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Abstract
We study a given fixed continuous function φ : S1 → R and an endomorphism
f : S1 → S1, whose f -invariant probability measures maximize

∫
φ dµ. We

prove that the set of endomorphisms having a φ maximizing invariant measure
supported on a periodic orbit is C0 dense.

Mathematics Subject Classification: 37E10, 37A99

1. Introduction

While ergodic theory and optimization are two of the most renowned and studied theories of
the last century, it was only in the last decade or so that works relating these two fields were
systematically produced, consolidating into the so-called ergodic optimization, see [4–7].

It is well known, from the Krylov–Bogolyubov theorem in ergodic theory, that given a
compact metric space X and a continuous transformation f : X → X, the set of f -invariant
Borel probability measures, Minv(f ) , is non-empty. It is also widely known that Minv(f ) is
convex and compact in the weak∗ topology.

Optimization theory is concerned with finding the maxima (or minima) of a given
continuous functional P : K → R, where K is a topological space. Its applications are
wide ranging, from Lagrangian mechanics to economics and engineering.

One way to unify these fields is the following. Given a continuous function φ : X → R,
we can define the functional Pφ : Minv(f ) → R, P (µ) = ∫

φ dµ. Ergodic optimization is the
study of the maxima (or minima) of Pφ . Since Minv(f ) is compact and convex, and since Pφ

is affine, there is always a maximum at an extreme point of Minv(f ), denoted by µmax. But
these extremes are precisely the ergodic measures.

Several relevant questions may be considered involving the relationship between f , φ and
the maxima of Pφ. Recent works [1–3] have concentrated on two main lines:

1. If we fix f and let φ belong to a ‘large’ space, is it true that ‘generically’ Pφ has as a
maximum an ergodic measure supported on a periodic orbit?
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2. Given an f invariant ergodic measure µ, is there a continuous φ such that µ is the unique
maximum of Pφ? If so, can φ be chosen in a smaller space? For instance can we pick a
differentiable φ?

There have been several successful partial answers for both these questions, see for
instance [1] for the first and [3] for the second. Question 1 seems to have been motivated by
an important conjecture of Mañé, which says that minimizing measures for Lagrangian flows
are generically supported on periodic trajectories. Of course, while in Mañé’s conjecture the
dynamics and the minimizing functional are directly connected, in question 1 we are allowed
to change the target function without modifying the dynamics.

The problem we were concerned with in this paper is a variation of question 1. Instead
of allowing φ to vary, we will keep φ fixed and allow f to vary. Is it still true that for a
dense set of dynamics there is a φ-maximizing measure µmax supported in a periodic orbit?
In [8] we show this to be true when f is a homeomorphism on a compact manifold, but the
technique made use of the invertibility of f . On the other hand, in [9] we show that the set of
homeomorphisms for which the maximizing measure is supported in a periodic orbit is meager
in the usual topology.

In this paper we consider the case where f is an endomorphism of the circle, i.e. a
continuous and surjective map. Our main result here is the following.

Theorem 1. Given an endomorphism f : S1 → S1, a continuous function φ : S1 → R and
ε > 0, there is an endomorphism f̃ : S1 → S1 such that |f − f̃ | = max

x∈S1
|f (x) − f̃ (x)| < ε

and f̃ has a φ-maximizing invariant measure supported in a periodic trajectory.

It should be noted that the actual ‘topological size’ of the set of circle endomorphisms
with a φ-maximizing measure supported in a periodic orbit depends on the regularity of φ.
This can be seen from the following theorem, also proved in [9].

Theorem 2. Fix a continuous function φ : S1 → R. We have two possibilities.

(a) φ is monotone on an interval of S1. Then the set of endomorphisms of S1 such that a
φ-maximizing measure has support in a single fixed point has a nonempty interior.

(b) φ has a dense subset of strict local maxima (and, so, of strict local minima). Then the set
of endomorphisms possessing a φ-maximizing periodic orbit is meager.

These results still leave open some interesting problems: for instance, can we require more
regularity from f and f̃ ? And can we prove a similar result when X is a more general space?

