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ABSTRACT. In this paper, we study non-wandering homeomorphisms of the two
torus homotopic to the identity, whose rotation sets are non-trivial segments from
p0, 0q to some totally irrational point pα, βq. We show that for any r ě 1, this ro-
tation set only appears for Cr diffeomorphisms satisfying some degenerate con-
ditions. And when such a rotation set does appear, assuming several natural
conditions that are generically satisfied in the area-preserving world, we give a
clearer description of its rotational behaviour. More precisely, the dynamics ad-
mits bounded deviation along the direction ´pα, βq in the lift, and the rotation set
is locked inside an arbitrarily small cone with respect to small C0-perturbations of
the dynamics. On the other hand, for any non-wandering homeomorphism f with
this kind of rotation set, we also present a perturbation scheme in order for the ro-
tation set to be eaten by rotation set of some nearby dynamics, in the sense that the
later set has non-empty interior and contains the former one. These two flavors
interplay and share the common goal of understanding the stability/instability
properties of this kind of rotation set.
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1. INTRODUCTION

The notion of a rotation number was introduced by Poincaré in order to gather
information on the average ”rotational” linear speed of a dynamical system. Ro-
tation theory is well understood only for circle homeomorphisms or endomor-
phisms, and it is still a great source of problems in two dimensional manifolds
(annulus, two torus, higher genus surfaces, and so on). Focusing only on the two
torus, there are two most important and related topics, namely, the shape of the
rotation set and how it changes depending on the dynamics. In this paper, we will
work on both topics, based on one specific type of rotation set. On the one hand,
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we try to understand the variation of a rotation set depending on the homeomor-
phism, under different regularities. On the other hand, we study how a certain
shape of the rotation set restricts the dynamics.

In general, with respect to the Hausdorff topology, the rotation set varies upper-
semicontinuously. It is also known that if the rotation set of some f has non-
empty interior, then it is in fact continuous at f (see [31] and [32]). Moreover, for
a C0-open and dense subset of homeomorphisms, the rotation set is stable (i.e., it
remains unchanged under small perturbations, see [36] and [16]). Note that this is
true both in the set of all homeomorphisms, and in the set of area-preserving ones.

Below, in order to state our main results, we will use some notations that are
mostly standard, and postpone their precise definitions to Section 2.

Our objective is to look at an interesting situation, where the rotation set is a
segment connecting p0, 0q to some totally irrational point pα, βq. We want to un-
derstand how it can be changed under sufficiently small C0 perturbations, and
what properties should such a homeomorphism satisfy. An Example with such a
rotation set was first described in [17] by Handel, who attributed it to Katok. It
is produced by a slowing-down procedure from a constant speed irrational flow.
A smooth area-preserving example was obtained by Addas-Zanata and Tal in [5].
See also the paper [26] by Kwapisz and Mathison which shows some special er-
godic properties for an explicit example.

In the C0 category, the more precise task for us is to study when and how the
rotation set of a dynamical system is ready to grow. One of the first results on
this subject appeared in [1], where it was proved that if the rotation set ρprf q con-
tains a non-rational vector pα, βq as an extremal point, then for any supporting line
r (i.e., a straight line containing pα, βq, such that the rotation set avoids one con-
nected component of its complement, denoted O), by certain arbitrarily small C0-
perturbations, the new rotation set will intersect O (See also [15] for a C1 version
of this theorem). In this paper, we are able to go one step further in this direction.

Theorem 1.1. Let rf P ČHomeo0,nwpT
2q, whose rotation set ρprf q is a segment from p0, 0q

to some totally irrational point pα, βq. For any ε ą 0, there exists rg P ČHomeo0pT
2q with

distC0prg, rf q ă ε, such that, ρprgq has non-empty interior, and ρprf qztp0, 0qu Ă Intpρprgqq.

Remark 1.1. If the map rf from the above theorem preserves area, then the perturbed map
rg can also be chosen in the area-preserving world. This is a well-known fact (follows from
Lemma 3.3), but it deserves to be mentioned, as it is one of the only cases known to us on
how to perturb a non-wandering homeomorphism and remain non-wandering.

It is interesting to ask if the same statement is also true in C1 topology. If we go
on to consider Cr diffeomorphisms, r ě 1, clearer descriptions should be expected.
In particular, we proved the following result, which suggests the non-genericity
of the set of non-wandering diffeomorphisms with this special kind of rotation
set. We say ”suggest”, because it is not known how to perturb a non-wandering
diffeomorphisms and remain non-wandering (unless of course, in some particular
cases, like area-preserving maps).

Theorem 1.2. Let rf P ĄDiff0,nwpT
2q. Assume that for every integer n ą 0, the linear part

D f n computed at each n-periodic point does not have 1 as an eigenvalue and there are no
saddle-connections. Then, the rotation set ρprf q is not a segment from p0, 0q to some totally
irrational point pα, βq.
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Note that the above conditions are satisfied by generic area-preserving Cr dif-
feomorphisms, for all r ě 1. Naturally, the next task is the following. How can we
understand a typical non-wandering diffeomorphism f which does admit such a
rotation set? This seems to be hard, because very little is known on the set of non-
wandering homeomorphisms or diffeomorphisms of a surface. As we said above,
unlike in the area-preserving case, there does not exist a method available to make
a perturbation within the set of non-wandering homeomorphisms.

Nevertheless, in the area-preserving setting, if one wants to obtain more infor-
mation on the non-generic diffeomorphisms, traditionally, one works with generic
families. This inspires us to formulate nice conditions, which hold true in a broader
set of diffeomorphisms. This approach eventually helps us to detect properties,
which general non-wandering homeomorphisms might satisfy. Along this direc-
tion, we obtain the following two results.

Theorem 1.3. Suppose f P Diff0,nwpT
2q satisfies certain natural conditions, see Def-

inition (6). Suppose also that ρprf q for some lift rf is a segment from p0, 0q to a totally
irrational point pα, βq. Then, f has (finitely many) fixed points (and no periodic point
which is not fixed), all with 0 topological index, and the local dynamics around them is
obtained by gluing exactly two hyperbolic sectors. The stable branch of any of these fixed
points does not intersect the unstable branch of any other point. Moreover, in the plane, for
each fixed point, its unstable and stable branches are bounded in the direction orthogonal
to pα, βq and the unstable (resp. stable) branch goes to infinity following the vector pα, βq
(resp. ´pα, βq). Finally, any stable or unstable branch of a fixed point is dense in the torus.

Theorem 1.4. Under the same hypotheses of the above Theorem, for any non-zero integer
vector pa, bq, a and b coprimes, there exists a simple closed curve θ in T2, with homological
direction pa, bq, such that any connected component of the lift of θ to the plane is a Brouwer
line for rf . Moreover, for any straight line γ containing p0, 0q and avoiding pα, βq, there
exists ε ą 0, such that, for any rg P ČHomeo0pT

2q, with dC0prf , rgq ă ε, ρprgq is contained
in the union of γ and one of the connected components of its complement, the one which
contains ρprf qztp0, 0qu.

The next Corollary is a direct consequence of Theorem 1.4. Nevertheless, we
will actually prove the Corollary before the theorem (see Lemma 6.2).

Corollary 1.5. Let f satisfy the conditions in Theorem 1.4. Then it has bounded deviation
along the direction ´pα, βq.

We also consider the unbounded deviation along the direction pα, βq. The next
theorem requires one more condition, the existence of an invariant foliation, which
is clearly satisfied in the particular case when f is the time-one map of some flow.
See its more precise statement in Section 7.

Theorem 1.6. Consider any rf as in Theorem 1.4. If f preserves a C0 foliation of T2, then
rf has unbounded deviation along pα, βq.

This last result leads to the following interesting question.

Question 1. For rf which lifts f P Homeo0,nwpT
2q, suppose ρprf q is the line segment from

p0, 0q to a totally irrational pα, βq. Is it true that rf has unbounded deviation along the
direction pα, βq?
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To conclude, let us briefly describe the organisation of this paper and the main
ideas used in the proofs.

In Section 2, we will summarise some notations and previous results that will
be used along the text.

In Section 3, we introduce a perturbation technique, which is very useful under
the condition of unbounded deviations along some direction. The purpose is to
find ε-pseudo periodic orbits, which can be ”closed” in order to become periodic
orbits, so with rational rotation vector. The difficulty is that, a priory, the original
method in [1] does not give enough information to locate the position of these
rational numbers, except that they are outside the rotation set ρprf q.

In Section 4, we focus on the case when the map has bounded deviations. We
apply a result proved by Jäger (see [18]) in order to obtain a semi-conjugacy be-
tween the restriction of the dynamics to a certain minimal set and the rigid torus
rotation. Then, we prove that whenever one can perturb the rigid rotation, we can
also perturb the original homeomorphism. Combining both results from Section 3
and Section 4, we complete the proof of Theorem 1.1.

From Section 5, we start working with diffeomorphisms. There, we prove Theo-
rem 1.2. There are three main ingredients in this proof. The first one belongs to the
theory of prime ends rotation numbers. The second one is the so called bounded
disk lemma, firstly proved by Koropecki and Tal in [25]. The third one consists
of certain properties of invariant branches at hyperbolic periodic saddles, mostly
from Fernando Oliveira’s paper [34].

In Section 6, we work with diffeomorphisms satisfying certain conditions,which
in the area-preserving case, are generic in the complement of the set of maps which
satisfy the hypotheses of theorem 1.2. See for instance [11] and [10]. First, we
collect several results describing dynamical properties of maps which satisfy the
conditions in Definition (6). These results together imply Theorem 1.3 and are also
an important part in the proof of existence of the Brouwer lines (Theorem 1.4).

In Section 7, we continue to study diffeomorphisms satisfying the conditions
from Section 6 and prove Theorem 1.6.

Notational Remark. There will be a small abuse of notation among the text below.
For example, when we introduce integers, positive constants along the arguments,
choices will be made differently in different subsections, sometimes with the same
name. However, they will be consistent within one single subsection.

Acknowledgements. We thank Andres Koropecki and Fábio Armando Tal for
many helpful discussions. S.A-Z. was partially supported by CNPq grant (Grant
number 306348/2015-2). X-C.L. is supported by Fapesp Pós-Doutorado grant (Grant
Number 2018/03762-2).

2. PRELIMINARIES AND PREVIOUS RESULTS

The main purpose of this section is to fix notations and to recall some previous
results for later use. In some cases, the formulation contains some minor varia-
tions from the reference, and we will give some short proofs only stressing the
differences. We will also show some elementary lemmas as well.

Note that some of the notations were already used in the statements of the the-
orems in the introduction.
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2.1. Planar Topology and Dynamics.

For any planar subset M, denote by InterpMq the interior of M, and by BM
the boundary of M. The following property in planar topology will be used. We
say a planar set F separates the points x and y if they are in different connected
components of Fc.

Lemma 2.1. [Theorem 14.3 in Chapter V of [33]]. Let F be a closed subset of the plane
R2, separating two points x and y. Then some connected component of F also separates x
and y.

Let M denote a metric space, and consider a homeomorphism f : M Ñ M.
For any starting point x0, we often use subscript to denote the f -iterates of x0, i.e.,
xn “ f npx0q. For ε ą 0, we call an ε-pseudo periodic orbit (with period n), for a
finite sequence of points txp0q, xp1q, ¨ ¨ ¨ , xpn´1qu, with the following properties.

distp f pxpiqq, xpi`1qq ă ε, for any i “ 0, ¨ ¨ ¨ , n´ 2, and,(2.1)

distp f pxpn´1qq, xp0qq ă ε.(2.2)

Moreover, any point in an ε-pseudo periodic orbit as above, will be referred as an
ε-pseudo periodic point.

