning Theorem 2

As we have already mentioned, Theorem 2 is a consequence of standard results in

hyperbolic dynamics and C1 bounds on the difference between F and f (that will be

given in Proposition 2). So, in the following we study the C1 closeness of F and f : Let

BcCR2 be a ball of radius c centered at the origin. From [16] we have that f can be

written as the composition of two maps f ¼ g3c; where g : Bc-R2 is an analytic

mapping for some c40 and c : Bc-Bc:Map c is the ‘‘local map’’ associated to the
passage of trajectories of the flow near the saddle-center singularity and g is the
‘‘global map’’ associated to the trajectories of the flow near the homoclinic orbit G:
Map c is given by (see [16] Eqs. (6)–(8)):

x0 ¼ cðxÞ ¼ RðyðxÞÞx; ð16Þ

where

yðxÞ ¼ �½@I vðIÞ�ln jvðIÞj
d2

; I ¼ jxj2

2
;

vðIÞ ¼ gI þ %vðIÞ40 for IAð0;c�;

%vðIÞ ¼ OðI2Þ is an analytic function from ð�c;cÞ to R; and d40 is some constant.
The expression for y can be written in a more convenient form as

yðxÞ ¼ �2g lnjjxjj þ c1 þ I ½aðIÞlnðIÞ þ bðIÞ�;
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where a and b are real analytic functions in ð�c;cÞ; and c1 is some constant.
Therefore c can be written as

cðxÞ ¼ Rð�2g lnjjxjj þ c1Þx þ ZðxÞ;

where

ZðxÞ ¼ Rð�2g lnjjxjj þ c1Þ½RfI ½aðIÞlnðIÞ þ bðIÞ�g � Identity�x:

Notice that ZðxÞ ¼ Oðjjxjj2Þ; Z is continuously differentiable in a neighborhood of
ð0; 0Þ and jjDZðxÞjjoc2jjxjj; for jjxjj small. Notice also that the derivative of the
function x-Rð�2g lnjjxjjÞx is

Rð�2g lnjjxjjÞðIdentityþ 2gLðxÞÞ;

where

LðxÞ ¼ 1

jjxjj2
x1x2 x22

�x21 �x1x2

 !
: ð17Þ

Matrix LðxÞ has norm 1 for any xa
%
0 since LðxÞLðxÞw is a matrix with determinant

zero and trace one. This implies that the norm of derivative (17) is less than or equal
to 1þ 2g for xa

%
0: So, although the derivative of c is not defined at

%
0 we have that it

is bounded in a neighborhood of the origin, where the following inequality holds:

jjDcðxÞjjo1þ 2gþ c2jjxjj; ð18Þ

for some c240: Now, let us write gðxÞ ¼ ARðc3Þx þ %gðxÞ where ARðc3Þ is the polar
decomposition of Dgð

%
0Þ and %gðxÞ ¼ Oðjjxjj2Þ: Then f ¼ g3c can be written as

f ðxÞ ¼ ARð�2g lnjjxjj þ c1 þ c3Þx þ ARðc2ÞZðxÞ þ %gðcðxÞÞ:

Rescaling x as x-x exp½ðc1 þ c3Þ=ðg2Þ� we can eliminate the constant term in the
argument of the rotation matrix of the dominant term of f : So, in the following we
will just omit this constant. Using that jjDcjj is bounded near zero and jjD %gðxÞjj ¼
OðjjxjjÞ we conclude that there exists a constant c440 such that jjD %g3cðxÞjjoc4jjxjj:
Therefore we can write

f ðxÞ ¼ FðxÞ þ GðxÞ; with FðxÞ ¼ ARð�2g lnjjxjjÞx; ð19Þ

where

GðxÞ ¼ Dgð
%
0ÞZðxÞ þ %gðcðxÞÞ ð20Þ

is continuously differentiable in a neighborhood of the origin and satisfies

jjGðxÞjjoK1jjxjj2; jjDGðxÞjjoK2jjxjj; ð21Þ

ARTICLE IN PRESS
S. Addas-Zanata, C. Grotta-Ragazzo / J. Differential Equations 197 (2004) 118–146 135



for some positive constants K140 and K240: Now we have the following
proposition concerning the extension of f to the whole plane.

