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Abstract
We prove that for a large and important class of C1 twist maps of the torus
periodic and quasi-periodic orbits of a new type exist, provided that there are
no rotational invariant circles (RICs). These orbits have a non-zero ‘vertical
rotation number’ (VRN), in contrast to what happens to Birkhoff periodic
orbits and Aubry–Mather sets. The VRN is rational for a periodic orbit and
irrational for a quasi-periodic. We also prove that the existence of an orbit
with a VRN = a > 0, implies the existence of orbits with VRN = b, for all
0 < b < a. In this way, related to a generalized definition of rotation number,
we characterize all kinds of periodic and quasi-periodic orbits a twist map of
the torus can have. As a consequence of the previous results we obtain that a
twist map of the torus with no RICs has positive topological entropy, which is
a very classical result. At the end of the paper we present some examples, like
the standard map, such that our results apply.

Mathematics Subject Classification: 37E40, 37E45

1. Introduction and statements of the principal results

Twist maps are C1 diffeomorphisms of the cylinder (or annulus, torus) onto itself that have
the following property: the angular component of the image of a point increases as the radial
component of the point increases (more precise definitions will be given below). Such maps
were first studied in connection with the three-body problem by Poincaré and later it was
found that first return maps for many problems in Hamiltonian dynamics are actually twist
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by FAPESP, grant number: 96/08981-3).
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maps. Although they have been extensively studied, there are still many open questions
about their dynamics. Great progress has been achieved in the nearly integrable case, by
means of KAM theory (see [23]), and many important results have been proved in the general
case, concerning the existence of periodic and quasi-periodic orbits (Aubry–Mather sets) (see
[19, 4, 14]). In this work a result is proved associating the non-existence of rotational invariant
circles (RICs) with the appearance of periodic and quasi-periodic orbits of a new type for an
important class of twist maps of the torus.

Notation and definitions

(a) Let (φ, I ) denote the coordinates for the cylinder S1 ×R = (R/Z)×R, where φ is defined
modulo 1. Let (φ̃, Ĩ ) denote the coordinates for the universal cover of the cylinder, R2.

For all maps f̂ : S1 × R → S1 × R we define

(φ′, I ′) = f̂ (φ, I ) and (φ̃′, Ĩ ′) = f (φ̃, Ĩ ),

where f : R2 → R2 is a lift of f̂ .

(b) D1
r (R

2) = {f : R2 → R2/f is a C1 diffeomorphism of the plane, Ĩ ′(φ̃, Ĩ )
Ĩ→±∞→ ±∞,

∂Ĩ φ̃
′ > 0 (twist to the right), φ̃′(φ̃, Ĩ )

Ĩ→±∞→ ±∞ and f is the lift of a C1 diffeomorphism
f̂ : S1 × R → S1 × R}.

(c) Diff1
r (S

1 × R) = {f̂ : S1 × R → S1 × R/f̂ is induced by an element of D1
r (R

2)}.
(d) Let p1 : R2 → R and p2 : R2 → R be the standard projections, respectively, in the φ̃ and

Ĩ coordinates (p1(φ̃, Ĩ ) = φ̃ and p2(φ̃, Ĩ ) = Ĩ ). We also use p1 and p2 for the standard
projections of the cylinder.

(e) Given a measure µ on the cylinder that is positive on open sets, absolutely continuous
with respect to the Lebesgue measure and a map T̂ ∈ Diff1

r (S
1 × R), we say that T̂ is

µ-exact if µ is invariant under T̂ and for any open set A homeomorphic to the cylinder
we have

µ(T̂ (A)\A) = µ(A\T̂ (A)). (1)

For an area-preserving map T̂ ∈ Diff1
r (S

1 × R), there is a simple criterion to know if it
is exact or not. T̂ is exact if and only if its generating function h(φ̃, φ̃′), defined on R2,

satisfies h(φ̃ + 1, φ̃′ + 1) = h(φ̃, φ̃′) (see [20]).
(f) Let T Q ⊂ D1

r (R
2) be such that for all T ∈ T Q we have

T :

{
φ̃′ = Tφ(φ̃, Ĩ ),

Ĩ ′ = TI (φ̃, Ĩ ),
with ∂Ĩ φ̃

′ = ∂Ĩ Tφ(φ̃, Ĩ ) > 0,

TI (φ̃ + 1, Ĩ ) = TI (φ̃, Ĩ ),

TI (φ̃, Ĩ + 1) = TI (φ̃, Ĩ ) + 1,

Tφ(φ̃ + 1, Ĩ ) = Tφ(φ̃, Ĩ ) + 1,

Tφ(φ̃, Ĩ + 1) = Tφ(φ̃, Ĩ ) + 1.

(2)

Every T ∈ T Q induces a map T̂ ∈ Diff1
r (S

1 × R) and a map T̄ : T 2 → T 2, where
T 2 = R2/Z2 is the 2-torus. Let p : R2 → T 2 be the associated covering map.

(g) Given T ∈ T Q, we say that β ∈ ]0, π/2[ is a uniform angle of deviation for T if

DT |x
(

0
1

)
∈ CI(β) and DT −1|z

(
0
1

)
∈ CII(β),

for all x, z ∈ R2, where CI(β) and CII(β) are the angular sectors:

CI(β) = {(φ, I ) ∈ R2: φ > 0 and − cotan(β)φ � I � cotan(β)φ},
CII(β) = {(φ, I ) ∈ R2: φ < 0 and cotan(β)φ � I � −cotan(β)φ}.
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(h) Let π : R2 → S1 × R be the following covering map:

π(φ̃, Ĩ ) = (φ̃(mod 1), Ĩ ). (3)

(i) For maps of the torus we can generalize the notion of rotation number, originally defined
for circle homeomorphisms, as follows.

Given a map f̄ : T 2 → T 2 and x ∈ T 2, let f : R2 → R2 be a lift of f̄ and
x̃ ∈ p−1(x). The rotation vector ρ(x, f ) is defined as (let R̄ = R ∪ {−∞} ∪ {+∞})

ρ(x, f ) = lim
n→∞

f n(x̃) − x̃

n
∈ R̄2, if the limit exists. (4)

Of course, for a map f̄ : T 2 → T 2 that is not homotopic to the identity, the above limit
may depend on the choice of x̃ ∈ p−1(x). So, for all T ∈ T Q we have to modify a little the
above definition for rotation vector. The following lemma shows what type of changes must
be done.

Lemma 1. Given T ∈ T Q and z̃ ∈ R2 such that ρ(z̃, T ) = limn→∞ (T n(z̃) − z̃)/n exists, we
have two possibilities:

(a) ρ(z̃, T ) = (ω, 0), with ω ∈ R,

(b) ρ(z̃, T ) = (+∞, ω) or (−∞, ω), with ω ∈ R.