We say a point p is f -recurrent, if there exists nk Ñ8, such that f nkppq Ñ p. The
following is a standard fact for all non-wandering dynamical systems on compact
metric spaces M. We provide a proof for completeness.

Lemma 2.2. Suppose f : M Ñ M is non-wandering. Then, the set of f -recurrent points,
denoted by Rp f q Ă M, is dense.

Proof. Pick any open disk B “ B0. It suffices to show B
Ş

Rp f q ‰ H. Since f
is non-wandering, there is some n1 such that f´n1pB0q

Ş

B0 ‰ H. Then we can
choose some small closed disk B1, with radius smaller than 1, such that B1 Ă

f´n1pB0q
Ş

B0. Note that every point in B1 will return to B0 at iterate n1.
Inductively, suppose we have found increasing integers n1 ă ¨ ¨ ¨ ă nk, and

closed disks tBiu
k
i“1, such that for all i “ 1, ¨ ¨ ¨ , k, Bi has diameter smaller than

1
i , such that Bi Ă InterpBi´1

Ş

f´nipBi´1qq. Then, we can choose some nk`1 ą nk
such that Bk

Ş

f´nk`1pBkq ‰ H, and some closed disk Bk`1 with radius smaller
than 1

k`1 , such that Bk`1 Ă InterpBk
Ş

f´nk`1pBkqq.
Now for all k ě 1, Bk consists of points that will return to Bk´1 at time nk. Now

Ş

kě1 Bk is a singleton, say, tx˚u. It follows that f nkpx˚q Ñ x˚. �

Denote by T2 the two-dimensional ”flat” torus, whose universal covering space
is R2, and let π : R2 Ñ T2 be the natural projection. Let Homeo0pT

2q denote
the set of homeomorphisms of T2 homotopic to the identity. Then, denote by
Homeo0,nwpT

2q and Homeo0,LebpT
2q, the set of non-wandering and area-preserving

homeomorphisms, respectively. Note that both are subsets of Homeo0pT
2q. We

also denote by ČHomeo0pT
2q (respectively, ČHomeo0,nwpT

2q) the set of lifts of home-
omorphisms from Homeo0pT

2q (respectively, Homeo0,nwpT
2q) to the plane. Sim-

ilarly, for r ě 1, or r “ 8, denote by Diffr,nwpT
2q (respectively Diffr,LebpT

2q) the
set of Cr diffeomorphisms of T2, which are non-wandering (respectively, area-
preserving) and homotopic to the identity. Also, the sets of their lifts are denoted
by ĄDiffr,nwpT

2q and ĄDiffr,LebpT
2q, respectively.
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Usually, the choice of a lift is not relevant for our purposes, as can be seen in the
next subsection.

We say a subset K Ă T2 is essential if there exists a non-trivial homotopy class,
such that for any representative loop β of it, β X K ‰ H. A subset K is called
inessential if it is contained in a topological disk in T2. In this case, the complement
of it is called fully essential. We will need the following result. For more details
about the above notations, see [23] and [25].

Lemma 2.3. [Theorem 6 in [23]] Let f P Homeo0,nwpT
2q and suppose that the set of fixed

points is inessential. Then there exists M ą 0, such that, for any f -invariant topological
open disk D, each connected component of π´1pDq has diameter bounded from above by
M.

2.2. Misiurewicz-Ziemian Rotation Set.

Consider rf P ČHomeo0pT
2q. The foundations of the rotation theory in the torus

were mainly developed by Misiurewicz and Ziemian in [31]. There, the following
notion of a rotation set ρprf q appears:
(2.3)

ρprf q :“ tv “ lim
kÑ8

1
nk
prf nkprzkq ´ rzkq,

ˇ

ˇnk Ñ8, rzk P R2, whenever the limit existsu.

Remark 2.1. For any f P Homeo0pT
2q, and any f -invariant compact subset K Ă T2,

ρprf , Kq is the rotation set of the map restricted to the invariant set K, which is defined
similarly as in (2.3), where the only difference is that, the points rzk in the expression are
only allowed to be chosen in π´1pKq.

One can also define the point-wise rotation vector as follows. For any z P T2,

(2.4) ρprf , zq :“ lim
nÑ8

1
n
prf nprzq ´ rzq, when the limit exists.

Another important definition is as follows. Consider any f -invariant Borel
probability measure µ, and denote by ρµp

rf q “
ş

T2

`

rf prxq ´ rx
˘

dµpxq the average
rotation vector of the measure µ (note that the integrand in this expression is in
fact a function on T2). Define

(2.5) ρmeasprf q :“ tρµp
rf q
ˇ

ˇµ is a f -invariant Borel probability measureu.

The following result gathers many important properties of these notions:

Theorem 2.4. [See [31] and [32]] For any rf P ČHomeo0pT
2q, ρmeasprf q equals ρprf q, which

is a compact and convex subset of R2. Moreover, every extremal point of the rotation set
can be realized as the average rotation vector of some ergodic measure µ.

2.3. Bounded Deviations.
For any non-trivial vector w P R2, denote by prw the projection of a vector along
the w direction.

(2.6) prw : R2 Ñ R, r ÞÑ xr, wy.

Next, we introduce the important notation of bounded deviations.
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Definition 1. Fix a non-trivial vector w P R2. We say that rf has bounded deviation
along direction w (from its rotation set ρprf q), if there exists M ą 0, such that for any
n ě 0 and any rx P R2,

(2.7) prwp
rf nprxq ´ rx´ nρprf qq ď M.

Remark 2.2. Note that with respect to this definition, having bounded deviation along w
and ´w are two different conditions.

The following statement essentially follows from Gottschalk-Hedlund theorem,
see also [18] for a somewhat more elementary proof.

Lemma 2.5 (Proposition A in [18]). Let f P Homeo0pT
2q preserve a minimal set

K Ă T2. Suppose ρprf , Kq “ tpα, βqu where pα, βq is totally irrational, and rf
ˇ

ˇ

π´1pKq
has bounded deviation along every direction. Then, there exists a continuous surjective
map φ : K Ñ T2, homotopic to the inclusion, satisfying that

(2.8) φ ˝ f
ˇ

ˇ

K “ Rpα,βq ˝ φ,

where Rpα,βq is the rigid rotation on T2.

The following result establishes the bounded deviation property in the perpen-
dicular direction when the rotation set is the special one we are interested in.

Theorem 2.6 ([39]). Suppose rf P ČHomeo0pT
2q, and ρprf q is the segment from p0, 0q to

a totally irrational point pα, βq. Then rf has bounded deviation along the perpendicular
directions p´β, αq and pβ,´αq.

2.4. Some Fundamental Tools in Topological Dynamics.
Let f : R2 Ñ R2 denote an orientation-preserving homeomorphism. A prop-
erly embedded oriented line γ : R Ñ R2 is called a Brouwer line, if f pγpRqq and
f´1pγpRqq belong to different connected components of the complement of γpRq.
We also abuse notation by writing γ “ γpRq. We call these components the right of
γ and the left of γ, and denote them by Rpγq and Lpγq, respectively.

The following result is usually attributed to Brouwer (see also [?]), we refer
to [[12], Proposition 1.3] for a very useful generalization. Here we state a weaker
version, which is sufficient for our use.

Lemma 2.7. Suppose f : R2 Ñ R2 is an orientation-preserving homeomorphism. If
there exists a topological open disk U, such that f pUq

Ş

U “ H, and for some k ě 2,
f kpUq

Ş

U ‰ H, then, if the fixed points are isolated, f admits a fixed point with positive
topological index.

Definition 2. Let f : pU, pq Ñ pV, pq denote a local homeomorphism, where U and
V are two open neighbourhoods of an isolated fixed point p P R2. Choose a small disk
D Ă U, whose boundary is β “ BD. Define g : β Ñ S1, such that gpxq “ x´ f pxq

}x´ f pxq} .
The topological index of f at the point p is defined as the degree of the map g, denoted as
Index f ppq.

The following is a consequence of the classical result usually referred to as Lef-
schetz fixed-point formula. (See for example Theorem 8.6.2 in [20]).
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Lemma 2.8. Let f P Homeo0
`pT

2q and assume all fixed points are isolated. Then

(2.9)
ÿ

pPFixp f q

Index f ppq “ 0.

2.5. Generic Conditions.

Recall Diffr,nwpT
2q is the set of non-wandering Cr diffeomorphisms of T2, which

are homotopic to the identity, and Diffr,LebpT
2q Ă Diffr,nwpT

2q is the subset of
area-preserving ones. Below, we say p is a periodic saddle-like point for f if there
is n ą 0, such that p is a f n-fixed point, and with respect to f n, the dynamics near
p is obtained by gluing a finite number of topological saddle-sectors, see [11]. As
usual, we denote by Wuppq (respectively, Wsppq) the union of p and all the unstable
branches at p (respectively, the stable branches at p).

Definition 3. For any r ě 1 or r “ 8, define Gr Ă Diffr,nwpT
2q as the subset of

diffeomorphisms f satisfying the following two conditions:
(1) if p P T2 is an n-periodic point, then D f nppq does not have 1 as an eigenvalue.
(2) f does not have saddle connections.

Remark 2.3. By Theorem 3 (iii) and Theorem 9 of [37], for all r ě 1, the set Gr ŞDiffr,LebpT
2q

contains a residual subset of Diffr,LebpT
2q. Thus the above conditions are generic for area-

preserving diffeomorphisms.

Definition 4. Let f : S Ñ S be a C1 diffeomorphism on a closed surface S. Let p, q be
two periodic saddle-like points. We say that Wuppq and Wspqq intersect at a point w in
a topologically transverse way, if there exists an open disk B “ Bpw, δq with some radius
δ ą 0 such that (denote by α, respectively β, the connected component of Wuppq

Ş

B,
respectively Wspqq

Ş

B, both containing the point w):
(1) Bzα “ B1 \ B2, which is a disjoint union.
(2) βztwu “ β1\ β2, which is a disjoint union and β1 Ă B1

Ť

α, β2 Ă B2
Ť

α, with
β1 Ć α and β2 Ć α. In other words, β1 intersects B1 and β2 intersects B2.

Remark 2.4. The radius of the disk, δ ą 0, might have to be taken strictly away from 0,
because the connected component of α

Ş

β containing w could be a non-trivial arc.

The following lemma will be useful for obtaining non-contractible periodic or-
bits, i.e., those orbits with non-zero rotation vectors.

Lemma 2.9. [Lemma 0 in [3]] Suppose rf P ĄDiffrpT
2q has a hyperbolic periodic saddle

point rq, and suppose Wuprqq and Wsprqq ` pa, bq intersect in a topologically transverse
way, for some integer vector pa, bq. Then there exists some integer N ą 0 such that the
diffeomorphism rg :“ rf N ´ pa, bq admits a fixed point rp. Thus, ρprf , πprpqq “ p a

N , b
N q.

Remark 2.5. Following exactly the same proof as in [3], the conclusion is also true when
the periodic point rq has topological index 0, and admits exactly one stable and one unstable
branch, whose local dynamics is described in Figure 1.

2.6. A Broader Class of (Non-generic) Diffeomorphisms.

The following definition appears as Definition 1.6 on page 12 of [11]. Such a
study is based on the important work of Takens (See Theorem 4.6 in [38]). Al-
though all the theory in [11] was stated for C8 maps, for the results we consider
below, there is no substantial difference in the Cr case.
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Definition 5. Let f : pU, pq Ñ pW, pq be a local planar Cr-diffeomorphism with an
isolated fixed point p. Assume all eigenvalues of D f ppq belong to the unit circle and let S
be the semi-simple part of D f ppq in its Jordan normal form. Then up to a Cr-coordinate
change, there exists a formal Cr vector field X, invariant under S, such that, the r-jet of
f and the r-jet of S ˝ X1 coincide at p, where X1 is the time-1 map of the formal flow
generated by X. We say f is of Lojasiewicz type at p, if the following condition holds:

‚ there exists an integer k ď r and constants C, δ ą 0, such that, for any z satisfying
}z´ p} ď δ, then

(2.10) }Xpzq} ě C}z´ p}k.