Proposition 1. Given an e40 there exists d40 and a homeomorphism fe :R
2-R2

feðxÞ ¼ FðxÞ þ GeðxÞ

with the following properties:

(i) fe is CN except at the origin and it is analytic outside the sets x ¼
%
0; dpjjxjjp2d;

(ii) fe coincides with f inside a ball of radius d centered at the origin;
(iii) fe coincides with F outside a ball of radius 2d centered at the origin;
(iv) fe is e� C1-close to F on the plane, namely supfjjGeðxÞjj þ jjDGeðxÞjj : xAR2goe

and, moreover, for jjxjjod; Ge satisfies inequalities (21).

Proof. Given d40 let x :R-R be a CN function such that xðsÞ ¼ 1 if jsjpd; xðsÞ ¼
0 if jsjX2d; and the derivative, x0; of x satisfies jx0ðsÞjoc̃1=d for some c̃140: Then
define feðxÞ ¼ FðxÞ þ GeðxÞ where GeðxÞ ¼ xðjjxjjÞGðxÞ ¼ ð0; 0Þ if xðjjxjjÞ ¼ 0: The
proposition follows from inequalities (21) that imply

jjxðxÞGðxÞjjoK14d
2;

jjðDxðjjxjjÞÞGðxÞ þ xðjjxjjÞDGðxÞjjoc̃1

d
K14d

2 þ K22d: & ð22Þ

Let us denote the extension fe written in coordinates (3) by f̃e:Writing the change

of coordinates (3) in a concise way as x ¼ Hðx̃Þ; with x̃ ¼ ðf; zÞ; we define G̃e ¼
H�1

3ðF3H þ Ge3HÞ � F̃; where F̃ ¼ H�1
3F3H: Proposition 1 can be written in these

new coordinates as the following.

Proposition 2. Given an e40 there exists d40 and a homeomorphism

f̃eðx̃Þ ¼ F̃ðx̃Þ þ G̃eðx̃Þ ð23Þ

with the following properties:

(i) f̃e is CN in the whole cylinder and real analytic outside the annulus 2g ln dp
zp2g lnð2dÞ;

(ii) f̃e coincides with f̃ for zp2g ln d;
(iii) f̃e coincides with F̃ for zX2g lnð2dÞ;
(iv) f̃e is e� C1-close to F̃ on the cylinder with e ¼ 2ðc7 þ c8Þd; namely supfjjG̃eðx̃Þjj þ

jjDG̃eðx̃Þjj : x̃AS1 
 Rgoe and, moreover, jjG̃eðx̃Þjjpc7e
z=ð2gÞ and jjD̃Geðx̃Þjjp

c8e
z=ð2gÞ where c7 and c8 are positive numbers that depend on g; a; and d:

Proof. This proposition is a consequence of Proposition 1, the change of variables
formula (3), and a simple but long computation which will be omitted. &
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3.3. Proof of Theorem 3

Let fe be the extension of f given by Proposition 1. The idea in the proof of
Theorem 3 is to show that for a given but fixed e40; independent of t and C; the

sequence of functions hen ¼ f n
e 3F

�n :W
urtC
F -R2 converges as n-N to a function he

that has properties (i)–(iv) of Theorem 3 after replacing f by fe: Then, using that f ðxÞ
and feðxÞ coincide for jjxjjod and that he is close to the identity near the origin we
conclude that in a sufficiently small ball B centered at the origin the function h

appearing in the theorem is given by the restriction of he to B: The diameter of this
ball may depend on C and may vanish as C-N: We remark that the proof in the

case where W
urtC
F is replaced by W

srtC
F is essentially the same. It is enough to

change the definition hen ¼ f n
e 3F

�n by hen ¼ f �n
e 3Fn and follow the same steps. So

in the following we just consider the case of W
urtC
F and prove the theorem for the

extension fe of f :

Proposition 3. Function F is Lipschitz with Lipschitz constant k1pað1þ 2gÞ:
Moreover, for any given e140 there exists e40 such that fe is Lipschitz with Lipschitz

constant k2pað1þ 2gÞ þ e1:

Proof. For F we have

jjFðxÞ � FðyÞjj ¼ jjARð�2g lnjjxjjÞx � ARð�2g lnjjyjjÞyjj

p jjAjj jjRð�2g lnjjxjjÞx � Rð�2g lnjjyjjÞyjj:

Using that jjAjj ¼ a and that x-Rð�2g lnjjxjjÞx is continuous and has a derivative
with norm less than 1þ 2g if jjxjja0 (see Eq. (17) and the paragraph
below) we conclude that F is Lipschitz and has Lipschitz constant less than
að1þ 2gÞ: The estimate on the Lipschitz constant of fe is a consequence of
Proposition 1 item (iv). &

The next lemma contains the main point of the proof.

Lemma 2. Suppose that r; a; and g satisfy inequality (9) of Theorem 3 and %t is defined

as in (9). Then there exists e40; depending on r; a; and g; such that for any given r40;
tA½0; %t�; and CAIt; the sequence henðxÞ ¼ f n

e 3F
�nðxÞ converges to heðxÞ uniformly with

respect to x; for xAW
urtC
F and jjxjjpr: Moreover, the limit function he :W

urtC
F -R2 is

continuous and satisfies fe3he ¼ he3F :

Remarks. The topology in W
urtC
F is that induced by the topology of R2:

Since in the rest of this section we will only work with the extension fe of f we will
omit the index e both in fe and he:

Proof. The following argument was taken from [27, Section 3]. In order to prove the
lemma it is enough to show that hn; nAN; is a Cauchy sequence, namely given an
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e340 there exists N40 such that jjhnþjðxÞ � hnðxÞjjoe3 if nXN; jX0; for all

xAW
urtC
F and jjxjjpr: Using that the Lipschitz constant of f is k2 we get

jjhnþjðxÞ � hnðxÞjj ¼ jj f n
3f j

3F�j�nðxÞ � f n
3F�nðxÞjj

p kn
2jj f j

3F�j�nðxÞ � F�nðxÞjj ¼ kn
2jj f jðyÞ � F jðyÞjj;

where y ¼ F�j�nðxÞ: Now, denoting f 3f as ff ; etc., we get

jj f j � F jjj ¼ jj f j�1f � f j�1F þ f j�2fF � f j�2FFyþ fFn�1 � FFn�1jj

p jj f j�1f � f j�1F jj þ jj f j�2fF � f j�2FF jjyþ jj fF j�1 � FF j�1jj

p k
j�1
2 jjGjj þ k

j�2
2 jjGF jj þ?þ k02jjGF j�1jj ¼

Xj

l¼1
k

j�l
2 jjGF l�1jj: ð24Þ

From these inequalities, Proposition 1, jjGeðxÞjjoK1jjxjj2 (inequality (21)), and the
definition of W

urtC
F (inequality (8)) we get

jjhnþjðxÞ � hnðxÞjjp kn
2jj f jðyÞ � FjðyÞjjpkn

2

Xj

l¼1
k

j�l
2 jjGF l�1ðyÞjj

pK1k
nþj
2

Xj

l¼1
k�l
2 jjF l�1ðyÞjj2 ¼ K1k

nþj
2

Xj

l¼1
k�l
2 jjF�j�nþl�1ðxÞjj2

pC2jjxjj2K1knþj
2 e�2ð jþnþ1Þðr�tÞp=g

Xj

l¼1
k�l
2 e2lðr�tÞp=g

¼C2jjxjj2K1e�2ðr�tÞp=ge�bðnþjÞ
Xj

l¼1
ebl

¼C2jjxjj2K1e�2ðr�tÞp=g

1� e�b e�bnð1� e�bjÞ; ð25Þ

where

b ¼def 2ðr� tÞp
g

� ln k2:

Inequality (9), the definition of %t in (9), the inequality 0ptp%t; and Proposition 3
imply that we can choose an e40 sufficiently small, not depending on r; t; and C;
such that b40: So, we consider f with this choice of e: Then it is clear from the
inequality above that given any r40 and any e340 we can find an integer N

sufficiently large such that jjhnþjðxÞ � hnðxÞjjoe3 for all jjxjjpr; n4N; and j40:
The statements in the lemma about the continuity of h and the property f 3h ¼ h3F
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follow from the uniform convergence of the limit hn-h with respect to x and the
continuity of f and F : &

Lemma 3. Let h be the function defined in Lemma 2. Then there exists K340 such that

hðxÞ ¼ x þ RðxÞ where jjRðxÞjjoK3jjxjj2 for xAW
urtC
F :

Proof. Let RnðxÞ ¼ hnðxÞ � x for xAW
urtC
F : Notice that Rn-R as n-N: More-

over, if y ¼ F�nðxÞ then

jjRnðxÞjj ¼ jj f n
3F�nðxÞ � xjj ¼ jj f nðyÞ � F nðyÞjjp

Xn

l¼1
kn�l
2 jjGF l�1ðyÞjj;

where we used inequality (24). Thus the same reasoning as used in (25) leads us to

jjRnðxÞjjp
Xn

l¼1
kn�l
2 jjGF l�1�nðxÞjjpK1k

n
2

Xn

l¼1
k�l
2 jjFl�1�nðxÞjj2

pC2K1k
n
2e

�2ðnþ1Þðr�tÞp=g
Xn

l¼1
k�l
2 e2lðr�tÞp=gjjxjj2

¼C2K1e
�2ðr�tÞp=g

1� e�b ð1� e�bnÞjjxjj2:

Using that b40 as in Lemma 2 and taking the limit as n-N in this last inequality

we get jjRðxÞjjp½ðC2K1e�2rp=gÞ=ð1� e�bÞ�jjxjj2 ¼def K3jjxjj2: &

Lemma 4. Let h :W
urtC
F -R2 be the function defined in lemma 2 and let S be the set of

image points of h: Then there exists a continuous function h�1 : S-W
urtC
F which is the

inverse of h (again the topology in S is that induced by the topology of R2).

Proof. Let cn ¼ Fn
3f �n be a sequence of functions defined over S and r40 be any

given number. We claim that the limit jjcn3hðxÞ � xjj-0 as n-N converges

uniformly with respect to xAW
urtC
F for jjxjjpr: Therefore cn-h�1 as n-N and h�1

is continuous.
Lemma 2 implies

jjcn3hðxÞ � xjj ¼ jjFn
3f �n

3hðxÞ � xjj ¼ jjFn
3h3F�nðxÞ � xjj:

Defining y ¼ F�nðxÞ; using that the Lipschitz constant of F is k1 (Proposition 3),

using Lemma 3, and the definition of W
urtC
F we get

jjcn3hðxÞ � xjj ¼ jjF n
3hðyÞ � FnðyÞjjpkn

1jjhðyÞ � yjjpK3k
n
1jjyjj

2

¼K3k
n
1jjF�nðxÞjj2pK3C

2jjxjj2kn
1e

�2nðr�tÞp=gpK3C
2jjxjj2e�nb;
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where in the last inequality we used that k1pk2: Since b40 we prove the claim and
also the lemma. &

We still have to show that the set S is contained in W
ur
f : This is essentially a

consequence of Lemmas 2 and 3 that imply

g
p
lim

n-�N

lnjj f n
3hðxÞjj
n

¼ g
p
lim

n-�N

lnjjh3FnðxÞjj
n

¼ g
p
lim

n-�N

lnjjFnðxÞ þ R½FnðxÞ�jj
n

¼ g
p
lim

n-�N

lnjjFnðxÞjj
n

þ g
p
lim

n-�N

1

n
ln

jjFnðxÞ þ R½FnðxÞ�jj
jjFnðxÞjj


 �
¼ r:

Finally, property (iv) is an immediate consequence of our definition of hðxÞ ¼
limn-N f n

3F�nðxÞ:

3.4. Proof of Theorem 4

Property (ii) stated in Theorem 4 and the injectivity of mapping h; given in
Eq. (10), are immediate consequences of the definition of h: So, in order to prove the
theorem it is enough to show that h is surjective. Again we restrict attention to the

case where h is defined on W
urN
F the other one (h defined on W

srN
F ) is analogous.

