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Abstract

In this note we prove that if an area preserving orientation preserving

homeomorphism of the torus has a periodic point then, it has infinitely

many periodic points, unless it is homotopic to the identity and its rotation

set is a segment with irrational slope and one rational point. Moreover,

we present an example of such a mapping with only one fixed point.
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1 Main result

The result proved in this note is inspired by Franks theorem on area preserving
homeomorphisms of the annulus [3]. In that paper it is proved that an area
preserving homeomorphism of the closed annulus which has one periodic point,
has infinitely many periodic points. This result is used to prove that for every
metric of positive Gaussian curvature on S2, there is an infinite number of closed
geodesics.

Here we are concerned with periodic points of area preserving orientation
preserving homeomorphisms h of the torus, T2 = IR2/ZZ. Lifts of h to the

cylinder S1 × IR and to the plane are denoted, respectively, by ĥ and h̃.
Before stating our result, we need a definition.

Definition: We say that an area preserving orientation preserving homeomor-
phism h : T2 → T2 belongs to case *, if h is homotopic to the identity
and its rotation set (see [8]) is a segment with irrational slope containing
a rational point.

Our theorem is the following:

Theorem 1 : An area and orientation preserving homeomorphism h : T2 → T2

that does not belong to case * and has a periodic point, has infinitely many

periodic points.

Remarks:
1) In case some iterate of h is homotopic to the conjugate of a Dehn twist

by an element of GL(2,ZZ), then there are periodic points with arbitrarily large
periods (see the proof below).

2) In case h belongs to case *, it is possible that the number of periodic
points is finite, as the example after the proof shows.

Proof of theorem 1:
As h is area and orientation preserving, the map induced by h on π1(T

2),
denoted by h∗ can be characterized by a 2×2 matrix A with integer coefficients
and determinant equal to 1. So one of the following possibilities holds:

i) A is the identity
ii) a power of A, let us say, An =A.A...A

n times
= M×D×M−1, where M ∈GL(2,ZZ)

and

D =

(
1 k
0 1

)
, for some integer k 6= 0.

iii) A has real eigenvalues which have modulus different from 1
The result in case iii), and in case i) whenever h does not belong to case *,

is already known in the literature, and is compiled here for completeness.
In case i), there are several possibilities:

a) the rotation set of h̃, ρ(h̃), defined by Misiurewicz-Ziemian as
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ρ(h̃) =
∞
∩

i=1
∪

n≥i

{
h̃n(z̃) − p2(z̃)

n
: z̃ ∈ IR2

}

has non-empty interior. In this case, the main theorem of [4] concludes the
proof.

b) ρ(h̃) is a single point, which is rational because we are assuming that h
has a periodic point. The proof is concluded by one of the main results of Le
Calvez [7].

c) ρ(h̃) is a line segment, which contains a rational point by hypothesis. This
case divides in 2 sub cases:

– c1) ρ(h̃) contains 2 rational points, which implies that it contains infinitely
many rational points. The proof ends by the main result of [5].

– c2) ρ(h̃) contains only one rational point, that is the segment has irrational
slope. This is case *.

In case iii) the theorem is true because of Nielsen theory. Moreover, in this
case h is isotopic to a linear Anosov mapping of the torus, so its dynamics is
quite complex, for instance it has positive topological entropy.

This leave us with case ii) where, by an appropriate linear coordinate change,

M−1hnM
def.
= g is isotopic to a Dehn twist. So, as in [1], g has a vertical rotation

interval associated to it, that is, given a lift ĝ : S1 × IR →S1 × IR of g, we can
define

ρV (ĝ) =
∞
∩

i=1
∪

n≥i

{
p2 ◦ ĝn(ẑ) − p2(ẑ)

n
: ẑ ∈ S1 × IR

}
, (1)

where p2 is the projection on the vertical coordinate. In [1] it was proved that
ρV (ĝ) is a closed interval and to every rational r/s in the interior of ρV (ĝ), there
corresponds at least 2 fixed points for ĝs − (0, r).

As we are supposing that h has a periodic point, this means that g also has
one, for instance with vertical rotation number p/q. As h preserves area, so does
g. This means that it makes sense to compute the vertical rotation number of
the Lebesgue measure, given by:

ρV (Leb) =

∫

T2

φ(z)dz, where φ(z) = p2 ◦ ĝ(ẑ) − p2(ẑ),

for any ẑ that projects on z. If ρV (Leb) = p/q, then by theorem 5 of [1], we
are done. That theorem says that ĝq − (0, p), which is a homeomorphism of the
cylinder that satisfies the “infinity twist condition” (see below), has periodic
points with all possible rotation numbers (in the cylinder), because it has the
following intersection property:

- the image under ĝq − (0, p) of any homotopically non trivial simple closed
curve in the cylinder intersects itself

Definition: By “infinity twist condition” we mean that p1 ◦ (g̃q(z̃) − (0, p))
goes to +(−)∞ as p2(z̃) goes to +(−)∞, where p1 is the projection on the
horizontal coordinate and g̃ : IR2 → IR2 is a lift of g to the plane.
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So suppose that ρV (Leb) 6= p/q. In this case, by the Birkhoff ergodic theo-
rem, we get that there exists a point z′ ∈ T2 such that

ρV (ẑ′) = lim
n→∞

p2 ◦ ĝn(ẑ′) − p2(ẑ
′)

n
exists and is different from p/q.

So, by theorem 6 of [1], for every r/s between ρV (ẑ′) and p/q there exists at
least 2 fixed points of ĝs − (0, r). This also follows from the same type of result
above, because the mapping ĝr − (0, s) satisfies the same intersection property
as above (note that the fact that r/s is between ρV (ẑ′) and p/q implies that
there is an orbit for ĝr − (0, s) going down the cylinder and one going up; this
gives the required intersection property for homotopically non trivial curves).
So the theorem is proved.