The following result was essentially obtained in Section 2 of [4].

Lemma 2.10. Assume f P Diffr,nwpT
2q has an isolated fixed point p and the topological

index of f at p is zero. Also suppose that if both eigenvalues of D f at p lie in the unit circle,
then f is of Lojasiewicz type at p. Then, there exists exactly one stable and one unstable
branch at p. Moreover, the local dynamics can be precisely described, see Figure 1.

FIGURE 1. The Local Dynamics Around a Fixed Point

Proof. Consider the linear transformation D f ppq, which has positive determinant.
If 1 is not an eigenvalue of D f ppq, then p is either an hyperbolic fixed saddle point,
an elliptic fixed point (that is, both eigenvalues are in the unit circle and not real),
or ´1 is an eigenvalue. In all the above possibilities, p has topological index equal
to ´1 or 1. As the index at p is zero, the above cases do not happen. If the two
eigenvalues of D f ppq are 1 and some a ą 0 with a ‰ 1, then as an application
of center manifold theory (see [8]), we get that p can be a topological saddle, a
topological sink (or source), or a saddle-node. Since by assumption p has topo-
logical index 0, it must be a saddle-node. In this case, p has two saddle sectors,
and one sector which is either contracting or expanding, a contradiction with the
non-wandering condition. For more details, see Proposition 6 from [4], as well
as [8].

Thus, D f ppq must have both eigenvalues equal to 1. The rest of the proof fol-
lows exactly the same lines from the argument in Section 2 of [4]. �

Definition 6. For any r ě 1 or r “ 8, define Kr Ă Diffr,nwpT
2q to be the subset of

diffeomorphisms f satisfying the following four conditions:
(1) for all n ą 0, there are at most finitely many f n-fixed points.
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(2) for any f n-fixed point z, of prime period n, if 1 is an eigenvalue of D f npzq, then
it has multiplicity 2 and f n is of Lojasiewicz type at z. Moreover, in this case the
Index f npzq is zero, and so Lemma 2.10 implies that the local dynamics near z is
given by Figure 1. For families of maps, this situation corresponds to the birth or
death of periodic points.

(3) for any f n-fixed point w, of prime period n, if ´1 is an eigenvalue of D f npwq,
then Index f npzq is 1. For families, this situation corresponds to a period-doubling
bifurcation.

(4) there are no connections between saddle-like periodic points.

KrzGr can be thought as a sort of set of typical diffeomorphisms in the com-
plement of Gr. The definition can also be justified as follows. Let F denote some
one-parameter Cr-generic family of area-preserving diffeomorphisms,

(2.11) F :“ t ftutPra,bs Ă Diffr,LebpT
2q, for some r ě 1.

The following statement is a combination of results from [3] and [4]. The proofs
were based on previous results contained in [30] and [11].

Lemma 2.11. [Section 1.3.3 of [3] and Section 2 of [4]] For such a generic Cr-family
F as above, all maps ft belong to Kr; in particular, such a family never has saddle-like
connections (tangencies are of course allowed), and with respect to periodic points, the
only allowed degeneracies for a certain parameter t are, period-doubling bifurcations (item
(3) above) and the one which appears in item (2), which as we already said, is related to the
birth or disappearance of periodic points for families of maps.

The next result gives a perturbation consequence based on the local dynamics
near fixed points. Let Fixprf q “ tz P T2 : @rz P π´1pzq, rf przq “ rzu.

Proposition 2.12 (Proposition 9 of [4]). Suppose rf P ČHomeo0pT
2q. Assume Fixprf q is

finite and for any z0 P Fixprf q, there exists a local continuous chart ψ : U Ñ R2, such
that, for any z P pU X f´1pUqqztz0u, pr1 ˝ ψ ˝ f pzq ą pr1 ˝ ψpzq. Then, there exists
ε ą 0, such that for any any rg P ČHomeo0pT

2q with distC0prg, rf q ă ε, p0, 0q R intpρprgqq.

2.7. Prime Ends Rotation Numbers.

For an open topological disk D contained in some surface, one can attach an ar-
tificial circle, called the prime ends circle, denoted by bPEpDq. Moreover, the prime
ends circle bPEpDq can be be topologized, such that the union D

Ť

bPEpDq is home-
omorphic to the standard closed unit disk in R2. We call it the prime ends disk, and
this procedure is referred to as prime ends compactification. This is the beginning
of Carathéodory’s prime ends theory, and we refer to [29], [28] and [21] for more
details.

If f is a homeomorphism on the closure of an open topological disk D into
itself, then f extends to the unit disk D

Ť

bPEpDq, so it induces a homeomorphism
on the prime ends circle bPEpDq. Then, the dynamics restricted to this circle defines
a rotation number, called the prime ends rotation number, and denoted by ρPEp f , Dq.
The following lemma is a combination of important results from several papers.

Lemma 2.13. Suppose rh is a lift of some h P Diffr,nwpT
2q satisfying the following prop-

erties:
(1) There are at most finitely many hn-fixed points for all n ě 1;
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(2) For all n ě 1, and any hn-fixed point p, of prime period n,
(a) either none of the eigenvalues of Dhnppq is equal to 1,
(b) or, if one of the eigenvalues of Dhnppq is 1, then the topological index of hn at

p is zero and actually, both eigenvalues are equal to 1 (see the proof of Lemma
2.10). Moreover, p is of Lojasiewicz type for hn.

Let K Ă R2 be an rh-invariant continuum and let O denote an rh-invariant connected
component of Kc. Write ρPEp

rh, Oq to denote the prime ends rotation number of rh restricted
to O. Then the following statements are true:

i) If ρPEp
rh, Oq is rational and O is bounded, or ρPEp

rh, Oq is zero, then BO contains
only saddle-like rh-periodic points, and connections between these saddle-like periodic
points.

ii) If O is not equal to Kc and ρPEp
rh, Oq is irrational, then there is no rh-periodic point in

BO.

Sketch of the proof. Let us show item (i). Assume ρPEp
rh, Oq “ p

q which is in reduced
form. Then, as h is non-wandering, a prime chain corresponding to a q-periodic
prime end pz has the property that each of its crosscuts must intersect its image
under rhq, otherwise the corresponding crossections would contain wandering do-
mains, even in the torus (this argument goes back to Cartwright-Littlewood, see
for instance proposition 2.1 of [?]). So, the principal set of pz is made of rhq-fixed
points, something that implies the first assertion of item (i), i.e., there exists some
rhq-fixed point z P BO.

The main results of [22] (see also Theorem 1.2, Corollary 1.3 and Theorem 1.4 of
the report [24] from ICM 2018), imply:

(1) if q “ 1, then all rh-periodic points z P BO are fixed and the eigenvalues of
Drhpzq are both real and positive;

(2) if O is bounded, for any value of p{q, all rh-periodic points z P BO have
prime period q and the eigenvalues of Drhqpzq are both real and positive;

So, as h is non-wandering, a periodic point z P BO is either an hyperbolic saddle
or both eigenvalues of Dhqpzq are equal to 1 and z has topological index 0. In this
way, Lemma 2.10 implies that z is a saddle-like periodic point, either a hyperbolic
saddle or a point with zero index and local dynamics as is Figure 1.

With this local description, Theorem 5.1 in [28] implies that the boundary BO
contains connections between saddle-like periodic points, as described above. We
should remark that although in reference [24], most statements assume preserva-
tion of area and boundedness of O as a planar subset, the arguments therein only
use the fact that the dynamics is non-wandering restricted to a small neighbour-
hood of the compact set K. This completes the proof of item (i).

Item (ii) is a direct consequence of Theorem C of [21]. �

3. PERTURBATIONS FOR HOMEOMORPHISMS WITH UNBOUNDED DEVIATION

In this section and in the next, for any w P R2, we will write rws to denote
an integral vector which is the closest to w. Also, a condition assumed in all the
theorems proved here is unbounded deviation for a fixed direction, along which,
we want our rotation set to grow.
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Theorem 3.1. Let rf P ČHomeo0,nwpT
2q whose rotation set ρprf q is a line segment from

p0, 0q to some pα, βq P R2 which is totally irrational. Assume rf has unbounded deviation
along the direction pα, βq. Then rf can be C0-approximated by rg P ČHomeo0pT

2q such that
ρprgq has non-empty interior and

(3.1) ρprf qztp0, 0qu Ă Intpρprgqq.

When the rotation set is as above, we can also study a similar situation around
the other endpoint, p0, 0q.

Theorem 3.2. Let rf and ρprf q be as in Theorem 3.1. Assume rf admits unbounded de-
viation along ´pα, βq. Then rf can be C0-approximated by rg P ČHomeo0pT

2q, such that
p0, 0q P Intpρprgqq.

3.1. Some Preparations.
Given the totally irrational vector pα, βq, define

L0 : y “
β

α
x.(3.2)

L1 : αx` βy “ α2 ` β2,(3.3)

which are straight lines along the directions pα, βq, p´β, αq, respectively, and in-
tersecting at the point pα, βq. Also define the four connected components of the
complement of L0

Ť

L1 in R2. See Figure 2.

∆0 “ trz P R2ˇ
ˇprp´β,αqprzq ą 0 and prpα,βq

`

rz´ pα, βq
˘

ą 0u.(3.4)

∆1 “ trz P R2ˇ
ˇprp´β,αqprzq ă 0 and prpα,βq

`

rz´ pα, βq
˘

ă 0u.(3.5)

Ω0 “ trz P R2ˇ
ˇprp´β,αqprzq ă 0 and prpα,βq

`

rz´ pα, βq
˘

ą 0u.(3.6)

Ω1 “ trz P R2ˇ
ˇprp´β,αqprzq ą 0 and prpα,βq

`

rz´ pα, βq
˘

ă 0u.(3.7)

-

6
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@
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∆0

∆1

r
pα, βq

Ω0

FIGURE 2. The Four Regions.
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Lemma 3.3. Let txp0q, ¨ ¨ ¨ , xpn´1qu be an ε-pseudo periodic orbit of some f P Homeo0pT
2q.

Then, f can be C0-ε-perturbed to g, also in Homeo0pT
2q such that gnpxp0qq “ xp0q. More-

over, if f preserves area, then so does g.

Proof. See [13]. For the area-preserving case, just note that g is obtained from f by
a series of perturbations supported in finitely many disjoint disks. And it is well-
known that these perturbations, which are the identity in the boundary of each
disk, can be chosen as area-preserving themselves. �

Recall that Theorem 2.6 says that rf has bounded deviation along perpendicular
directions. Based on this, the following lemma gives small displacements along
the perpendicular directions, for some chosen iterates.

Lemma 3.4 (Small Displacement). Let w be either p´β, αq or pβ,´αq. Then, for any
δ ą 0 and any rz0 P R2, there exists n0 such that,

(3.8) prwp
rf nprz0q ´

rf n0prz0qq ă δ, for any n ą n0.

Proof. Observing Theorem 2.6, we can choose n0 ě 1, with

(3.9) prwp
rf n0prz0q ´ rz0q ą sup

ně1
tprwp

rf np rz0q ´ rz0qu ´ δ.