Given i, j ∈ Z, we have

• ρ(z̃, T ) = (ω, 0) ⇒ ρ(z̃ + (i, j), T ) = (ω + j, 0),

• ρ(z̃, T ) = (±∞, ω) ⇒ ρ(z̃ + (i, j), T ) = (±∞, ω).

So, for all x̃ ∈ R2 such that ρ(x̃, T ) exists, there are two different cases.

• Case 1. p1◦ρ(x̃, T ) ∈ R. In this case we shall define the rotation vector of x = p(x̃) ∈ T 2

as follows:

ρ(x, T ) =
(

lim
n→∞

p1 ◦ T n(x̃) − p1(x̃)

n
(mod 1), 0

)
. (5)

• Case 2. |p1 ◦ ρ(x̃, T )| = ∞. In this case ρ(x, T ) is defined as in (4):

ρ(x, T ) = lim
n→∞

T n(x̃) − x̃

n
, where x = p(x̃). (6)

We just remark that even in this case p2 ◦ ρ(x, T ) may be zero.
When f : R2 → R2 induces a map f̄ : T 2 → T 2 homotopic to the identity map (in this

case the rotation vector is given by expression (4)), in many situations (see [10, 18, 21]), we can
guarantee the existence of a convex open set B ⊂ R2, such that for all v ∈ B, ∃x ∈ T 2 such that
ρ(x, f ) = v and if v = (r/q, s/q), then x ∈ T 2 can be chosen such that f q(x) = x + (r, s).

A major difference in the situation studied here is that given T ∈ T Q, as we have already said,
the diffeomorphism T̄ : T 2 → T 2 induced by T is not homotopic to the identity. In fact, it is
homotopic to the following linear map (where φ and I are taken mod 1):(

φ′

I ′

)
=

(
1 1
0 1

) (
φ

I

)
. (7)

Before presenting the first theorem we still need more definitions.

Definitions. Given T ∈ T Q, let T̄ : T 2 → T 2 be the torus diffeomorphism induced by T .

• We say that x ∈ T 2 belongs to a n-periodic orbit (or set), if for some n ∈ N∗ we have
T̄ n(x) = x and for all m ∈ N∗, 0 < m < n, T̄ m(x) �= x. So the periodic orbit to
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which x belongs is Ox = {x, T̄ (x), . . . , T̄ n−1(x)}. In this case we have the following
implications (now we consider the standard projections pi : R̄2 →R̄, i = 1, 2):

p2 ◦ ρ(x, T ) = 0 ⇒ p1 ◦ ρ(x, T ) is a rational number,
p1 ◦ ρ(x, T ) = ±∞ ⇒ p2 ◦ ρ(x, T ) is a non-zero rational number.

• We say that Q ⊂ T 2 is a quasi-periodic set for T̄ in the following cases:

∗ Q is the projection of an Aubry–Mather set Q̂ ⊂ S1 × R. In this case p1 ◦ ρ(z, T ) ∈
[0, 1[ is an irrational number which does not depend on the choice of z ∈ Q.

∗ Q is a compact T̄ -invariant set such that p2 ◦ ρ(z, T ) is an irrational number which
does not depend on the choice of z ∈ Q.

As before, let T ∈ T Q and T̄ : T 2 → T 2 be the diffeomorphism induced by T . So as a
simple consequence of lemma 1, we have the following classification theorem.

Theorem 1. Let x ∈ T 2 belong to a periodic or a quasi-periodic set. Then there are two
different situations:

(1) ∃C > 0 such that |p2 ◦T n(x̃)−p2(x̃)| < C, for all n > 0 and x̃ ∈ p−1(x) ⇒ ρ(x, T ) =
(ω, 0) for some ω ∈ [0, 1[

(2) p2 ◦ T n(x̃)
n→∞→ ±∞, for all x̃ ∈ p−1(x) ⇒ ρ(x, T ) = (±∞, ω) for some ω ∈ R∗.

Remarks.

• If we call T̂ : S1 × R → S1 × R the map of the cylinder induced by T , it is easy to
see that case 1 above corresponds to periodic and quasi-periodic orbits for T̂ . These are
the standard periodic and quasi-periodic orbits, whose existence is assured by theorem 2
(see [19, 4, 14, 16, 17]).

• Case 2 corresponds to orbits for T̂ that either go up or down on the cylinder, depending
on the sign of ω ∈ R∗. If ω > 0 (<0), then ρ(x, T ) = (+∞(−∞), ω).

• As we said, there may be a point x ∈ T 2 such that ρ(x, T ) = (±∞, 0). It is clear that x is
not periodic because its T̄ -orbit cannot be finite and x does not belong to a quasi-periodic
set, because any component of ρ(x, T ) is irrational.

A periodic or quasi-periodic orbit O for T̄ that belongs to case 2 in theorem 1 can (as the
orbits belonging to case 1) be characterized by a single number, the ‘vertical rotation number’
(VRN), which is defined in the following way:

ρV (O) = p2 ◦ ρ(x, T ) = lim
n→∞

p2 ◦ T n(x) − p2(x)

n
, for any x ∈ O. (8)

As we want to characterize all kinds of periodic and quasi-periodic orbits a twist map can
have, we recall a well-known result.

Theorem 2. Given a map T ∈ T Q such that T̂ : S1 × R → S1 × R is µ-exact for some
measure µ we have: for every ω ∈ R there is a T̂ -periodic or quasi-periodic orbit O ⊂ S1 ×R,

respectively, for rational and irrational values of ω, such that ρ(O) = ω.

See [19, 4, 14, 16, 17] for different proofs. We have the following corollary.

Corollary 1. Given a map T ∈ T Q such that T̂ is µ-exact for some measure µ we have:
for every ω ∈ [0, 1[ there is a T̄ -periodic or quasi-periodic orbit O ⊂ T 2, respectively, for
rational and irrational values of ω, such that ρ(x, T ) = (ω, 0), for all x ∈ O.
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So the first type of orbit that appears in theorem 1 always exists. Before presenting the
next results we need another definition.

Definition. Given a map T ∈ T Q such that T̂ is µ-exact, we say that C is a RIC for T if C is
a homotopically non-trivial simple closed curve on the cylinder and T̂ (C) = C.

By a theorem essentially due to Birkhoff, C is the graph of some Lipschitz function
ψ : S1 → R (see [15, p 430]).

The following theorems are the main results of this paper.

Theorem 3. Let T ∈ T Q be such that T̂ is µ-exact. Then given k ∈ Z∗, ∃N > 0, such that
T̄ has a periodic orbit with ρV (VRN) = k/N, if and only if, T does not have RICs.

The next theorem shows how these periodic orbits appear.

Theorem 4. Again, for all T ∈ T Q such that T̂ is µ-exact, if T̄ has a periodic orbit with
ρV = k/N, then for every pair (k′, N ′) ∈ Z∗ × N∗, such that 0 < |k′/N ′| < |k/N | and
kk′ > 0; T̄ has at least two periodic orbits with VRN ρ ′

V = k′/N ′.