2 An example in case *

To conclude, we present an example of a mapping belonging to case * which
has only one periodic point.

Start with a C∞ function a : IR2 → IR which satisfies the following proper-
ties:

1. a is 2-biperiodic and a(x̃, ỹ) ≥ 0

2. a(x̃, ỹ) = 0 if and only if x̃ = 2.n and ỹ = 2.m for integers n, m

3. a(x̃, ỹ) = a(x̃,−ỹ)

4.
∫ 1

−1 a(x̃, ỹ)dỹ = 2
∫ 1

0 a(x̃, ỹ)dỹ =const, which implies that
∫ 1

0
∂a(x̃,ỹ)

∂x̃
dỹ = 0

Now, we want to construct a system of differential equations in the plane

dx̃
dt

= a(x̃, ỹ)
dỹ
dt

= b(x̃, ỹ)
(2)

for a certain function b(x̃, ỹ) so that:

• the system (2) is area preserving

• b(x̃, 2n + 1) = 0 for all integer n

• b is a 2-biperiodic C∞ function

In order for system (2) to be area preserving, we must impose that

∂a

∂x̃
+

∂b

∂ỹ
≡ 0 in the whole plane.
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But this gives b(x̃, ỹ) =
∫ ỹ

0

(
−∂a(x̃,̃s)

∂x̃

)
ds̃ + c(x̃). If c(x̃) is a 2-periodic C∞

function, then condition 4 above implies that b is also 2-biperiodic. The function
c(x̃) is chosen by imposing that

b(x̃, 2n + 1) = 0 ⇔ c(x̃) =

∫ 2n+1

0

(
∂a(x̃, s̃)

∂x̃

)
ds̃ = 0.

So b(x̃, ỹ) = −
∫ ỹ

0

(
∂a(x̃,̃s)

∂x̃

)
ds̃ and thus b(x̃, n) = 0, for all integer n. The

above construction implies that the vector field X̃(x̃, ỹ) = (a(x̃, ỹ), b(x̃, ỹ)) is
C∞, area preserving, 2-biperiodic and has singularities at all points with both
coordinates even. Moreover, the function a(x̃, ỹ) could have been chosen in a
way such that its Taylor expansion is not reduced to 0 at points (x̃, ỹ) with both

coordinates even. Therefore, X̃ is of Lojasiewicz type at its singularities.
This means that X̃ induces an area preserving vector field X on the torus

obtained by identifying the opposite sides of the square [−1, 1]× [−1, 1], which
has only one singularity, at (0, 0). Clearly all orbits of X are periodic, except
for one which is homoclinic to the singularity (the horizontal line with y = 0).
See figure 1 for a picture of the orbits of X.

Now consider the following one parameter family of perturbed vector fields:

X̃θ = X̃ + θ(0, c(x̃)),

where θ > 0 is a real number very close to 0 and c(x̃) is a 2-periodic C∞ function
such that c(x̃) ≥ 0 and c(x̃) = 0 if and only if x̃ = 2n, for all integer n.

For an appropriate choice of θ, the perturbed vector field X̃θ induces a
vector field on the torus, Xθ, which has no closed solution, is area preserving
and has only one singularity, at (0, 0). To see this, let us analyze the following
transversal section of the torus flow,

∑
θ = {−1} × [−1, 1) ≡ {1} × [−1, 1) (the

index θ means that we are considering the section {−1}× [−1, 1) ≡ {1}× [−1, 1)
with the vector field Xθ). First note that all closed orbits of Xθ must cross

∑
θ,

since the first coordinate of X̃θ is a(x̃, ỹ), which is strictly positive at all regular
points.

In the following we will show that the dynamics in a neighborhood of (0, 0)
is topologically the same for X and Xθ. As X is of Lojasiewicz type, so is Xθ if
θ is small enough. So the dynamics of Xθ in the neighborhood of (0, 0) can be
described by Dumortier’s result [2], which says that it can be obtained by gluing
a finite number of sectors, which can be of 4 types: elliptic, attracting, expanding
and hyperbolic. As the index of (0, 0) is zero and Xθ is area preserving there
are exactly 2 hyperbolic sectors and the dynamics is topologically the same as
for X (in the area preserving setting elliptic, attracting and expanding sectors
are not allowed).

So we can define a first return map to
∑

θ . The only problem is with the
point z0 ∈

∑
θ whose forward orbit is asymptotic to (0, 0) and does not cross∑

θ again. But as there is only one orbit which is backward asymptotic to (0, 0),
we use the first point of it that hits

∑
θ to define the return of z0.
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Thus for small enough θ, we have a return map rθ :
∑

θ →
∑

θ which is a
circle homeomorphism. And by construction of X, r0 = id and so the rotation
number ρ(r0) = 0. For any small θ > 0, ρ(rθ) > 0 (because the return of every
point is above the point) and the function θ → ρ(rθ) is continuous. So, take
a θ∗ such that ρ(rθ∗) is irrational. This implies that rθ∗ has no periodic point
and so Xθ has no closed orbit.

The time one flow of this vector field is a diffeomorphism of the torus, homo-
topic to the identity, area preserving, which has only one periodic point (which
is fixed), so its rotation set has no interior and is not reduced to a point, be-
cause in this case the rotation vector of the Lebesgue measure would be zero
and there would be infinitely many periodic points, by Le Calvez result [7] (in
particular, there would be at least 3 fixed points, by Conley-Zehnder theorem).
So the rotation set is a segment and, as there is only one periodic point, it has
irrational slope and we are in case *.

This example was inspired by one which is attributed to Katok, see [6].
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Figure captions.

Figure 1. Diagram showing the dynamics of X

5



.

Figure 1

6