Then, for any n ą n0, (3.8) follows immediately. �

3.2. The Irrational Endpoint.

Proof of Theorem 3.1. Fix ε ą 0. By Theorem 1 of [1], for any ergodic measure with
average rotation vector pα, βq, around a typical point which is f -recurrent, there is
some point y and a positive integer n, such that

distT2p f npyq, yq ă ε.(3.10)

prpα,βqpr
rf npryq ´ rys ´ npα, βqq ą 0.(3.11)

Considering Figure 2, the last estimate implies that

(3.12)
1
n
rrf npryq ´ rys P Ω0

ď

∆0.

From now on, we assume that ry0 and n˚ ě 1 satisfy that f n˚py0q is ε-close to y0,
and

(3.13)
1
n
rrf n˚pry0q ´ ry0s P ∆0.

The other possibility (the rotation vector obtained in the above expression belong-
ing to Ω0) is analogous. The goal is to show that, we can always find another
6ε-pseudo periodic orbit lifting to a 6ε-pseudo rf -orbit segment starting at some rz1

and ending at some rz2, so that the rational vector

(3.14)
1
n
prz2 ´ rz1q P Ω0.

We assume the totally irrational pα, βq has norm 1 for simplicity. For any K ą 0,
define RK Ă T2 to be the set of points x such that for at least K choices of positive
integers n, we have distT2p f npxq, xq ď 1

K and prpα,βq
`

rf nprxq ´ rx´ npα, βq
˘

ě K. We
claim that RK is non-empty for any positive constant K. In fact, we can cover T2

with N disks (for some integer N), all with diameter 1
K . Then by the assumption
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on unbounded deviation in the direction pα, βq, it is not hard to find rx, and integers
0 “ m0 ă m1 ă ¨ ¨ ¨ ă mKN , such that, for any k “ 1, ¨ ¨ ¨ , KN,

(3.15) prpα,βq
`

rf mkprxq ´ rf mk´1prxq ´ pmk ´mk´1qpα, βq
˘

ě K.

By the pigeonhole principle, for at least K ` 1 choices of the indices among those
mj’s, the corresponding iterates of x0 lie in one single disk with diameter no more
than 1

K . Clearly, between any two of these chosen ones, say mi ă mj, we see

(3.16) prpα,βq
`

rf mjprxq ´ rf miprxq ´ pmj ´miqpα, βqq ě K,

and in particular the claim follows by taking the first iterate among those.
Next we take an accumulation point x˚ of the sets RK as K tends to infinity.

By Lemma 2.2, the point x˚ ´ 4εp´β, αq is approximated by an f -recurrent point.
Then, with the help of Lemma 3.4, one can find a point z1 which is some forward
iterate of the recurrent point we just found, and a positive integer n1, such that
both z1 and f n1pz1q are ε-close to x˚ ´ 4εp´β, αq and

(3.17) prp´β,αq
`

rf n1prz1q ´ rz1
˘

ă ε.

Next, by choosing another f -recurrent point near the point f n1pz1q ´ 4εp´β, αq
and then applying Lemma 3.4, we can find another orbit segment satisfying sim-
ilar estimates. In fact, we can inductively find z1, z2, ¨ ¨ ¨ , zK0 with disjoint orbits,
and integers n1, n2, ¨ ¨ ¨ , nK0 , such that, for any i “ 2, ¨ ¨ ¨ , K0, both zi and f nipziq are
ε-close to f ni´1pzi´1q ´ 4εp´β, αq and

(3.18) prp´β,αq
`

rf niprziq ´ rzi
˘

ă ε.

Moreover, K0 is chosen as the smallest integer such that f K0pzK0q ´ 4εp´β, αq is ε-
close to x˚ in T2. It is not difficult to ensure K0 is found to be finite and the process
stops. Then we sum all the deviations (in the direction pα, βq) of each of the above
orbit segments.

(3.19) M :“
K0
ÿ

i“1

prpα,βq
`

rf niprziq ´ rzi ´ nipα, βq
˘

.

When we consider a point x in RK with K ą |M| ` εpK0 ` 1q, by definition,
for at least K positive integers, its corresponding iterates all lie in a same disk of
diameter at most 1{K, and pairwise the deviation along the direction pα, βq is at
least |M| ` εpK0 ` 1q. Moreover, the dynamics has bounded deviation along the
perpendicular direction (see Theorem 2.6). So when K is sufficiently large, we can
find two of these iterates so that along the direction p´β, αq, the deviation is at
most ε (with a similar argument as in Lemma 3.4).

Recall now that x˚ is an accumulation point of RK. Therefore, by the above
paragraph, we can find z0 and an integer n0, such that both z0 and f n0pz0q are
ε-close to x˚,

prp´β,αq
`

rf n0prz0q ´ rz0
˘

ă ε and(3.20)

prpα,βq
`

rf n0prz0q ´ rz0 ´ n0pα, βq
˘

ą |M| ` εpK0 ` 1q.(3.21)
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Moreover, we can require that the orbits of zi, i “ 0, ¨ ¨ ¨ , K0 and y0 are all pair-
wise disjoint. Then we write down the following K0` 1 point-wise disjoint f -orbit
segments, namely

(3.22) tz1, f pz1q, ¨ ¨ ¨ , f n1pz1qu, ¨ ¨ ¨ , tzK0 , ¨ ¨ ¨ , f nK0 pzK0qu, tz0, ¨ ¨ ¨ , f n0pz0qu.

They together form a 6ε-pseudo periodic orbit of period

(3.23) ` “
K0
ÿ

j“0

nj.

Note that, (3.21) implies the final deviation of the whole pseudo-orbit along pα, βq
is positive. Among those K` 1 segments in (3.22), the way we jump between two
consecutive orbit segment gives at least 2ε deviation along the direction pβ,´αq,
and within each segment the deviation along p´β, αq is at most ε. So in the end
we see positive deviation along pβ,´αq. It follows that this pseudo orbit sees a
rotation vector in the region Ω0.

Thus, we can apply Lemma 3.3 twice in order to close this and the ε-pseudo
periodic orbits containing y0 which we found at the beginning of this proof. So we
obtain rg which is 6ε-close to rf in the C0 topology, and admits two periodic points
y0 and z1. By (3.13), ρprg, y0q P ∆0. And by the above construction, it follows that
ρprg, z1q P Ω0.

Since p0, 0q is an extremal point of ρprf q, by [13] f admits a contractible fixed
point p˚. Now as we look back at the whole perturbation process above, we
can choose all the orbit segments far from p˚. This means that the perturba-
tions can be made away from p˚. Thus, the rotation set of rg satisfies ρprgq Ą
tp0, 0q, ρprg, z1q, ρprg, y0qu. Since any rotation set is convex (Theorem 2.4), ρprgq is as
required. As ε can be arbitrarily small, the proof of Theorem 3.1 is completed. �

3.3. Origin as Endpoint.

Proof of Theorem 3.2. This proof is similar to the above one. We fix ε now. First let
us define two new regions as follows.

D0 :“ trz P R2ˇ
ˇprpα,βqprzq ă 0 and prp´β,αqprzq ą 0u.(3.24)

D1 :“ trz P R2ˇ
ˇprpα,βqprzq ă 0 and prp´β,αqprzq ă 0u.(3.25)

For any K ą 0, define R1K to be the set of points z such that for at least K choices
of integers n ą 0, the following holds.

distT2p f npzq, zq ď
1
K

.(3.26)

prpα,βqp
rf nprzq ´ rzq ď ´K.(3.27)

With the condition of unbounded deviations in the direction ´pα, βq, by a similar
argument as in previous subsection, we can show R1K is non-empty for any K ą 0.

By taking K ě 1
ε , we can find an ε-pseudo periodic point y0 of period n˚, which

realizes a rotation vector in the region D0YD1. Without loss of generality, assume
it lies in D0 (the other possibility is analogous). More precisely, for a lift ry0 of y0
and some integer n˚ ą 0, distT2p f n˚py0q ´ y0q ă ε, and

(3.28) v “
1

n˚
rrf n˚pry0q ´ ry0s P D0.
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Then, very similarly to the previous subsection, let y˚ be an accumulation point
of R1K as K tends to infinity. With the help of Lemmas 2.2 and Lemma 3.4, as well
as the definition of R1K, we can choose finitely many orbit segments, which alto-
gether form a 6ε-pseudo periodic orbit, lifting to a 6ε-pseudo orbit for rf , namely
trz0, rz1, ¨ ¨ ¨ , rzn1u, such that

(3.29) v1 “
1
n1
rrzn1 ´ rz0s P D1.

Thus, we obtain two pseudo periodic orbits seeing rotation vectors v P D0 and
v1 P D1. Since pα, βq is an extremal point of ρprf q, by Theorem 2.4, there exists some
ergodic f -invariant measure µ satisfying ρµp

rf q “ pα, βq. Moreover, for a µ-typical
point x P T2, for some increasing integer sequence nj, and any lift rx,

lim
jÑ8

f njpxq “ x.(3.30)

lim
jÑ8

1
nj

`

rf njprxq ´ rx
˘

“ pα, βq.(3.31)

Then for sufficiently large nj, tx, f pxq, ¨ ¨ ¨ , f njpxqu forms an ε-pseudo periodic or-
bit, such that the vectors v, v1 and

(3.32) w “
1
nj
rrf njprxq ´ rxs

spans a triangle, which contains the origin p0, 0q in its interior. Note that we can
choose the three pseudo orbits to be pair-wise disjoint. Then, applying Lemma 3.3
three times, we obtain a 6ε-perturbation rg of rf . The rotation set ρprgq contains at
least the three rational points v, v1 and w. By the convexity of the rotation set, p0, 0q
is contained in Int

`

ρprgq
˘

. We have completed the proof. �

4. PERTURBATIONS FOR HOMEOMORPHISMS WITH BOUNDED DEVIATION

4.1. The Totally Irrational Rigid Rotation.

We start by showing a simple perturbation result for the rigid rotation Rpα,βq on
T2, where pα, βq is totally irrational.

Proposition 4.1. For any ε ą 0, there exists rg P ČHomeo0pT
2q with distC0prg, Rpα,βqq ă ε,

such that, ρprgq has interior, and pα, βq P Intpρprgqq.

Proof. Since pα, βq is totally irrational, the rigid rotation Rpα,βq is minimal. For any
x0 P T2 and for any small ε ą 0, consider a small disk B “ Bpx0, εq, which is
divided into four regions as follows.

∆1px0, εq : “ tx P Bpx0, εq
ˇ

ˇprpα,βqpx´ x0q ă 0, prp´β,αqpx´ x0q ă 0u.(4.1)

∆0px0, εq : “ tx P Bpx0, εq
ˇ

ˇprpα,βqpx´ x0q ą 0, prp´β,αqpx´ x0q ą 0u.(4.2)

Ω1px0, εq : “ tx P Bpx0, εq
ˇ

ˇprpα,βqpx´ x0q ă 0, prp´β,αqpx´ x0q ą 0u.(4.3)

Ω0px0, εq : “ tx P Bpx0, εq
ˇ

ˇprpα,βqpx´ x0q ą 0, prp´β,αqpx´ x0q ă 0u.(4.4)

By minimality of Rpα,βq, we can choose some integer n, such that Rn
pα,βqpx0q P

∆1px0, εq. Then, for proper choices of lifts rR and rx0 of Rpα,βq and x0, respectively,
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rRnprx0q is ε-close to rx0 ` pa, bq for some pa, bq P Z2. Moreover, we can write v1 “

p a
n , b

n q, and then clearly v1 P ∆0ppα, βq, ε
n q.