About the quasi-periodic orbits we have the following theorem.

Theorem 5. For all T ∈ T Q such that T̂ is µ-exact we have: if T̄ has an orbit with ρV = ω,

then for all ω′ ∈ R\Q such that 0 < |ω′| < |ω| and ωω′ > 0, T̄ has a quasi-periodic set with
VRN ρ ′

V = ω′.

As a consequence of the proof of theorem 5, we prove the following classical result.

Theorem 6. Every T ∈ T Q without RICs such that T̂ is µ-exact induces a map T̄ : T 2 → T 2

such that h(T̄ ) > 0, where h(T̄ ) is the topological entropy of T̄ .

Theorem 1 is an immediate consequence of lemma 1, which is proved using simple ideas
and the structure of the set T Q. Theorems 3–5 are proved using topological ideas, essentially
due to the twist condition and some results due to Le Calvez (see [16, 17] and the next section).
In the proofs of theorems 5 and 6 we also use some results from the Nielsen–Thurston theory
of classification of homeomorphisms of surfaces up to isotopy, to isotope the map to a pseudo-
Anosov one, and then some results due to M Handel, to prove the existence of quasi-periodic
orbits with irrational VRN.

2. Basic tools

First we recall some topological results for twist maps essentially due to Le Calvez (see
[16, 17]). Let f̂ ∈ Diff1

r (S
1 × IR) and f ∈ D1

r (R
2) be its lifting. For every pair (p, q), p ∈ Z

and q ∈ N∗, we define the following sets:

K̃(p, q) = {(φ̃, Ĩ ) ∈ R2: p1 ◦ f q(φ̃, Ĩ ) = φ̃ + p}, K(p, q) = π ◦ K̃(p, q). (9)

Then we have the following lemmas.

Lemma 2. For every p ∈ Z and q ∈ N∗, K(p, q) ⊃ C(p, q), a connected compact set that
separates the cylinder.

Lemma 3. Let f̂ ∈ Diff1
r (S

1 × R) be a µ-exact map. Then the following intersection holds:
f̂ (C(p, q)) ∩ C(p, q) �= ∅.
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Now we need a few definitions.
For every q � 1 and φ̄ ∈ R, let

µq(t) = f q(φ̄, t), for t ∈ R. (10)

We say that the first encounter between µq and the vertical line through some φ0 ∈ R

is for

tF ∈ R such that tF = min{t ∈ R: p1 ◦ µq(t) = φ0},
and the last encounter is defined in the same way:

tL ∈ R such that tL = max{t ∈ R: p1 ◦ µq(t) = φ0}.
Of course we have tF � tL.

Lemma 4. For all φ0, φ̄ ∈ R, let µq(t) = f q(φ̄, t), as in (10). So we have the following
inequalities: p2 ◦µq(tL) � p2 ◦µq(t̄) � p2 ◦µq(tF ), for all t̄ ∈ R such that p1 ◦µq(t̄) = φ0.

For all s ∈ Z and N ∈ N∗, we can define the following functions on S1:

µ−(φ) = min{p2(Q): Q ∈ K(s, N) and p1(Q) = φ},
µ+(φ) = max{p2(Q): Q ∈ K(s, N) and p1(Q) = φ}.

And we can define similar functions for f̂ N (K(s, N)):

ν−(φ) = min{p2(Q): Q ∈ f̂ N ◦ K(s, N) and p1(Q) = φ},
ν+(φ) = max{p2(Q): Q ∈ f̂ N ◦ K(s, N) and p1(Q) = φ}.

Lemma 5. Defining Graph{µ±} = {(φ, µ±(φ)): φ ∈ S1}, we have

Graph{µ−} ∪ Graph{µ+} ⊂ C(s, N).

So for all φ ∈ S1, we have (φ, µ±(φ)) ∈ C(s, N).

And we have the following simple corollary to lemma 4.

Corollary 2. f̂ N (φ, µ−(φ)) = (φ, ν+(φ)) and f̂ N (φ, µ+(φ)) = (φ, ν−(φ)).

Now we are going to present a lemma due to Casdagli (see [6]) that together with lemma 3
guarantees the existence of periodic orbits with all rational rotation numbers, for all µ-exact
f̂ ∈ Diff1

r (S
1 × R).

Lemma 6. If z ∈ C(s, N) ∩ f̂ (C(s, N)) ⇒ z is (s, N) periodic for f̂ .

We say that z is (s, N) periodic for f̂ if

f̂ N (z) = z and
p1 ◦ f N(z̃) − p1(z̃)

N
= s

N
,

where f : R2 → R2 is a lift of f̂ and z̃ ∈ π−1(z).

For proofs of all the previous results, see Le Calvez [16, 17]. The following is another
classical result (due to Birkhoff) with some small changes.

Theorem 7. Given T ∈ T Q without RICs such that T̂ is µ-exact, we have for all s, l ∈ Z,

s > 0 and l < 0, ∃P, Q ∈ S1 × [0, 1] and numbers 1 < nP , nQ ∈ N such that

p2 ◦ T̂ nP (P ) > s, p2 ◦ T̂ nQ(Q) < l.

For a proof, see [15].
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As we have already said, in the proof of theorems 5 and 6 we use some results from the
Nielsen–Thurston theory of classification of homeomorphisms of surfaces up to isotopy and
some results due to Handel.

The following is a brief summary of these results, taken from [18]. For more information
and proofs, see [25, 9, 13].

Let M be a compact, connected oriented surface possibly with boundary, and f :
M → M be a homeomorphism. Two homeomorphisms are said to be isotopic if they are
homotopic via homeomorphisms. In fact, for closed orientable surfaces, all homotopic pairs
of homeomorphisms are isotopic [7].

There are two basic types of homeomorphisms which appear in the Nielsen–Thurston
classification: the finite order homeomorphisms and the pseudo-Anosov ones.

A homeomorphism f is said to be of finite order if f n = id for some n ∈ N. The least
such n is called the order of f. Finite order homeomorphisms have topological entropy zero.

A homeomorphism f is said to be pseudo-Anosov if there is a real number λ > 1
and a pair of transverse measured foliations FS and FU such that f (F S) = λ−1FS and
f (FU) = λFU . Pseudo-Anosov homeomorphisms are topologically transitive, have positive
topological entropy and have Markov partitions [9].

A homeomorphism f is said to be reducible by a system

C =
n⋃

i=1

Ci

of disjoint simple closed curves C1, . . . , Cn (called reducing curves) if

(a) ∀i, Ci is neither homotopic to a point, nor to a component of ∂M,

(b) ∀i �= j, Ci is not homotopic to Cj ,

(c) C is invariant under f.