Here f stands for the mapping defined on U and not for its extension as in the
previous section.

Let cn ¼ Fn
3f �n be a sequence of functions defined on W

ur
f ; for n ¼ 0; 1;y:

Given yAW
ur
f and tA�0; %t�; where %t is defined in Eq. (9), there exists a value of C

such that f nðyÞ satisfies inequality (8). Then an argument similar to the one used to
prove Lemma 2 implies that the limit cðyÞ ¼ limn-N cnðyÞ ¼ xAR2 exists and
F3c ¼ c3f :

Lemma 5. cðyÞAW
ur
F for every yAW

ur
f :

Proof. Let RnðyjÞ ¼ cnðyjÞ � yj; where yj ¼ f jðy0Þ; jp0; and y0 ¼ y is any given

point in W
ur
f : Let us choose a tA�0; %t� such that tor=3; and let C be a sufficiently

large number such that f lðy0Þ; lp0; satisfies inequality (8) for these values of t and
C: We claim that jjRnðyjÞjjpK 0e2jðr�tÞp=g; for any jp0; nX0; where K 0 is a number
that does not depend on j and n: Indeed, as in the proof of Lemmas 2 and 3 we have

jjRnðyjÞjj ¼ jjFn
3f �nðyjÞ � yj jj ¼ jjFnðyj�nÞ � f nðyj�nÞjj

p
Xn

l¼1
kn�l
1 jjGf l�1ðyj�nÞjjpK1k

n
1

Xn

l¼1
k�l
1 jj f l�1�nþjðy0Þjj2
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pC2K1k
n
1e

�2ðn�jþ1Þðr�tÞp=g
Xn

l¼1
k�l
1 e2lðr�tÞp=gjjy0jj2

¼C2K1e
�2ðr�tÞp=g

1� e�b ð1� e�bnÞjjy0jj2e2jðr�tÞp=g

p
C2K1e

�2ðr�tÞp=g

1� e�b jjy0jj2e2jðr�tÞp=g ¼ K 0e2jðr�tÞp=g;

where we used the same reasoning as is in inequality (24), that k1ok2
(Proposition 3), and the definition of b40 as in Lemma 2. Then, taking the limit
as n-N we get RðyjÞ ¼ cðyjÞ � yj ; with jjRðyjÞjjpK 0e2jðr�tÞp=g; where K 0 does not

depend on j: Now, the relation Fj
3cðy0Þ ¼ c3f jðy0Þ implies

g
p
lim

j-�N

lnjjF j
3cðy0Þjj
j

¼ g
p
lim

j-�N

lnjjc3f jðy0Þjj
j

¼ g
p
lim

j-�N

lnjjyj þ RðyjÞjj
j

¼ rþ g
p
lim

j-�N

1

j
ln

jjyj þ RðyjÞjj
jjyjjj


 �
:

In order to finish the proof we have to show that this last limit is zero. This is a

consequence of jjRðyjÞjjpK 0e2jðr�tÞp=g; inequality (8), and our choice of tor=3;
which imply

0p
jjRðyjÞjj
jjyjjj

p
K 0e2jðr�tÞp=g

C�1ejðrþtÞp=gjjy0jj
¼ K 0ejðr�3tÞp=g

jjy0jj
-0 as j-�N: &

Now, cðyÞAW
ur
F implies that cðyÞAW

urtC
F for some tA½0; %t�; CAIt: Then, for a

sufficiently large n; F�nðcðyÞÞAB; where B is the ball given in Theorem 3 for this
values of t and C:Moreover, by Theorem 3 and Lemma 4, inside B the inverse of h is
given by c: Therefore, for 0pjpn

f j
3h3F�n

3cðyÞ ¼ f j
3h3c3f �nðyÞ ¼ f j�nðyÞAW

ur
f : ð26Þ

This implies that cðyÞAW
urN
F : Finally, the definition of h :W

urN
F -W

ur
f and the

reasoning in Eq. (26) with j ¼ n imply that y ¼ h3cðyÞ: So, h is surjective and its
inverse is given by c:

3.5. Proof of Theorem 5

In order to simplify the notation we will suppose that x̂ is a fixed point of F̂ with
vertical rotation number equal to one. The proof in the case where x̂ is an n-periodic

orbit of F̂ is similar after replacing F by Fn; F̂ by F̂n; etc.
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For a given open neighborhood V of xAWu
F and kAN we define

sFVkðxÞ ¼
mðBk-

S
N

n¼0 F�nðVÞ
� 


Þ
mðBkÞ

: ð27Þ

If VCV 0 then sFVkðxÞpsFV 0kðxÞ for all kX0: So, in order to prove Theorem 5 it is
enough to show that given any neighborhood V 0 of x we can find another one VCV 0

such that lim infk-N sFVkðxÞ ¼ sF ðxÞ: This set V is constructed in the following
way. The fact that x̂ ¼ pðxÞ is a sink and z�13FðxÞ ¼ x imply that we can find an

arbitrarily small neighborhood V of x such that Fð %VÞCz1ðVÞ: Let Ak and Sk be the
following sets:

Ak ¼ Bk-
[n¼N

n¼0
F�nðVÞ

" #
¼ fyABk : F

nðyÞAV ; for some nX0g

and

Sk ¼ Bk-
[
nAZ

znðSÞ
" #

¼ Bk-ðp�1ŜÞ;

where Ŝ is the basin of attraction of x̂: Notice that

mðSkÞ
mðBkÞ

¼ mðSÞ
mðAÞ; and AkCSk

which imply

mðAkÞ
mðBkÞ

p
mðSÞ
mðAÞ

and lim infk-N sFVkðxÞpsF ðxÞ: Now, we will prove the opposite inequality.
Given any e40 there exists a compact subset Se of S such that mðSeÞ4
mðSÞ � e: Let

Sek ¼ Bk-
[
nAZ

znðSeÞ
" #

¼ Bk-ðp�1ŜeÞ:

We claim that SekCAk if k is sufficiently large. Indeed, if yAS then there exists ny40
and kyAZ such that F nyðyÞAzky

ðVÞ: This implies that for k4ky

Fnyþk�kyðz�kðyÞÞAV ) z�kðyÞAAk:

Due to the compacity of Se the number KðeÞ ¼ supyASe
ky is finite. Therefore

z�kðSeÞCAk for k4Ke which implies the claim. So, given e40 there exists K ¼ KðeÞ
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such that for all kXK

mðSÞ � e
mðAÞ p

mðSeÞ
mðAÞ ¼

mðSekÞ
mðBkÞ

p
mðAkÞ
mðBkÞ

:

This implies lim infk-N sFVkðxÞXsF ðxÞ which proves the theorem.

3.6. Proof of Theorem 6

First we consider the hyperbolic case:

As in the proof of Theorem 5 we suppose that x̂ is a fixed point of F̂ with vertical
rotation number equal to one.

Let V̂ be a small neighborhood of x̂ such that F̂ðV̂ÞCV̂: Let fxk; kAZg ¼ p�1ðx̂Þ
and fVk; kAZg ¼ p�1ðV̂Þ be such that xkAVk: Theorem 2 and Proposition 2
imply that we can choose jjx0jj sufficiently small such that to each xk; kp0;
there corresponds a yk according to Theorem 2 such that ykAVk and f ðz�1 %VkÞCVk:

This last inclusion and Theorem 2 imply that f jðz�jV0Þ ¼ f jðV�jÞ ¼
def

V
j
0; jX0; is a

sequence of nested neighborhoods of y0 such that diamðV j
0Þ-0 as j-N: Let sfV

j

0
kðy0Þ

be defined as in (27) after replacing F by f : We will show that

lim
j-N

lim inf
k-N

sfV
j

0
kðy0ÞXmðSÞ=mðAÞ ¼ sF ðy0Þ: ð28Þ

This inequality and the fact sfV 0kðy0ÞXsfVkðy0Þ if V 0*V imply the theorem. So in the

following we prove inequality (28).
Given e40 let Se and Sek be the sets defined in the proof of Theorem 5. Then there

exist positive integers lðeÞ40; iðeÞ40; such that

FlðSekÞC
[
nAZ

Vn

 !
-Bkþi:

This, the compacity of Sek; and Proposition 2 imply that there exists an integer %kðeÞ
such that

f lðSekÞC
[
np0

Vn

 !
-Bk�i;

for all k4 %k: Using that f nðV�nÞCV
j
0; for nXj; we get that

SekC
[
nX0

f �nðVj
0Þ

" #
-Bk

ARTICLE IN PRESS
S. Addas-Zanata, C. Grotta-Ragazzo / J. Differential Equations 197 (2004) 118–146 143



if k4maxf %k; i þ jg ¼def K : Therefore, for any given e40 and j40 there exists Kðe; jÞ
such that

sfV
j

0
kðy0Þ ¼

mðBk-½
S

N

n¼0 F�nðVj
0Þ�Þ

mðBkÞ
X

mðSekÞ
mðBkÞ

¼ mðSeÞ
mðAÞX

mðSÞ � e
mðAÞ

for all k4K : This implies that limj-N lim infk-N sfV
j

0
kðy0ÞXðmðSÞ=mðAÞÞ � e for

all e40: So inequality (28) is true.
To prove the assertion related to the existence of a topological sink for F̂ we have

to notice that:

There exists a small neighborhood V̂ of x̂ such that F̂ðV̂ÞCV̂: Again, as

we did above, let fxk; kAZg ¼ p�1ðx̂Þ and fVk; kAZg ¼ p�1ðV̂Þ be such that
xkAVk: From the fact that Fðz�1 %VkÞCVk and jjf ðxÞ � FðxÞjjoK1jjxjj2 we get
that if we choose jjx0jj sufficiently small, then f ðz�1 %VkÞCVk; for all kp0:
The only thing that might be different from the hyperbolic case is

that V
j
0 ¼ f jðz�jV0Þ; jX0; is a sequence of nested neighborhoods such

that it is not necessarily true that diamðV j
0Þ-0 as j-N: So we have 2

possibilities:

(i) diamðV j
0Þ-0 as j-N: Exactly as above we get that

lim
j-N

lim inf
k-N

sfV
j

0
kðy0ÞXðmðSÞ=mðAÞÞ40:

(ii) diamðV j
0Þ does not converge to 0 as j-N: In this case, as x̂ is a topological sink

for F̂; we

Claim. (yAV0 and an open neighborhood yAU0CV0; such that:

(a) f ðz�1 %UkÞCUk; for all kp0;
(b) diamðUj

0Þ-0 as j-N; where yAU
j
0 ¼ f jðz�jU0Þ:

Clearly from what was done in the hyperbolic case and in the proof of Theorem 5,
we get that sf ðyÞ40:
The above claim is a consequence of the following results from [6]:

(1) If x is a q-periodic point for F̂ with vertical rotation number p
q
40; then

det½DF̂qðxÞ� ¼ e�pp=go1:
(2) The topological index of a periodic point for F̂ with non-null vertical rotation

number can assume only the following values: �1; 0; 1:

So the theorem is proved.
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[25] J. Llibre, R. Martı́nez, C. Simó, Transversality of the invariant manifolds associated to the Liapunov

family of periodic orbits near L2 in the restricted three-body problem, J. Differential Equations

58 (1985) 104–156.

[26] A. Mielke, P. Holmes, O. O’Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian

saddle center, J. Dyn. Differential Equations 4 (1992) 95–126.

[27] E. Nelson, Topics in Dynamics, Princeton University Press, Princeton, 1967.

[28] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

[29] S. Saks, Theory of the Integral, Dover, New York, 1964.

[30] K. Ziemian, Rotation sets for subshifts of finite type, Fund. Math. 146 (1995) 189–201.

ARTICLE IN PRESS
S. Addas-Zanata, C. Grotta-Ragazzo / J. Differential Equations 197 (2004) 118–146146


	Conservative dynamics: unstable sets for saddle-center loops
	Introduction
	Main results
	Proofs of the main results
	Proof of Lemma 1
	Some propositions concerning Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	References