In other words, we can find an ε-pseudo periodic orbit for the rigid rotation
Rpα,βq, which sees a rational rotation vector in the region ∆0ppα, βq, ε

n q. We argue
in a similar way with respect to the other three regions. Then, we obtain four
ε-pseudo periodic orbits for Rpα,βq, starting with x0, y0, z0, w0, respectively. We
can also require these orbit segments to be point-wise disjoint. Then, applying
Lemma 3.3 four times, these four pseudo orbits can be closed via an ε-perturbation,
which produces four periodic orbits. These periodic orbits will have four rational
rotation vectors v1, v2, v3, v4, respectively, whose convex hull contains pα, βq in the
interior. Therefore pα, βq P Intpρprgqq. �

Remark 4.1. This proposition can be compared with Theorem 1 in [19], where with respect
to sufficiently high regularity, due to the “KAM” phenomenon, the perturbed rotation set
either misses pα, βq, or it equals tpα, βqu, provided pα, βq satisfies certain Diophantine
conditions.

4.2. Bounded Deviations.

In this subsection, we assume that rf has bounded deviation along the direction
pα, βq. We consider this case for the sake of completeness, but it is possible that it
might not happen at all (cf. Theorem 1.6 and Question 1).

Theorem 4.2. Suppose rf P ČHomeo0pT
2q, whose rotation set ρprf q is the segment from

p0, 0q to the totally irrational point pα, βq. Assume rf has bounded deviation along the
direction pα, βq. Then rf can be C0-approximated by rg P ČHomeo0pT

2q, such that ρprgq has
interior, and ρprf qztp0, 0qu Ă Intpρprgqq.

Assume for some M ą 0, for any rx P R2 and any n ě 1,

(4.5) prpα,βqp
rf nprxq ´ rx´ npα, βqq ď M.

Definition 7. Let Mpα,βq denote the set of ergodic f -invariant Borel probability measures,
which have pα, βq as rotation vector.Then write

(4.6) Spα,βq :“
ď

µPMpα,βq

supppµq,

where supppµq denotes the support of µ.

The following Lemma, whose proof depends on Atkinson’s theorem on Cocy-
cles (see [6]), appears as Lemma 6 of [2] or Proposition 65 of [27].

Lemma 4.3. Suppose rf satisfies condition (4.5). Then for any x P Spα,βq with a lift rx,
and for any n ě 1,

(4.7) prpα,βq
`

rf nprxq ´ rx´ npα, βq
˘

ě ´M.

In particular, any invariant ergodic measure µ such that supppµq Ă Spα,βq is contained in
Mpα,βq.

Proof of Theorem 4.2. Fix ε ą 0. Choose any minimal set K Ă Spa,bq. Then ρprf , Kq “

tpα, βqu. By assumption (4.5), Theorem 2.6 and Lemma 4.3, rf
ˇ

ˇ

π´1pKq has bounded
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deviation along every direction. So we can apply Lemma 2.5 in order to find a
semi-conjugacy φ between pK, f

ˇ

ˇ

Kq and pT2, Rq, where R “ Rpα,βq denotes the rigid

rotation on T2 by pα, βq. There is a lift rφ of φ, which conjugates rf
ˇ

ˇ

π´1pKq and rR.

Note that the pre-image of every point under rφ has diameter uniformly bounded
from above, say by a constant Cφ ą 0. Up to renormalizing the torus to a finite
cover, we can assume that

(4.8) Cφ ă 1{6.

Then, there exists a positive integer n0, such that for any n ě n0, the following can
be ensured. For any x P T2 and its pre-image γ “ φ´1pxq, and for any points p P γ
and q P f npγq, one can find an ε-pseudo orbit segment of length n, starting at p
and ending at q, such that every jump happens within a leaf φ´1p f kpγqq, for k ě 1.

Recall the four regions defined from (4.1) to (4.4). Since R “ Rpα,βq is minimal,
for some sufficiently large positive integer n ą n0, and for a point x0 P T2 with its
pre-image γ0 “ φ´1px0q, we have that

Rnpxq P Ω1px, εq.(4.9)

distT2p f npγ0q, γ0q ă ε.(4.10)

Estimate (4.9) means that, by choosing a lift rx0 of x0, and writing pa, bq “ rrRnprx0q´
rx0s, we have

(4.11) v “
rrRnprx0q ´ rx0s

n
“ p

a
n

,
b
n
q P Ω0.

Equivalently (see Figure 2),

prpα,βq
`

v´ pα, βq
˘

ą 0.(4.12)

prp´β,αq
`

v´ pα, βq
˘

ă 0.(4.13)

On the other hand, by estimate (4.10) and noting n ą n0, we can find an ε-
pseudo periodic orbit, containing a point p P γ0 so that for some q P f npγ0q,

(4.14) distT2pp, qq “ distT2pγ0, f npγ0qq ă ε.

This pseudo-orbit is obtained in the following way. For each k “ 1, ¨ ¨ ¨ , n´ 1, the
orbit has a jump within the pre-image φ´1p f kpγ0qq, so that at the pn´ 1q-th time, it
arrives at f´1pqq. Then the final jump happens from q to p. This pseudo-orbit lifts
to an ε-pseudo orbit for rf in R2. Recall from (4.8) that, the pre-image under the
lifted semi-conjugacy rφ of any point has diameter bounded by 1{6. It follows that
the pseudo-orbit must see the same integer translate as the rigid rotation. More
precisely, the ε-pseudo-orbit above must start at some point rp and end at rp`pa, bq,
so that it sees the rotation vector v “ p a

n , b
n q P Ω0.

In a similar way, we can find another ε-pseudo f -periodic orbit which sees a
rational rotation vector in ∆0. Moreover, as we explained before, there is also at
least one contractible fixed point p˚. Note that we can choose the two pseudo
orbits and the fixed point to be pairwise disjoint. So, if we apply Lemma 3.3 twice,
we obtain an ε-perturbation rg P ČHomeo0pT

2q, with at least three periodic orbits,
p˚,p0, u0, such that, ρprg, p˚q “ 0, ρprg, p0q “ v and ρprg, u0q “ u span a triangle
which contains ρprf qztp0, 0qu in its interior. By Theorem 2.4, this triangle is clearly
included in ρprgq, and the proof of the Theorem is completed. �
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Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theorem 3.1 and The-
orem 4.2. �

5. GENERIC DIFFEOMORPHISMS

In this section, we prove the following theorem.

Theorem 5.1. [Theorem 1.2 restated] Let f P Gr. Then for any lift rf , the rotation set
ρprf q can not be a segment from p0, 0q to a totally irrational point pα, βq.

Proof. The proof of this theorem will go through the whole section. We assume
the following conditions and arrive at a contradiction in the end of the proof.

f P Gr.(5.1)

ρprf q is the segment fromp0, 0q to the totally irrational point pα, βq.(5.2)

Since pα, βq is an extremal point of ρprf q, by Theorem 2.4, we can choose an f -
recurrent point z˚, such that

(5.3) ρprf , z˚q “ lim
nÑ8

1
n
`

rf nprz˚q ´ rz˚
˘

“ pα, βq.

Now, consider the family of all the f -invariant open topological disks. We can
define a partial order among this family with respect to the usual inclusion re-
lation. It is standard to check that with respect to this order, the family forms a
partially ordered set, for which every chain has an upper bound. So by Zorn’s
lemma, we conclude the existence of maximal elements. As f is non-wandering,
Lemma 2.3 implies that there exists a constant M ą 0, such that, every connected
component rD of the lift of a maximal open f -invariant disk D is rf -invariant, and

(5.4) diamp rDq ă M.

Also, if D is an f -invariant maximal open topological disk, then it contains fixed
points. This follows from a classical argument: pick some point p P D. If p is not
fixed, then for a sufficiently small open ball B centered at p, contained in D, we
have: B is disjoint from f pBq and f npBq intersects B for a sufficiently large n ą 0
(there are no wandering points). And this implies the existence of a fixed point
inside D, see Lemma 2.7. Since for f P Gr, there are finitely many fixed points, it
follows that there are at most finitely many maximal open f -invariant disks.

Note that z˚ is disjoint from the closure of the union of these finitely many max-
imal open f -invariant disks, because the orbit of any rz˚ P π´1pz˚q is unbounded
in R2. Thus, we can choose some δ ą 0 such that, the open disk Bpz˚, δq is still
disjoint from the closure of the union of these maximal open f -invariant disks.
Define the set

(5.5) U :“ the connected component of
ď

nPZ

f n`Bpz˚, δq
˘

which contains z˚.

The following lemma allows us to find a good hyperbolic saddle fixed point.

Lemma 5.2. There exists at least one fixed hyperbolic saddle point Q˚ which is contained
in U.
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Proof. Clearly U is open. Since f is non-wandering, U is f n˚ -invariant for some
n˚ ą 0. Recall the notions in subsection 2.1, and claim that U is essential. Suppose
otherwise and let U f illed be the union of U with all the connected components of
the complement of U which are contractible. This construction implies that U f illed

is an open disk and, by Lemma 2.3 applied to f n˚ , all connected components of the
lift of U f illed to the plane have bounded diameter and are rf n˚ -invariant (because
p0, 0q is the only rational point contained in the rotation set). In particular, any lift
of z˚ has bounded orbit, a contradiction with (5.3).

The next claim is that U is in fact fully essential. Suppose it is not, then all the
homotopically non-trivial loops contained in U are homotopic to each other. Fix
one homotopically non-trivial loop γ Ă U and choose connected components of
their lifts, rγ and rU, such that,

(5.6) rγ Ă rU.

Clearly, there exists some integer vector pa, bq ‰ p0, 0q, such that rγ “ rγ ` pa, bq.
Moreover, since by assumption U is not fully essential, rU

Ş

prU` ip´b, aqq “ H for
any integer i ‰ 0. Therefore,

(5.7) rU is contained in the strip bounded by rγ´ p´b, aq and rγ` p´b, aq.

This is a contradiction with the choice of z˚ and the fact that pα, βq is totally irra-
tional. So U is fully essential. Moreover, if U is not the whole torus, then any con-
nected component of pUqc is a periodic open disk (the periodicity follows from the
non-wandering hypothesis). In particular, by the choice of δ ą 0, each f -invariant
maximal open disk (if any) is a connected component of pUqc.

By assumption (5.1), every fixed point has non-zero topological index. In this
case, the fixed point is also called a non-degenerate fixed point. In general there
are two types of such points:

(1) p P Fixp f q has topological index 1.
(2) p P Fixp f q has topological index ´1. In this case, p is a hyperbolic saddle,

and both eigenvalues of D f ppq are positive real numbers, one larger than
1 and the other smaller.

Now by Lemma 2.13, condition (2) of Definition 3 implies that each f -invariant
open disk D has prime ends rotation number ρPEp f , Dq R Q. In particular, such a
prime ends rotation number is not zero, so the sum of the indices of fixed points
contained in the union of all the (finitely many) maximal f -invariant open disks
is positive (or zero, in case U is the whole torus). By the Lefschetz fixed point
formula (Lemma 2.8), the sum of the indices at all the fixed points is zero. And as
p0, 0q is an extremal point of the rotation set, f must have fixed points (see [13]).
So it follows that there exists at least one negatively indexed fixed point, denoted
Q˚, contained in the complement of the union of these maximal open f -invariant
disks. Thus, Q˚ is a fixed hyperbolic saddle point, which belongs to U, and we
have finished the proof. �

For a fixed hyperbolic saddle point Q˚ (or a fixed saddle-like point), let an unsta-
ble branch (respectively, stable branch) at Q˚ be one of the connected components of
WupQ˚qztQ˚u (respectively, one of the connected components of WspQ˚qztQ˚u).
Choose a lift rQ˚ of the hyperbolic saddle point Q˚, which is fixed by rf . We can
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then lift the corresponding stable and unstable branches at Q˚ to those branches
at rQ˚.

Proposition 5.3. It is not possible that some unstable branch rλu and some stable branch
rλs at the hyperbolic saddle rQ˚ intersect.