Theorem 8. If the Euler characteristic χ(M) < 0, then every homeomorphism f : M → M

is isotopic to a homeomorphism F : M → M such that either

(a) F is of finite order,
(b) F is pseudo-Anosov, or
(c) F is reducible by a system of curves C.

Homeomorphisms F as in theorem 8 are called Thurston canonical forms for f.

Theorem 9. If f is pseudo-Anosov and g is isotopic to f, then h(g) � h(f ).

Some results due to Handel can be trivially adapted to the situation studied here. To be
more precise, we can change in [12, propositions 1.1 and 1.2], annulus homeomorphisms by
torus homeomorphisms homotopic to the map LM : T 2 → T 2, which is the torus map induced
by the following linear map of the plane:(

φ̃′

Ĩ ′

)
=

(
1 1
0 1

) (
φ̃

Ĩ

)
. (11)

In our case we also have to present appropriate definitions for rotation number and
rotation set.

Given a homeomorphism f̄ : T 2 → T 2 that is homotopic to LM and a lift of f̄ to the
cylinder, f̂ : S1 × R → S1 × R, we define the vertical rotation set as

ρV (f̂ ) = ∪ρV (f̂ , z),
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where the union is taken over all z ∈ T 2 such that the VRN (ẑ ∈ S1 × R is any lift of z ∈ T 2),

ρV (f̂ , z) = lim
n→∞

p2 ◦ f̂ n(ẑ) − p2(ẑ)

n
,

exists.
We say that f̄ : T 2 → T 2 is pseudo-Anosov relative to a finite invariant set Q ⊂ T 2 if it

satisfies all of the properties of a pseudo-Anosov homeomorphism except that the associated
stable and unstable foliations may have one-prolonged singularities at points in Q. As a last
definition, for every set A ⊂ T 2 let Â ⊂ S1 × R be the full (cylinder) pre-image of A. Now
we are ready to state the modified versions of [12, propositions 1.1 and 1.2].

Proposition 1 (modified 1.1). If f̄ : T 2 → T 2 homotopic to LM, is pseudo-Anosov relative
to some finite invariant set Q, then ρV (f̂ ) is a closed interval. For each ω ∈ ρV (f̂ ), there
is a compact invariant set Eω ⊂ T 2 such that ρV (f̂ , z) = ω for all z ∈ Eω. Moreover, if
ω ∈ int(ρV (f̂ )), then we may choose Eω ⊂ T 2\Q.

Proof. As in [12]. �

Proposition 2 (modified 1.2). Suppose that f̄ : T 2 → T 2 is pseudo-Anosov relative to a finite
invariant set Q and that T̄ : T 2 → T 2 (induced by some element of T Q) is homotopic to f̄

relative to Q. If f̂ : S1 ×R → S1 ×R and T̂ : S1 ×R → S1 ×R are lifts that are equivariantly
homotopic relative to Q̂, then ρV (T̂ ) ⊃ int(ρV (f̂ )). Moreover, for each ω ∈ int(ρV (f̂ )), there
is a compact T̄ -invariant set Eω ⊂ T 2 such that ρV (T̂ , z) = ω for all z ∈ Eω.

Proof. Also as in [12]. �

3. Proofs

From now, for simplicity, we will omit the ‘tilde’ in the coordinates (φ̃, Ĩ ) of the plane. First
of all we prove lemma 1. This lemma is a trivial consequence of the following result.

Lemma 7. Let T ∈ T Q and z, w+, w− ∈ R2 be points such that

(a) |p2 ◦ T n(z)| < C, for all n � 0 and some constant C > 0,
(b) p2 ◦ T n(w±)

n→∞→ ±∞.

So we have

(a) ∃K > 0, such that for all n > 0, |(p1 ◦ T n(z) − p1(z))/n| < K ,
(b) (p1 ◦ T n(w±) − p1(w±))/n

n→∞→ ±∞.

Proof. As the proofs for w+ and w− are equal, we only analyse w+, which will be called just w.
For all n > 0 we define z = (φ0

z , I
0
z ), φn

z = p1 ◦ T n(z), I n
z = p2 ◦ T n(z) and w = (φ0

w, I 0
w),

φn
w = p1 ◦ T n(w), I n

w = p2 ◦ T n(w). From the initial hypothesis, |I j
z | < C for all j > 0,

so defining the following φ-periodic function T̃φ(φ, I ) = Tφ(φ, I ) − φ, there is a constant
K > 0 such that∣∣∣∣p1 ◦ T n(z) − p1(z)

n

∣∣∣∣ �
∑n−1

j=0 |T̃φ(φ
j
z , I

j
z )|

n
<

nK

n
= K.

Now we write I n
w = I n

w0 + kn, with I n
w0 ∈ [0, 1) and kn ∈ Z. Of course, the hypothesis in

the lemma implies that kn
n→∞→ ∞, because p2 ◦ T n(w)

n→∞→ ∞. As above ∃K̄ > 0 such that
for all j > 0, ∣∣∣T̃φ

(
φj

w, I
j

w0

)∣∣∣ � max
(φ,I )∈[0,1]2

|T̃φ(φ, I )| < K̄.
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So for all n > 0,

p1 ◦ T n(w) − p1(w)

n
=

∑n−1
j=0 T̃φ(φ

j
w, I

j

w0) +
∑n−1

j=0 kj

n
> −K̄ +

∑n−1
j=0 kj

n
.

In order to finish the proof that

lim
n→∞

p1 ◦ T n(w) − p1(w)

n
= ∞,

we remember the Cesaro theorem, which says that

lim
j→∞

kj = ∞ ⇒ lim
n→∞

∑n−1
j=0 kj

n
= ∞. �

The following is a very important lemma.

Lemma 8. Given T ∈ T Q such that T̂ is µ-exact and T does not have RICs, we have for all
k ∈ N∗, ∃N > 0 and P̃ = (φP̃ , IP̃ ) ∈ [0, 1]2, such that T N(P̃ ) = T N(φP̃ , IP̃ ) = (φP̃ + s, IN

P̃
)

for some s ∈ Z, with IN

P̃
> IP̃ + k.

Proof. The proof will be done by contradiction. Suppose there exists k0 � 1, such that
∀N > 0, there is no P̃ ∈ [0, 1]2 such that T N(P̃ ) = T N(φP̃ , IP̃ ) = (φP̃ + s, IN

P̃
) for some

s ∈ Z, with IN

P̃
> 1 + k0 � IP̃ + k0.

First let us note that given a map T ∈ T Q, ∃a > 0, such that ∀Q ∈ R2,

p2 ◦ (T (Q) − Q) > −a. In fact, from the definition of the set T Q, we just have to take
a > −infQ∈[0,1]2p2 ◦ (T (Q) − Q), because as [0, 1]2 is compact, a < ∞.