Proof. Suppose by contradiction that a stable branch rλs at rQ˚ intersects an unstable
branch rλu at rQ˚. We can then choose an intersection point rw, such that, the arc
along rλu from rQ˚ to rw and the arc along rλs from rQ˚ to rw are disjoint, except at
their endpoints. It follows that, the union of these two arcs bounds a topological
disk rD. Now we define

(5.8) rDsat “
ď

nPZ

rf np rDq.

Note that rDsat is an open and connected rf -invariant subset of the plane.
If there exists some integer vector pa, bq P Z2ztp0, 0qu, such that

(5.9) rDsat
č

`

rDsat ` pa, bq
˘

‰ H,

then either rλu intersects rλs ` pa, bq topologically transversely, or rλu intersects rλs ´

pa, bq topologically transversely (see definition 4). In both cases, it follows from
Lemma 2.9 that there exists a periodic orbit p0 whose rotation vector ρprf , p0q is
non-zero and rational, which is a contradiction with assumption (5.2).

Thus, we are left with the case when rDsat does not intersect any of its non-trivial
integer translations. As before, we consider the filled open set Fillp rDsatq, which is
given by the union of rDsat and all the bounded connected components of its com-
plement. It is not hard to see that Fillp rDsatq is an open topological disk, which does
not intersect any of its non-zero integer translations. Thus, we can consider its
projection DFill :“ πpFillp rDsatqq, which is an f -invariant open disk. By Lemma 2.3,
Fillp rDsatq has bounded diameter. Since f P Gr, in particular there are no saddle
connections, by Lemma 2.13, the prime ends rotation number ρPEp

rf , Fillp rDsatqq is
irrational, and so the boundary BFillp rDsatq does not contain any periodic point.
This implies that

(5.10) rQ˚ P Fillp rDsatq.

This is a contradiction because Q˚ does not to belong to a fixed open disk, see
Lemma 5.2. So rλu does not intersect any stable branch at rQ˚. �

Remark 5.1. The same conclusion is also true for the unstable and the stable branch at an
index 0 saddle-like fixed point. The proof follows the same lines as above, with a difference
that, when we apply Lemma 2.9 in the arguments, we actually need the statement for
saddle-like fixed points, as was explained in Remark 2.5. Note also, the conditions stated
in Lemma 2.13 are such that in both cases it can be applied.

Lemma 5.4. Each stable or unstable branch at rQ˚ is unbounded in R2.

Proof. For definiteness, fix any unstable branch rλu at rQ˚, and assume by contra-
diction that it is bounded.

The first claim is that, the closure clprλuqmust intersect all the other branches at
rQ˚. To see the claim, assume by contradiction that clprλuq does not intersect some
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branch rλ. Then there exists some connected component rU of the complement of
clprλuq, containing rλ. Since rλ is rf -invariant, so is rU. Note that rQ˚ P B rU, and
it is in fact accessible through the branch rλ, from the interior of rU. Thus, the
prime ends rotation number ρPEp

rf , rUq must be equal to 0. And so, Lemma 2.13
implies the existence of saddle-connections, something that contradicts item (2) of
Definition 3.

The second claim is that, if rλ is any other branch at rQ˚, then clprλuq Ą rλ. To
prove this claim, note first that if rλ is another unstable branch, then rλ does not
intersect rλu. And if rλ is a stable branch, then by Proposition 5.3, we again obtain
that rλ does not intersect rλu. The following argument is a variation of one due to
Fernando Oliveira in the area-preserving case (see Lemma 2 of [34]). We include it
here for completeness.

Assume by contradiction that

(5.11) clprλuq Č rλ.

Since clprλuq is a connected rf -invariant compact subset, there is a compact simple
arc γ contained in rλ, such that clprλuq

Ş

γ consists of exactly the two endpoints of
γ. Then there are two possibilities:

(1) for all non-zero integer vectors pm, nq, γ
Ş
`

clprλuq ` pm, nq
˘

“ H.
(2) for some pm0, n0q P Z2ztp0, 0qu, γ

Ş
`

clprλuq ` pm0, n0q
˘

‰ H.

In case (1), we can find a bounded connected component of the complement of
clprλuq Y γ, whose boundary contains γ. We denote it as rO. Then look at the set
O “ πp rOq. It is not hard to see that, O contains a wandering domain for f , which
is a contradiction.

In case (2), as γ is contained in a branch at rQ˚, clprλuq intersects clprλuq` pm0, n0q.
So we define

(5.12) rL :“
ď

kPZ

clprλuq ` kpm0, n0q.

Then rL is closed, connected, rL ` pm0, n0q “ rL and it is bounded in the direction
perpendicular to pm0, n0q. Moreover, rf prLq “ rL. But this shows that ρprf q must be
contained in a line of rational slope (parallel to the vector pm0, n0q), which is a
contradiction with assumption (5.2). This shows our second claim.

Note that we could have started with any stable branch rλs as well. So these
two claims above show that, under the assumptions (5.1) and (5.2), if one branch
at the hyperbolic fixed point ĂQ˚ is bounded, then all four branches are bounded.
Moreover, in this case, they all have the same closure. Then the final arguments
follow exactly from Oliveira in [34], page 582, namely we get an intersection be-
tween a stable and an unstable branch. As this homoclinic intersection contradicts
Proposition 5.3, all four branches at rQ˚ are unbounded.

To conclude, we present a sketch of Oliveira’s argument used above. Let us
denote the four branches at rQ˚ by rλ1,u, rλ2,u, rλ1,s and rλ2,s. We are assuming that
clprλi,jq is bounded and equal to the same continuum for all i P t1, 2u and j P tu, su.
This implies that there exist two branches, one stable and one unstable, and a local
quadrant Quad at rQ˚ adjacent to at least one of them, such that both branches
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accumulate on rQ˚ through Quad. It is not hard to show that a picture similar to
one of the possibilities in Figure 3 must happen. More precisely, there always
exists a Jordan curve separating the local rλ1,s from the hatched area of Quad.

FIGURE 3. The contractible case

And it is easy to see that the stable branch can not accumulate on rQ˚ through
Quad without intersecting the unstable branch: the only way it can enter Quad is
through the hatched area. And it has to intersect the unstable branch in order to
reach that area. �

Remark 5.2. Similar to the previous proposition, the same conclusion holds for any index
0 saddle-like fixed point. The proof follows the same lines of the above proof.

Proposition 5.5. The projections of the four branches are two by two disjoint and they
have the same closure, denoted as follows.

(5.13) K “ clpπprλ1,sqq “ clpπprλ2,sqq “ clpπprλ1,uqq “ clpπprλ2,uqq.

Moreover, each connected component of the complement of K is a periodic open disk.

Proof. Let us consider one branch, for instance, rλ1,u, which is unbounded in R2 by
Lemma 5.4. Then, the closure of its projection, clpπprλ1,uqq, is an essential subset
of T2. If clpπprλ1,uqq is not fully essential, then some connected component U of
its complement is itself essential. Since f is non-wandering, it follows that U is
periodic. But then, the rotation set ρprf q has to be contained in some affine line
with rational slope, which is a contradiction with assumption (5.2). So, clpπprλ1,uqq

is fully essential. By item (1) of Definition 3 and assumption (5.1), the fixed point
set of f n is finite, for all n ě 1. So, Theorem 2.3 implies that every connected com-
ponent of the lift of the complement of clpπprλ1,uqq is a bounded rf -periodic disk.
Thus, if rλ is any branch (possibly the same branch), and since rλ is unbounded,
then πprλq intersects clpπprλ1,uqq. If πprλq also intersects clpπprλ1,uqq

c, then by an ar-
gument very similar to that in the proof of Lemma 5.4 to treat possibility (1), we
conclude that there exists a wandering domain inside an open periodic disk in the
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torus, a contradiction. Thus πprλq Ă clpπprλ1,uqq. Since we have chosen the two
branches arbitrarily, the proof is over. �

By Proposition 5.5, for the fixed saddle point Q˚ in the torus, each of its four
branches accumulates on all the other three branches, as well as on itself. Now we
need to recall the final arguments of the proof of Theorem 2 in [34]. More precisely,
from page 591 to page 594 of [34], the starting conditions are that all branches are
unbounded in R2, and the closure of every branch in T2 accumulates on all the
four branches. Under these conditions, following exactly the arguments in that
paper, we get that

(5.14) πprλ1,u
ď

rλ2,uq
č

πprλ1,s
ď

rλ2,sq ‰ H

with a topologically transverse intersection.
So, either

(5.15) prλ1,u
ď

rλ2,uq
č

prλ1,s
ď

rλ2,sq ‰ H,

or

(5.16) prλ1,u
ď

rλ2,uq
č

prλ1,s
ď

rλ2,s ` pm, nqq, for some pm, nq P Z2zp0, 0q,

in both cases, with topologically transverse intersections.
The first is a contradiction with Proposition 5.3, and for the second case, we

can use a similar argument as in the proof of Proposition 5.3, to create a non-
contractible periodic orbit. This is a contradiction with the assumption on the
shape of ρprf q, i.e., (5.2).

To conclude, as we did in the proof of Lemma 5.4, we present a sketch of the
argument contained in the aforementioned pages of [34].

First, note that for any local quadrant, Quad at Q˚, both adjacent branches accu-
mulate on Q˚ through it. Let Quad be contained in the first quadrant and λ1,u and
λ1,s be the branches adjacent to it. Follow λ1,u starting at Q˚ until the first time it
reaches Quad, at a point z P BQuad. This could happen so that this sub arc from
λ1,u whose endpoints are Q˚ and z, united with a segment from z to Q˚, is either
a contractible loop, or not. If the loop is contractible, then it bounds a disk D that
separates the hatched area in the left case of Figure 3 from a local part of λ1,s. As
the only way for λ1,s to enter Quad is through the hatched area, there must be an
intersection between λ1,s and λ1,u.

So we are left to consider the case when, for any of the four branches, when-
ever it returns to some adjacent local quadrant Quadi pi “ 1, 2, 3, 4q, it forms a
non-contractible loop (Quad1 is in the first quadrant and so on, rotating counter-
clockwise). In this case, the situation in the universal cover is as in Figure 4.

There, we consider rλ1,s and rλ1,u starting at rQ˚ until the first point each of them
has in some connected component of π´1pBQuad1q and then back to some trans-
late of rQ˚ through a segment: we get a ”web” on the plane, whose building blocks
are all the integer translates of the curvilinear rectangle, denoted Rect in Figure 4.

We know that rλ2,s and rλ2,u are both unbounded, so they have to leave Rect.
If they do not intersect rλ1,s and rλ1,u, the only possibilities are, for rλ2,u it leaves
Rect through the connected components of π´1pBQuad1q that contain rQ˚ ` rp1, uq
or rQ˚ ` rp1, uq ` rp1, sq. And rλ2,s leaves Rect through the connected components
of π´1pBQuad1q that contain rQ˚ ` rp1, sq or rQ˚ ` rp1, uq ` rp1, sq. It is easy to see
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FIGURE 4. The curvilinear rectangle Rect

that, unless both rλ2,s and rλ2,u leave Rect through the connected component of
π´1pBQuad1q that contains rQ˚ ` rp1, uq ` rp1, sq, the diagram in Figure 4 implies
that there must be an intersection between rλ2,s and rλ2,u and we are done.

So, assume this is the case. Now we fall in the situation described in Figure 5.

FIGURE 5. The curvilinear rectangle Rect’

Again, as rλ2,s and rλ2,u are both unbounded, they have to leave Rect1. If they
do not intersect rλ1,s and rλ1,u, from the position of the exits and entrances in Rect1,
there must be an intersection between rλ2,s and rλ2,u (we are using the fact that
unstable branches leave Rect1 through one of the exits and stable branches leave
Rect1 through one of the entrances).