All T ∈ T Q can be written in the following way:

T :

{
φ′ = Tφ(φ, I ),

I ′ = TI (φ, I ),

and for all (φ, I ) ∈ R2, we have the following estimates:

∃b > 0, such that

∣∣∣∣∂Tφ

∂φ

∣∣∣∣ < b, (12)

∃K > 0, such that
∂Tφ

∂I
� K (twist condition). (13)

As T does not have RICs, theorem 7 implies that

∃P = (φP , IP ) ∈ [0, 1]2 and N1 > 1 such that p2 ◦ T N1(P ) >

[
(k0 + 2) +

(2 + b)

K

]
+ a.

A very natural thing is to look for a point P̃ as described above, in the line segment
r = {(φ, I ) ∈ [0, 1]2: φ = φP }.

First, let us define

Max HL(T n(r)) = sup
x,y∈[0,1]

|p1 ◦ T n(φP , x) − p1 ◦ T n(φP , y)|. (14)

It is clear that

Max HL(T n(r)) � |p1 ◦ T n(φP , 0) − p1 ◦ T n(φP , 1)| = n
n→∞→ ∞. (15)

So, for all n > 1, ∃ at least one s ∈ Z, such that φP + s ∈ p1(T
n(r)).
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The hypothesis we want to contradict implies that for all n > 0 and Q ∈ r, such that

p1 ◦ T n(Q) = φP (mod 1), (16)

we have

p2 ◦ T n(Q) � (k0 + 1). (17)

As p2 ◦ T N1(P ) > [(k0 + 2) + (2 + b)/K] + a, ∃P1 ∈ r such that

p2 ◦ T N1(P1) = (k0 + 2) + a

and

∀Q ∈ PP 1 ⊂ r,

p2 ◦ T N1(Q) � (k0 + 2) + a.

The reason why such a point P1 exists is the following: as N1 > 1, ∃ at least one s ∈ Z such
that φP + s ∈ p1(T

N1(r)). Thus, from (16) and (17), T N1(r) must cross the line l given by
l = {(φ, (k0 + 2) + a), with φ ∈ R}.

Also from (16) and (17) we have

sup
Q,R∈PP1

|p1 ◦ T N1(R) − p1 ◦ T N1(Q)| < 1.

Now let γN1 : J → R2 be the following curve:

γN1(t) = T N1(φP , t), t ∈ J = interval whose extremes are IP and IP1 . (18)

It is clear that it satisfies the following inequalities:

p2 ◦ γN1(IP ) − p2 ◦ γN1(IP1) >
2 + b

K
,

sup
t,s∈J

|p1 ◦ γN1(t) − p1 ◦ γN1(s)| < 1.

Claim 1. Given a continuous curve γ : J = [α, β] → R2, with

sup
t,s∈J

|p1 ◦ γ (t) − p1 ◦ γ (s)| < 1, (19)

|p2 ◦ γ (β) − p2 ◦ γ (α)| >
(2 + b)

K
. (20)

Then ∃s ∈ Z, such that φP + s ∈ p1 (T ◦ γ (J )) .

Proof.

sup
t,s∈J

|p1 ◦ T ◦ γ (t) − p1 ◦ T ◦ γ (s)| = sup
t,s∈J

|Tφ ◦ γ (t) − Tφ ◦ γ (s)|

� |Tφ ◦ γ (β) − Tφ ◦ γ (α)| � −b + K
2 + b

K
= 2

So the claim is proved. �

γN1(t) (see (18)) satisfies the claim hypothesis, by construction. So ∃s ∈ Z such that
φP + s ∈ p1(T ◦ γN1(J )) = p1(T

N1+1(PP 1)).
As inf t∈J p2(γN1(t)) = p2(γN1(IP1)) = (k0 + 2) + a, from the choice of a > 0 we get that

inf t∈J p2(T ◦ γN1(t)) > (k0 + 2).
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So there is t̄ ∈ J and P̄ = (φP , t̄) ∈ r such that

p1 ◦ T N1+1(P̄ ) = φP (mod 1),

p2 ◦ T N1+1(P̄ ) > (k0 + 2).

This contradicts (16) and (17). So for all k � 1, ∃N > 0 and P̃ ∈ r, such that
T N(P̃ ) = T N(φP , IP̃ ) = (φP + s, IN

P̃
) for some s ∈ Z, with IN

P̃
> IP̃ + k. �

Remark. Of course for all k � −1, k ∈ Z, there are also N > 0 and Q̃ = (φQ̃, IQ̃) ∈ [0, 1]2,

such that T N(Q̃) = T N(φQ̃, IQ̃) = (φQ̃ + s, IN

Q̃
) for some s ∈ Z, with IN

Q̃
< IQ̃ + (k − 1).

The proof in this case is completely similar to that above, because as T does not have RICs,
again by theorem 7 for all l < 0 there exist Q = (φQ, IQ) ∈ [0, 1]2 and nQ > 1 such that
p2 ◦ T nQ(Q) < l.

Below we prove the main results of this paper.

Proof of theorem 3. As the two cases, k > 0 and k < 0, are completely similar, let us fix
k > 0.

(⇒)

If T̄ has a periodic point P, with ρV (P ) = k/N, for some k > 0 and N > 0, then

p2 ◦ T̂ n(P )
n→±∞→ ±∞, which implies that there can be no RIC.

(⇐)

To prove the existence of a periodic orbit with ρV = k/N, for a given k > 0 and some
N > 0 sufficiently large, it is enough to show that there exists a point P ∈ S1 × R such that

T̂ N (P ) = P + (0, k). (21)

As T ∈ T Q, for each (s, l) ∈ Z2 and N > 0 the sets C(s, N), defined in lemma 2, satisfy
C(s + lN, N) = C(s, N) + (0, l). So, for each fixed N > 0, there are only N distinct sets of
this type: C(0, N), C(1, N), . . . , C(N − 1, N).

The others are just integer vertical translations of them. Another trivial remark about the
sets C(s, N) is: C(s, N) ∩ C(r, N) = ∅, if s �= r . For all s ∈ Z, we get from lemma 3 that
T̂ (C(s, N)) ∩ C(s, N) �= ∅. So we can apply lemma 6 and conclude that ∃P̄s ∈ C(s, N) such
that T̂ N (P̄s) = P̄s .

From lemma 8, for the given k > 0, ∃N > 0 and P̃ = (φP̃ , IP̃ ) ∈ S1 × R, such that
T̂ N (P̃ ) = T̂ N (φP̃ , IP̃ ) = (φP̃ , IN

P̃
), with IN

P̃
> IP̃ + k. So P̃ ∈ K(s̃, N) (see expression (9)),

for a certain s̃ ∈ Z and p2 ◦ T̂ N (P̃ ) − p2(P̃ ) > k. As P̃ ∈ K(s̃, N), we get that
µ−(φP̃ ) � p2(P̃ ) and ν+(φP̃ ) � p2 ◦ T̂ N (P̃ ), which implies that ν+(φP̃ ) − µ−(φP̃ ) �
p2 ◦ T̂ N (P̃ ) − p2(P̃ ) > k.

From corollary 2 we get that T̂ N (φP̃ , µ−(φP̃ )) = (φP̃ , ν+(φP̃ )), so defining ˜̃
P =

(φP̃ , µ−(φP̃ )) ∈ C(s̃, N) (see lemma 5) we have p2 ◦ T̂ N (
˜̃
P) − p2(

˜̃
P) > k. As we proved

above, ∃P̄s̃ ∈ C(s̃, N) such that p2 ◦ T̂ N (P̄s̃) − p2(P̄s̃ ) = 0. So as C(s̃, N) is connected,
∃P ∈ C(s̃, N) such that

p2 ◦ T̂ N (P ) = p2(P ) + k.

And the theorem is proved.
Now we present an alternative proof, suggested by a referee, which is much shorter. We

decided to mantain the original proof because it is based on lemma 8, which will be used in
future works, so we wanted to keep it in this paper.
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For a given k > 0, we are going to prove the existence of a point P ∈ C(0, N̄) such that
T̂ N̄ (P ) = P + (0, k), for a sufficiently large N̄ . As T̂ is µ-exact, we get that there is a point
P0 = (φ0, I0) ∈ C(0, 1) such that T̂ (P0) = P0. For any given N > 0, let µ−, µ+, ν−, ν+ be
the maps associated with C(0, N). From the choice of P0 we get µ−(φ0) � I0 � ν+(φ0). In the
proof of lemma 4 (see [16]), the following property for the lift of the map µ− to R is obtained
(we are denoting the lift also by µ−): for any n ∈ {1, 2, . . . , N}, the point T n(φ, µ−(φ)) is the
first point where the image of φ × R by T n meets the vertical passing through T n(φ, µ−(φ)),

and for the same reasons, we get p1 ◦ T n(φ′, µ−(φ′)) < p1 ◦ T n(φ, µ−(φ)) if φ′ < φ. So
the image by T n of the graph of µ− is also a graph and the order given by p1 is preserved.
Moreover, as T is a twist map, we can prove that (see [15, lemma 13.1.1, p 424]) if φ > φ′,
then µ−(φ) − µ−(φ′) � −cotan(β)(φ − φ′), where β is a uniform angle of deviation for T .
By periodicity of µ− we get max µ− − min µ− � cotan(β) and analogous inequalities for the
other maps.

As in the above proof, we know that p2 ◦ T̂ N −p2 vanishes on C(0, N). Suppose that this
map does not take the value k on C(0, N). Then as C(0, N) is compact, it is strictly smaller
and we have ν+(φ) − µ−(φ) < k, for all φ ∈ S1. So for any φ ∈ S1, we get the following
estimates:

µ−(φ) = µ−(φ) − µ−(φ0) + µ−(φ0) − ν+(φ0) + ν+(φ0) > −cotan(β) − k + I0,

ν+(φ) = ν+(φ) − ν+(φ0) + ν+(φ0) − µ−(φ0) + µ−(φ0) < cotan(β) + k + I0,

and the above inequalities imply that

T̂ N (S1×] − ∞, −cotan(β) − k + I0]) ⊂ S1×] − ∞, cotan(β) + k + I0],

which cannot hold for all N > 0 by theorem 7. �

Proof of theorem 4. Again we fix k > 0 ⇒ k′ > 0. The case k < 0 is completely similar. By
contradiction, suppose that for some 0 < k′/N ′ < k/N and any fixed s ∈ Z:

p2 ◦ T̂ N ′
(Q) − p2(Q) − k′ � 0, ∀Q ∈ C(s, N ′).

So, in particular, we have ν+(φ) − µ−(φ) − k′ � 0 for all φ ∈ S1. This means that the
unbounded connected component of C(s, N ′)c, which is below C(s, N ′) and we denote by U,

satisfies the following equation: T̂ N ′
(U) − (0, k′) ⊂ U, so T̂ iN ′

(U) − (0, ik′) ⊂ U, for all
i > 0. Now let us choose a point P ∈ U, such that

lim
n→∞

p2 ◦ T̂ n(P ) − p2(P )

n
= k

N
. (22)

So we get that for all i > 0, [p2 ◦ T̂ iN ′
(P ) − p2(P ) − ik′] � C − p2(P ), where

C = sup{p2(x): x ∈ C(s, N ′)}. This implies that

lim
i→∞

p2 ◦ T̂ iN ′
(P ) − p2(P )

iN ′ � k′

N ′ ⇒ lim
n→∞

p2 ◦ T̂ n(P ) − p2(P )

n
� k′

N ′ ,

which contradicts (22). So there is a point P1 = (φ1, I1) ∈ C(s, N ′) such that p2 ◦ T̂ N ′
(P1) −

p2(P1) − k′ > 0 and from the µ-exactness of T̂ , ∃P0 = (φ0, I0) ∈ C(s, N ′) such that
p2 ◦ T̂ N ′

(P0) − p2(P0) < 0. Now let 
0 and 
1 be the proper simple arcs given by


0 = {φ0} × [µ+(φ0), +∞[∪T̂ −N ′
({φ0}×] − ∞, ν−(φ0)],


1 = {φ1}×] − ∞, µ−(φ1)] ∪ T̂ −N ′
({φ1} × [ν+(φ1), +∞[.

It is easy to see that 
0 ∩ C(s, N ′) = (φ0, µ
+(φ0)), 
1 ∩ C(s, N ′) = (φ1, µ

−(φ1)) and that
(
0 ∪ 
1)

c is an open set that divides C(s, N ′) into two connected components, C1 and C2
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(C(s, N ′) = C1 ∪ C2), such that C1 ∩ C2 = (φ0, µ
+(φ0)) ∪ (φ1, µ

−(φ1)). Therefore, the
function p2 ◦ T̂ N ′ − p2 − k′ has at least one zero in each Ci. �

Proof of theorem 5. The proof will be divided into two cases (as before we fix ω > 0 ⇒
ω′ > 0)

Case I. (ω ∈ Q). As ω′ ∈ R\Q, there is a sequence
pi

qi

i→∞→ ω′, with 0 <
pi

qi

< ω, ∀i > 0

and (from theorem 4) a family of periodic orbits

Ei = {P i
1 , P

i
2 , . . . , P

i
qi
} ⊂ T 2, with ρV (Ei) = pi

qi

.

So in the Hausdorff topology there is a subsequence Ein

n→∞→ E ⊂ T 2 that for simplicity we
will call En. The convergence in the Hausdorff topology means that: given ε > 0, ∃n0 ∈ N,

such that for all n � n0, En ⊂ Bε(E) and E ⊂ Bε(En), where Bε(•) is the ε neighbourhood
of the given set.