A final remark is that Figures 3,4 and 5 were taken from [34]: we just adapted
them to our notation. l

6. A BROADER CLASS OF (NON GENERIC) DIFFEOMORPHISMS

In the proof of Theorem 3.1, we keep the fixed points away from the support
of the perturbation. Thus, the rotation set after the perturbation still contains the
point p0, 0q. On the other hand, it seems possible that p0, 0q will be ”mode locked”
in the following sense. Possibly, for all sufficiently small perturbations, p0, 0q is not
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contained in the interior of the perturbed rotation set. This intuition comes from
the phenomenon called rational mode locking. The case when the rotation set has
non-empty interior was treated in [4]. One of the theorems proved there states
that rational mode locking happens under some conditions that are satisfied for
generic one-parameter families.

This section has two objectives. First, we prove several results describing the
dynamics of diffeomorphisms f P Kr, which together, imply Theorem 1.3. And
then, using the previous results and some delicate topological arguments, we
show the existence of lots of Brouwer lines in the universal cover, which are lifts
of essential loops in the torus for all possible homotopy classes. In the end of the
section we explain how Theorem 1.4 in the introduction can be deduced from the
existence of Brouwer lines.

We start by describing the dynamics in Kr. In this whole section, f P Kr and rf is
a lift of f whose rotation set is the segment from p0, 0q to a totally irrational point
pα, βq.

Proposition 6.1. Every periodic point p is indeed a fixed point, with topological index
0, and the local dynamics around p can be described explicitly as in Lemma 2.10. In
particular, p admits exactly one stable and one unstable branch.

Proof. By the assumption on the shape of the rotation set ρprf q, all the periodic or-
bits of f must be contractible, that is, they lift to periodic orbits of rf . Suppose
by contradiction that there exists a periodic point which is not fixed, or there ex-
ists a fixed point which does not have topological index 0. In the first case, by
Lemma 2.7, there exists some fixed point with positive topological index. On the
other hand, it is easy to see from the definition of Kr that the indices at fixed points
can only assume one of the following values: ´1, 0 or 1. Observing Lemma 2.8,
as in both possibilities above there exists fixed points with non-zero index, there
must always exist a fixed point which has topological index ´1. And from the
definition of Kr this point is a hyperbolic saddle. By the same arguments used to
prove Lemma 5.2, there exists a fixed hyperbolic saddle contained in U, where U
is defined in expression 5.5. Now the proof goes exactly as in Theorem 5.1, and as
in that proof, we get a contraction with the shape of the rotation set ρprf q. So every
fixed point has topological index 0 and there are no other periodic points. Since
f P Kr, the local dynamics around a fixed point is given by Lemma 2.10. �

The next lemma is Corollary 1.5. Note that it depends on Theorem 3.2.

Lemma 6.2 (Corollary 1.5 restated). The lift rf has bounded deviation along the direction
´pα, βq. Equivalently, there exists M ą 0, such that for any rx and n ě 1,

(6.1) pr´pα,βqp
rf nprxq ´ rxq ď M.

Proof. By Proposition 2.12, for any rg P ČHomeo0pT
2q which is a sufficiently small

perturbation of rf , it is not possible that ρprgq contains p0, 0q in its interior. Then by
Theorem 3.2, rf must have bounded deviation along ´pα, βq. �

Lemma 6.3. For any rf -fixed point rp, its stable and unstable branches are both unbounded.
Their projections to the torus do not intersect. Moreover, the projection of each branch is
dense in the torus.
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Proof. A first observation is that there is no periodic open disk. If such a disk
existed, then from our hypotheses, its prime ends rotation number would be ir-
rational. So f would have periodic points with positive index (see the end of the
proof of Lemma 5.2), something that is not allowed by Proposition 6.2.

Fix some fixed point p in the torus. Consider any rp in the plane that lifts p.
The proofs of Proposition 5.3 and Lemma 5.4 imply that both the stable and the
unstable branches at rp are unbounded (see Remarks 5.1 and 5.2).

Now we show that Wsppq is dense in T2 (a similar argument works for Wuppq).
Since the lift Wsprpq is unbounded, the closure Wsppq must be an essential subset
of T2. Assume its complement T2zWsppq is non-empty. If it contains an essen-
tial component, then as we have already done in many previous arguments, this
implies that the rotation set is contained in a straight line with rational slope, a
contradiction. Thus, T2zWsppq is inessential. So each connected component is a
periodic open disk. As there are none, Wsppq is dense in T2.

Now, if the stable and unstable branches at p intersect, then for some rp lift of
p, either its stable and unstable branches intersect, or the unstable branch at rp
intersects (maybe in a tangency) the stable branch at rp` pm, lq for some non-zero
integer vector pm, lq. In this second case, there exists a Jordan curve in the plane,
which is given by the union of two arcs: one contained in the unstable branch at
rp and the other contained in the stable branch at rp` pm, lq. As this Jordan curve
bounds a disk and Wsppq is dense in T2, we get that the stable branch at some
integer translate rp ` pm1, l1q has a topologically transverse intersection with the
unstable branch at rp. If pm1, l1q is non-zero, Lemma 2.10 and Remark 2.5 give a
contradiction.

So we are left to consider the case when the stable and unstable branches at
rp intersect. As we did before, there exists an open disk rD in the plane whose
boundary is a Jordan curve containing rp, consisting of two compact arcs. One of
the arcs is contained in the unstable branch at rp and the other is contained in the
stable. Now, either for some integer n ą 0, rf np rDq intersects some non-zero integer
translate of rD, something that is not allowed, again by Lemma 2.10 and Remark
2.5, or not. In this second possibility, if we consider rDsat “

Ť

nPZ
rf np rDq, then

Fillp rDsatq is open and disjoint from all its non-zero translates. Therefore, when
projected to the torus, it is an f -invariant bounded open disk (see Lemma 2.3). As
such disks do not exist, there are no homoclinic intersections in the torus. �

The next lemma shows that f also does not admit heteroclinic intersections.

Lemma 6.4. For any two fixed points p1 and p2, we have

(6.2) Wupp1q
č

Wspp2q “ H.

Proof. Suppose f admits some fixed points p1 and p2, and

(6.3) Wupp1q
č

Wspp2q ‰ H.

We consider some lifts WupĂp1q and WspĂp2q of these branches, such that their inter-
section is non-empty. Then, since there are no saddle-like connections, we can find
some Jordan curve, which is the union of one sub-arc of WupĂp1q and one sub-arc
of WspĂp2q, respectively. This Jordan curve bounds a topological disk, denoted rU.
The projection U “ πprUq is a proper open subset of T2.
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Since both Wupp1q and Wspp2q are dense in T2, each of them must intersect U.
So, there are homoclinic intersections, which do not exist by the previous Lemma.
This contradiction ends the proof. �

The goal now is to show that both invariant branches at a fixed point tend to
infinity.

Lemma 6.5. Let rp be a fixed point (for rf ). Then both its stable and unstable branches
intersect every compact set in a closed subset. More precisely, for the unstable branch
Wuprpqztrpu for example, if rλ Ă Wuprpqztrpu denotes the closure of a fundamental domain,
then for any compact set K, the set tn ě 1

ˇ

ˇ
rf nprλq

Ş

K ‰ Hu is finite.

Proof. Consider the unstable branch Wuprpqztrpu and choose a fundamental domain
contained in it, whose closure we denote by rλ. Suppose by contradiction that there
exists some compact set K Ă R2, an integer sequence ni Ñ `8, and a sequence
rqi P

rλ, such that

(6.4) rf niprqiq P K.

By extracting a subsequence if necessary, we can assume rq P λ is the limit point
of the sequence trqiuiě1. Considering the ω-limit set of rq, denoted ωprqq, there are
three possibilities:

Either ωprqqq is empty, a singleton, or it has more than one point. If it contains
more than one point, then some point rw in it is not fixed, because each fixed point
is isolated. Then rw is contained in some disk U, such that,

rf pUq
č

U “ H,(6.5)

rf kpUq
č

U ‰ H, for some k ě 2.(6.6)

So Lemma 2.7 implies that rf admits some fixed point with positive topological
index, a contradiction with Proposition 6.1.

If ωprqq is a singleton, say, equal to trru, then rr is necessarily a fixed point. So rq
belongs to the stable branch at the point rr, that is, there is an heteroclinic point, a
contradiction with Lemma 6.5.

So, ωprqq is empty.
In particular, this means that the sequence trf nprqquně1 converges to infinity as

n tends to `8. By Theorem 2.6 and Lemma 6.2, rf has bounded deviation along
the three directions ´pα, βq, p´β, αq and pβ,´αq. So the sequence rf nprqq converges
to infinity along the direction pα, βq.

In particular, for some large n0,

(6.7) inf
rzPK

`

prpα,βqp
rf n0prqq ´ rzq

˘

ą 2M,

where M ą 0 comes from estimate (6.1).
Then there exists some small disk B containing rq, such that, for every point

b P B, the above estimate also holds true. Now, we can choose a sufficiently large
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i, with rqi P B, and ni ą n0. Thus,

prpα,βq
`

rf n0prqiq ´
rf niprqiq

˘

(6.8)

ě inf
rzPK

`

prpα,βqp
rf n0prqiq ´ rzq

˘

(6.9)

ě2M.(6.10)

As this is a contradiction with Lemma 6.2, the proof is completed. �

Proof of Theorem 1.3. The proof now follows easily from Proposition 6.1, Lemmas
6.3, 6.4, 6.5 and Theorem 2.6.

Theorem 6.6. Let rf denote some lift of some f P Kr, and suppose ρprf q is the line segment
from p0, 0q to pα, βq. Then, for any coprime integer pair pa, bq ‰ p0, 0q, there exists a torus
loop ` “ `pa,bq, which can be lifted to an rf -Brouwer line r`, such that r`` pa, bq “ r`.

Proof. Up to a change of coordinates and/or considering f´1 if necessary, we re-
duce to the case when pa, bq “ p0, 1q and α ą 0.

Proposition 6.7. There exists an oriented properly embedded curve rγ Ă R2, with the
following properties.

(1) rγ` p0, 1q “ rγ, and rγ is oriented in the direction p0, 1q.
(2) rγ does not contain any rf -fixed points.
(3) Let Rprγq denote the unbounded complementary domain to the right of rγ. For any

rf -fixed point contained in Rprγq, its unstable branch does not intersect rγ.
(4) Analogously, let Lprγq denote the unbounded complementary domain to the left of

rγ. For any rf -fixed point contained in Lprγq, its stable branch does not intersect rγ.

Proof. Start with a vertical line `, oriented upwards, which does not contain any
rf -fixed point. The complement, `c, consists of two unbounded connected compo-
nents. We denote by Rp`q (respectively, Lp`q) the right component (respectively,
the left component). Let O´ (respectively, O`) denote the union of the stable
branches (respectively, unstable branches) of all the rf -fixed points belonging to
Lp`q (respectively, Rp`q). We claim that both O´ and O` are closed sets. The
arguments are similar, so it suffices to prove the claim for O´.

Let tziuiě1 be a sequence of points in O´ converging to some point z. Choose
a small closed disk Bpz, 1q containing z. By Theorem 2.6, Lemmas 6.2 and 6.5,
there are only finitely many rf -fixed points in Lp`q, whose stable branches inter-
sects Bpz, 1q. Moreover, the intersection of one such stable branch with Bpz, 1q is
a closed set. So O´

Ş

Bpz, 1q is closed. Therefore, z belongs to O´, which implies
that O´ is closed.

It is clear that pO´qc has a connected component which is unbounded to the
right. More precisely, this component contains some translated domain Rp`q `
pM1, 0q, where M1 is a positive constant obtained from the constant M in (6.1) by
defining M1 “ M cos θ, where θ is the angle between the horizontal line and the
vector pα, βq.

Suppose by contradiction that pO´qc is not connected. Then there exists a con-
nected component B, which is contained in Lp`q ` pM1, 0q. Observe B is open and
its boundary BB is contained in O´, and recall that the unstable branch of every
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f -fixed point is dense in T2. It follows that, some unstable branch of some rf -fixed
point intersects B. Since the branch is unbounded to the right, it must intersect the
boundary of B, which is a contradiction, because stable and unstable branches do
not intersect. So, pO´qc is connected. The same holds true for pO`qc.

Now consider the one point compactification of the plane, identified with S2.
The two closed sets O´ and O` lift to yO´ and yO`, respectively, which are con-
nected closed subsets, because every stable and unstable branch lifts to some closed
set containing the point 8 P S2. Clearly, yO´

Ş

yO` “ t8u. By Lemma 2.1, the
complement of O´

Ť

O` is an open connected subset of R2. Note that, if a point
rz P pO´

Ť

O`qc, then rz` p0, kq P pO´
Ť

O`qc for any k P Z, because of the rela-
tions O´ “ O´ ` p0, 1q and O` “ pO`q ` p0, 1q.

So, we can choose an arc δ connecting rz and rz` p0, 1q such that

δ
č

pO´
ď

O`q “ H and(6.11)

δ
č

pδ` p0, 1qq contains exactly one point.(6.12)

Therefore, the union

(6.13) rγ :“
ď

iPZ

pδ` p0, iqq.

is a properly embedded real line, which satisfies all four properties. �

Lemma 6.8. Let rγ be obtained from Proposition 6.7. For any fixed point rq P Rprγq, there
exists a small closed neighbourhood rK containing rq, such that trf nprKquně0 Ă Rprγq. In
particular, the forward iterates of rK do not intersect rγ.

Proof. Fix some fundamental domain rλ of Wuprqq very close to rq, whose endpoints
are ry and rf pryq. As Wuprqq is unbounded to the right, there exists N ą 0 such that
distprf Nprλq, rγq ą 2M ` C

rf , where M is the constant obtained in (6.1), and C
rf is

given by:

(6.14) C
rf “ max

rzPR2
}rf przq ´ rz}.

FIGURE 6. The Neighbourhoods K and V
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Note that
Ť8

n“0
rf nprλq does not intersect rγ. We can choose a small open neigh-

bourhood V of rλ, such that
ŤN

n“0
rf npVq is sufficiently close to

ŤN
n“0

rf nprλq, so that
it does not intersect rγ. Observing Lemma 6.2, we can also ensure that rf npVq does
not intersect rγ, for all n ą N. Finally, choose a small neighbourhood K of rq, such
that, for every point in K, either it belongs to the stable branch of rq, or it has a for-
ward iterate belonging to V (See Figure 6 for the choices of these neighbourhoods).
In fact,

Ť8
n“0

rf npKq Ă K
Ť

p
Ť8

n“0
rf npVqq. Therefore, all non-negative iterates of K

can not leave Rprγq. �

Lemma 6.9. Let rγ be the curve obtained in Proposition 6.7. Then there exists a positive
integer N such that,

(6.15) rf Nprγq
č

rγ “ H.

Proof. Suppose by contradiction that there exists some sequence of points rzpnq P rγ

such that rf nprzpnqq P rγ. Noticing item (1) of Proposition 6.7, we can choose all
the rzpn1sq in a compact fundamental domain of rγ, denoted K. In particular, they
have an accumulation point rz˚. Up to extracting a subsequence, simply assume
rzpnq Ñ rz˚.

Moreover, from Theorem 2.6, there exists a constant M˚ ą 0 such that, for all
integers n ą 0, rf npKq X rγ is contained in the M˚-neighbourhood of K in rγ.

By Theorem 2.6 and Lemma 6.2, the forward orbit trf nprz˚quně0 is bounded in
three directions p´α,´βq, p´β, αq, pβ,´αq. Then, either trf nprz˚quně0 is unbounded
in the direction pα, βq, or it is bounded. We seek contradictions in both cases.

If trf nprz˚quně0 is bounded, then the omega limit set ωprz˚qmust be a single fixed
point, otherwise, by the arguments used in the proof of Lemma 6.5, one finds a
positive index fixed point, which does not exist by Proposition 6.1. So rz˚ belongs
to some stable branch Wsprqq, for some fixed point rq P Rprγq. By Lemma 6.8, there
exists a compact neighbourhood rK of rq, whose forward iterates do not intersect rγ.
And there exists a positive integer m0, such that

Ťm0
k“0

rf´kprKq contains some neigh-
bourhood N of rz˚. This is a contradiction, because for sufficiently large integers
m ą m0, rzpmq P N and rf mprzpmqq P rγ.

The other case is when the orbit of rz˚ is unbounded. Then, for sufficiently large
k0,

(6.16) inf
rwPK

prpα,βqp
rf k0prz˚q ´ rwq ą 10pM`M˚ ` 1q.

Then, when m ě k0 is sufficiently large,

(6.17) prpα,βq
`

rf k0przpmqq ´ rzpmq
˘

ą 10pM`M˚ ` 1q.

Noticing Lemma 6.2, this provides a contradiction, since

rf mprzpmqq P M˚-neighbourhood of K.

The proof is completed now. �

For the oriented curve rγ from Proposition 6.7 above, Rprγq denotes the un-
bounded connected component of prγqc in the direction of pα, βq. In Lemma 6.9,
we have obtained the integer N such that rf Nprγq Ă Rprγq.
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The following is a standard argument. Consider the finite union of curves,

(6.18) Q :“
N´1
ď

j“0

rf jprγq.

Clearly, the complement of Q has a component which is unbounded in the direc-
tion of pα, βq. If r` is the boundary of this component, then rf pr`q Xr` “ H. This r` is
clearly the lift of a vertical loop in the torus. And so the proof of Theorem 6.6 is
over. �

We close this section by restating and proving the remaining part of Theo-
rem 1.4.

Theorem 6.10 (Remains of Theorem 1.4). Let rf denote some lift of f P Kr, and ρprf q
is the line segment from p0, 0q to pα, βq. Let γ be any straight line passing through p0, 0q,
which does not contain ρprf q. Then there exists ε0 ą 0 such that for any rg P ČHomeo0pT

2q,
which is C0-ε0-close to rf , the rotation set ρprgq does not intersect the connected component
of γc which does not intersect ρprf q.

Proof. Choose two reduced integer vectors, pa, bq and pa1, b1q, with the following
properties.

(1) the two rays from p0, 0q in the directions pa, bq and pa1, b1q define a closed
cone C which contains the vector pα, βq in its interior.

(2) the interior of C is contained in one of the connected component of γc.

By Theorem 6.6, there are two rf -Brouwer lines r`1 and r`2, such that, r`1`pa, bq “ r`1,
and r`2 ` pa1, b1q “ r`2. Since both r`1 and r`2 are lifts of simple closed curves in
T2, there exists ε0, such that, for any rg P ČHomeo0pT

2q, with distC0prg, rf q ă ε0,
those two lines r`1 and r`2 are still Brouwer lines for rg. This implies that ρprgq Ă C.
In particular, ρprgqztp0, 0qu is contained in the connected component of γc which
contains ρprf qztp0, 0qu. �

7. UNBOUNDED DEVIATIONS

In this section, we show the following theorem.

Theorem 7.1. [Theorem 1.6 restated] Suppose rf is a lift of some f P Kr, and ρprf q is a
segment from p0, 0q to a totally irrational point pα, βq. Assume further that f preserves a
foliation on T2. Then rf has unbounded deviation along the direction pα, βq.

Proof. Let us assume by contradiction that there exists M ą 0, such that

(7.1) sup
rxPR2,ně1

prpα,βq
`

rf nprxq ´ rx´ npα, βq
˘

ď M.

Recalling Definition 7, Spα,βq is the closure of the union of the support of all the

f -invariant ergodic probability measures whose average rotation vector for rf is
pα, βq. Then, Lemma 4.3 shows that for any lift rx P R2 of some x P Spα,βq, and any
n ě 1,

(7.2) prpα,βq
`

rf nprxq ´ rx´ npα, βq
˘

ě ´M.
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Clearly, for any fixed point p, there exists a small disk B containing p, such that for
any point in B, its f -iterates will remain close to p for a long time, both in the future
and in the past. Expression (7.2) implies immediately that, when B is sufficiently
small, the whole orbit of an arbitrary point in Spα,βq does not intersect B.

Choose a fixed point p. Since f preserves the foliation F , then the leaf Fppq
containing p must be the union of Wsppq and Wuppq. Choose a local leaf L Ă

Fppq, which connects some point y P Wsppq and y1 P Wuppq. Let V be an open
neighbourhood of L such that for any local leaf in V, its forward and backward
iterates under f also intersect V. Choose two small arcs γ and γ1, both contained
in V, transverse to the local foliation restricted to V, such that the arc γ connects
y to a point x and γ1 connects y1 to a point x1. Moreover, f pγq and f´1pγ1q are
also both contained in V and x and x1 bound a local leaf θ`. It is also convenient
to choose θ` so that it belongs either to Wuppq or Wsppq. This is possible because
both branches are dense in T2, see Lemma 6.3. Denote the closed region bounded
by γ, θ`, γ1, L as K (See Figure 7). Note that K can be chosen arbitrarily close to L.

FIGURE 7. Local Foliation around p.

The claim is that, some local leaf in K, which is contained in Wsppq or Wuppq,
and different from L, must contain a fundamental domain of Wsppq or Wuppq, that
is, some sub-arc connecting a point and its image. Suppose by contradiction that
this is not true.

Then one of the following cases must happen (see Figure 7).

(1) f pθ`q intersects θ`.
(2) f pθ`q is above θ`.
(3) f pθ`q is below θ`.

If case (1) happens, since θ` belongs to Wsppq or Wuppq, then it contains a fun-
damental domain of Wsppq or Wuppq and we are done.

Up to considering the backward dynamics and exchanging the roles of stable
and unstable branch, we can simply assume f pθ`q is below θ`. Then, f pγq is
contained in K, provided the region is chosen sufficiently close to L.

Since Wsppq is dense, we can follow it until the first time it enters the region K.
Denote by z P Wsppq the first entering point pz P γ1q. The local leaf containing z,
denoted T, intersects γ at a point q. If f´1pzq P T, then we find the fundamental
domain in T. If f´1pzq R T, then f pqq P K, and this contradicts the fact that z is the
first returning point to K along Wsppq.
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So, there is a fundamental domain of Wsppq contained in some local leaf in K,
other than L. Now we pick a lift rp of p, and consider the lifted leaf rFprpq containing
Wsprpq and Wuprpq. By previous paragraphs, there is some integer pa, bq such that,
the curves rFprpq and rFprpq ` pa, bq bound an infinite strip rH, whose union with
these two curves covers T2. Moreover, we can find a small fundamental domain
for rf restricted to rH, namely rK1 Ă rK, such that for any point rz P rH whose orbit is
positively and negatively unbounded, its orbit must intersect rK1 (See Figure 8).

FIGURE 8. A Fundamental Domain that All Unbounded Trajecto-
ries cross.

On the other hand, we can choose K Ă B, where the disk B was obtained at the
beginning of the proof. Therefore, K1 “ πprK1q Ă K Ă B intersects the orbit of any
chosen point in Spα,βq (one whose orbit is unbounded both in the future and past).
And this is a contradiction with the fact that Spα,βq avoids B. �
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