In this way, for all z ∈ E there is a sequence zn
n→∞→ z, such that zn ∈ En. But there is

still a problem to obtain that for all z ∈ E, ρV (z) = ω′, because we do not have any control
under the uniformity of the VRNs of the family of orbits En. In the Aubry–Mather case, the
periodic orbits, whose limit in the Hausdorff topology is a quasi-periodic set, have a very
strong uniformity condition; they are of Birkhoff type (see, e.g., [14]). Indeed, if we knew that
given ε > 0, ∃î(ε) > 0 (î independent of n), such that ∀n > 0 and ∀zn ∈ En,∣∣∣∣p2 ◦ T i(zn) − p2(zn)

i
− pn

qn

∣∣∣∣ < ε, for all i > î,

then the problem would be solved. In order to overcome this problem, we use the following
important lemma that is a consequence of propositions 1 and 2, some ideas from [18] and some
results from the Nielsen–Thurston theory.

Lemma 9. Under the hypothesis of theorem 5, for all ω′ ∈ (0, ω)\Q, there is a quasi-periodic
set Ē, such that ρV (Ē) = ω′.

Proof. See the end of section 3. �
Case II. (ω /∈ Q). From case I, we just have to prove that for all 0 < p/q < ω there is a
q-periodic orbit with ρV = p/q. The proof of this fact is identical to the proof of theorem 4;
so we omit it. �

We still have to prove lemma 9 and theorem 6. The following are auxiliary results that
are important in these proofs.

Lemma 10. Let T̄ : T 2 → T 2 (T 2 = R2/Z2) be a homeomorphism homotopic to LM (see
(11)), and let C ⊂ T 2 be a homotopically non-trivial simple closed curve, T̄ s-invariant, for
some s > 0. Then C is a rotational simple closed curve on the cylinder S1 × R = (R/Z) × R.
Moreover, [C] (homotopy class of C) is the only homotopy class of simple closed curves on
the torus that is preserved by iterates of T̄ .

Proof. The action of T̄ on π1(T
2) is given by

T̄∗([C]) = T̄∗(cφ, cI) =
(

1 1
0 1

) (
cφ

cI

)
,

and the eigenvector corresponding to the eigenvalue 1 is (1, 0). �
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Lemma 11. Let f̄ : T 2 → T 2 be a homeomorphism isotopic to LM. If ∃l > 0 such that f̄ l

has a rotational invariant curve γ with [γ ] = xφ = (1, 0), then f̄ cannot have a periodic
orbit with VRN ρV �= 0 and another with ρV = 0.

Proof. Let F̂0 be a lift of f̄ l to the cylinder which fixes γ̂ , a lift of γ ⊂ T 2. This implies that
the VRN for F̂0 of every point is zero. So, given any lift F̂ of f̄ l , the VRN of every point are
equal. In particular, given a lift f̂ of f̄ , the VRN of every point is the same, which is what we
wanted to prove. �

We have already seen that all T ∈ T Q such that T̂ is µ-exact and T does not have RICs
induces a map T̄ defined on the torus that has periodic orbits with non-zero VRNs. Suppose
that T̄ has a periodic orbit with ρV = ω > 0. Given ω′ ∈ R\Q, with 0 < ω′ < ω, let us
choose irreducible fractions a1/b1 and a2/b2, such that

0 <
a1

b1
< ω′ <

a2

b2
� ω,

and periodic orbits Q1 and Q2 with ρV (Qi) = ai/bi and #{Qi} = bi , for i = 1, 2 (this is
possible by theorem 4).

As T ∈ T Q and T̂ is µ-exact, from lemmas 3 and 6 it is clear that ∃R ∈ T 2 such that
T̄ (R) = R and

p2 ◦ T (R̃) = p2(R̃),

p1 ◦ T (R̃) = p1(R̃) (mod 1),
for any R̃ ∈ p−1(R).

Let Q = Q1 ∪ Q2 ∪ R. Now we blow up each x ∈ Q to a circle Sx. Let T 2
Q be the

compact manifold (with boundary) thereby obtained; T 2
Q is the compactification of T 2\Q,

where Sx is a boundary component where x was deleted. Now we extend T̄ : T 2\Q → T 2\Q
to T̄Q : T 2

Q → T 2
Q by defining T̄Q : Sx → Sx via the derivative; we just have to think of Sx as

the unit circle in TxT
2 and define

T̄Q(v) = DT̄x(v)

‖DT̄x(v)‖ , for v ∈ Sx.

T̄Q is continuous on T 2
Q because T̄ is C1 on T 2. Let b : T 2

Q → T 2 be the map that collapses
each Sx onto x. Then T̄ ◦ b = b ◦ T̄Q. This gives h(T̄Q) � h(T̄ ) (see [15, p 111]). Actually
h(T̄Q) = h(T̄ ), because each fibre b−1(y) is a simple point or an Sx and the entropy of T̄ on
any of these fibres is 0 (the map on the circle induced from any linear map has entropy 0). This
construction is due to Bowen (see [5]).

Now we have the following theorem.

Theorem 10. The map T̄Q : T 2
Q → T 2

Q is isotopic to a pseudo-Anosov homeomorphism of T 2
Q.

Proof. By theorem 8, T̄Q is isotopic to a homeomorphism FQ : T 2
Q → T 2

Q (Thurston canonical
form) such that either

(a) FQ has finite order,
(b) FQ is pseudo-Anosov,
(c) FQ is reducible by a system of curves C.

We must think of T 2
Q as a torus with round discs removed, all of the same size, each one

centred at a point x ∈ Q. Let F : T 2 → T 2 be the completion of FQ, i.e. the homeomorphism
obtained by radially extending FQ into all the holes (see [8]).

It is easy to see that FQ does not have finite order, because there are points with different
rotation numbers (by construction of Q).
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We say that a simple closed curve γ on a torus with holes is rotational if, after filling in
the holes, γ is homotopically non-trivial. Suppose that FQ has a rotational reducing curve γ

and let [γ ] ∈ π1(T
2) be its homotopy class in the torus without holes. Then, for some n > 0,

we have

Fn
Q(γ ) = γ ⇒ Fn(γ ) = γ.

And, as FQ is isotopic to T̄Q, F is isotopic to LM . In this way, from lemma 10 the
homotopy class of γ in the torus T 2 = S1 × S1 is [γ ] = xφ = (1, 0) (γ is a rotational simple
closed curve in the cylinder S1 × R). So, from the existence of the periodic orbits Q1 (or Q2)
and R, applying lemma 11 we conclude that F and thus FQ do not have any rotational reducing
curves.

And if γ is a non-rotational reducing curve, then γ must surround at least two holes
(because γ is not homotopic to a component of ∂T 2

Q). These holes must have the same rotation
number and this is impossible, because ρV (Q1) �= ρV (Q2) �= ρV (R) = 0 and two points from
the same orbit cannot be surrounded by the same curve (by construction of Q1 and Q2). So
FQ : T 2

Q → T 2
Q is a pseudo-Anosov homeomorphism. �

Now we prove theorem 6.

Proof of theorem 6. We just have to see that after all the previous work, the map T̄Q : T 2
Q → T 2

Q

is isotopic to a pseudo-Anosov homeomorphism of T 2
Q. Then h(T̄ ) = h(T̄Q) and h(T̄Q) > 0,

by theorem 9. �

Finally, we prove lemma 9.

Proof of lemma 9. By theorem 10, T̄Q : T 2
Q → T 2

Q is isotopic to a pseudo-Anosov
homeomorphism, FQ : T 2

Q → T 2
Q. So, as Q is an invariant and finite set we just have to

apply propositions 1 and 2. �

4. Examples and applications

We conclude by giving some examples.

(a) It is obvious that the well-known standard map SM : T 2 → T 2 given by

SM :




φ′ = φ + I ′ (mod 1)

I ′ = I − k

2π
sin 2πφ (mod 1)

is induced by an element of T Q. Also, it is easy to see that its generating function is

hSM
(φ, φ′) = (φ′ − φ)2

2
+

k

4π2
cos 2πφ ⇒ hSM

(φ + 1, φ′ + 1) = hSM
(φ, φ′),

so SM is an exact map. In this way, as we know that for sufficiently large k > 0, SM does not
have RICs, we can apply our previous results to this family of maps. In fact, theorems 3 and 4
can be used to produce a new criterion to obtain estimates for the parameter value kcr, which
is defined in the following way: if k > kcr, then SM does not have RIC and for k � kcr there is
at least one RIC. This happens because for each 1/n, n ∈ N∗, there is a number kn, such that
for k � kn, SM has a n-periodic orbit with ρV = 1/n and for k < kn it does not have such
an orbit. From the theorems cited above, if n > m then kn � km and limn→∞ kn = kcr. In a
future work, we will try to obtain estimates for kcr using this method.
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(b) In [1] the dynamics near a homoclinic loop to a saddle-centre equilibrium of a two
degrees of freedom, Hamiltonian system was studied by means of an approximation of a certain
Poincaré map. In an appropriate coordinate system this map is given by

F̂ : S1 × ]0, +∞[ → S1 × ]0, +∞[, where F̂ :

{
φ′ = µ(φ) + γ log(I ′) (mod π),

I ′ = J (φ)I,

and

J (φ) = α2 cos2 φ + α−2 sin2 φ,

µ(φ) = arctan

(
tan φ

α2

)
, µ(0) = 0.

So J (φ) is π -periodic and µ(φ + π) = µ(φ) + π. In this case S1 will be identified with
R/πZ.

A direct calculation shows that

hF̂ (φ, φ′) = γ exp

(
φ′ − µ (φ)

γ

)
.

So

hF̂ (φ + π, φ′ + π) = hF̂ (φ, φ′), because µ(φ + π) = µ(φ) + π.

Thus F̂ is also exact. Applying the following coordinate change

φ̃ = φ,

Ĩ = γ log I,

we get (omitting the ‘tilde’)

F̂ : S1 × R←↩ :

{
φ′ = Fφ(I, φ) = µ(φ) + I ′ (mod π),

I ′ = FI (I, φ) = γ log(J (φ)) + I.

It is obvious that in these coordinates, F̂ is µ-exact and µ is given by

µ(A) =
∫

A

eI/γ dφ dI.

It is also easy to see that F̂ induces a map F̄ : T 2 → T 2 (T 2 = R2/(πZ)2) given by

F̄ :

{
φ′ = F̄φ(I, φ) = µ(φ) + I ′ (mod π),

I ′ = F̄I (I, φ) = γ log(J (φ)) + I (mod π),

that is also induced by an element of T Q.

And from [11], ∃αcr(γ ) such that for α > αcr(γ ), F̄ does not have RICs. In this case, we
can apply the same criteria explained for the standard map. But as there are two parameters,
we do not obtain a critical value, we obtain a critical set in the (γ, α) plane. Another important
application of this theory is to obtain properties about the structure of the unstable set of
the above mentioned homoclinic loop (to the saddle-centre equilibrium), when the former is
unstable. The periodic orbits given by theorem 3 were analysed in [2] and it was proved that
for every VRN m/n > 0, there is an open set in the parameter space with an (m/n)-periodic
orbit which is topologically a sink. In particular, it can be proved that, for a fixed value of
γ > 0, given an ε > αcr(γ ) > 1, where αcr(γ ) is analogous to the constant kcr defined for the
standard map, there is a number m/n > 0 and an open interval Im/n ⊂ (αcr(γ ), ε), such that
for α ∈ Im/n, F̄ has a vertical periodic orbit with ρV = m/n which is also a topological sink.
So we can say that one of the mechanisms that cause the lost of stability of the homoclinic loop
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is the creation of periodic sinks for F̄ . In [3] it was proved that the existence of a topological
sink for F̄ implies many interesting properties on the topology of the set of orbits that have the
saddle-centre loop as their α-limit set (a set analogous to the unstable manifold of a hyperbolic
periodic orbit). More precisely, in this case, given an arbitrary neighbourhood of the original
homoclinic loop, a set of positive measure contained in this neighbourhood escapes from it,
following (or clustering around) a finite set of orbits that, in a certain sense, correspond to the
topological sinks for F̄ . In a forthcoming paper, we will analyse the following function:

ρmax
V (γ, α) = sup

P∈T 2

ρV (P ) = sup
P∈T 2

[
lim

n→∞
p2 ◦ Fn(P ) − p2(P )

n

]
,

where the supremum is taken over all P ∈ T 2 such that ρV (P ) exists. Using a method
developed in [2] and results from [22], we plan to prove the density of periodic sinks in the
subset of the parameter space (γ, α) where F̄ does not have RICs.

(c) Given a C2 circle diffeomorphism f : S1 → S1 (f (φ + 1) = f (φ) + 1), we can define
the following generating function:

hf (φ, φ′) = exp(φ′ − f (φ)).

As hf (φ + 1, φ′ + 1) = hf (φ, φ′) the associated twist map T̂f : S1× ]0, +∞[←↩ is exact

T̂f :




φ′ = f (φ) + log(I ′) (mod 1),

I ′ = 1

f ′(φ)
I.

By the same coordinate change applied to F̂ ,

φ̃ = φ,

Ĩ = log(I ).

we can write T̂f in the following way:

φ′ = f (φ) + I ′ (mod 1),

I ′ = log

(
1

f ′(φ)

)
+ I.

As above, in these coordinates T̂f is µ-exact for the following measure:

µ(A) =
∫

A

eI dφ dI.

T̂f induces a torus map

T̄f :




φ′ = f (φ) + I ′ (mod 1),

I ′ = log

(
1

f ′(φ)

)
+ I (mod 1),

such that our results apply.
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