The paper is organized as follows: in the next section we derive some general preliminary
results and give an outline of the proof of our theorem, in section 3 we find an interval where
we will perturb f , and in the last section we build f̃ and prove the theorem.

2. Preliminaries and outline of the proof

2.1. Initial assumptions and an important lemma

We can take f to be piecewise linear, since these functions form a dense subset in the set of
endomorphisms of the circle. By piecewise linear we do not mean the usual notion, because
we do not allow zero derivative. To be precise, f is supposed to be a continuous mapping of
the circle, such that for all x ∈ S1\{d0, d1, . . . , dK} (for a certain finite set {d0, d1, . . . , dK}),
f ′(x) exists and is locally constant in a neighbourhood of x and is different from zero at all
points.



Maximizing measures for endomorphisms of the circle 2349

We assume that there is a maximizing measure µmax, whose support does not contain any
periodic orbit. As we said before, ergodic measures are the extreme points of the convex set
Minv(f ) = {f -invariant Borel probability measures on S1}, so we can suppose that µmax is
ergodic and, of course, without loss of generality, we can assume that

∫
φ dµmax = 0.

We will need the next result (note that it is valid in a much more general situation).

Lemma 1. Let A ⊂ supp(µmax) be an f -forward invariant set (f (A) ⊂ A) of non-periodic
points such that µmax(A) = 1, and suppose that there exists ε∗ > 0 such that for all x ∈ A

and n > 0 with |f n(x) − x| < ε∗, the Birkhoff sum
∑n−1

i=0 φ(f i(x)) � 0. Then for all x ∈ A

and n > 0 with |f n(x) − x| < ε∗/2, the Birkhoff sum must be equal to zero.

Proof. Suppose that the lemma hypothesis is satisfied, but for some x ∈ A and n > 0,

|f n(x) − x| < ε∗/2 and
∑n−1

i=0 φ(f i(x)) = −δ < 0.
Let M > 8 be an integer such that min

1�i�n
|f i(x) − x| > 2 ε∗

M
. As µmax(A) = 1

and A ⊂ supp(µmax), there exists a set Ã ⊂ A ⊂ S1 of positive µmax measure, with
x ∈ Ã ⊂ [x − ε∗/M, x + ε∗/M] ∩ A such that for all y ∈ Ã we have

f n(y) ∈ [x − ε∗/2, x + ε∗/2] and
n−1∑
i=0

φ(f i(y)) < −δ/2 < 0.

As µmax(Ã) > c > 0 for some real number c, µmax-almost every point in Ã is recurrent
and returns to Ã infinitely many times. If the diameter of the set Ã is sufficient small, then for
each recurrent y ∈ Ã, there exists N(y) > n such that f N(y)(y) ∈ Ã and this is the first time
it returns to Ã. Suppose that for all recurrent y ∈ Ã,

N(y)−1∑
i=0

φ(f i(y)) < −δ/4 < 0. (1)

Birkhoff’s ergodic theorem implies that for µmax-a.e. recurrent y ∈ Ã,

#{i ∈ {1, 2, . . . , N} : f i(y) ∈ Ã} > cN, if N is large enough.

So, for such a recurrent y ∈ Ã, if Nk
k→∞→ ∞ is such that f Nk (y) ∈ Ã, then we have∑Nk−1

i=0 φ(f i(y)) < (−δ/4)(cNk − 1), for all k > 0 sufficiently large. Thus,

lim
k→∞

1

Nk

Nk−1∑
i=0

φ(f i(y)) < −δc/4 < 0,

which is a contradiction, because the limit of the average above exists and is equal to
zero for µmax-almost every point. So (1) does not hold and there exists y ∈ Ã such that
f N(y)(y) ∈ Ã and

∑N(y)−1
i=0 φ(f i(y)) � −δ/4. But as f n(y) ∈ [x − ε∗/2, x + ε∗/2] and∑n−1

i=0 φ(f i(y)) < −δ/2, we get that there exists z = f n(y) ∈ A ∩ [x − ε∗/2, x + ε∗/2]
such that f N(y)−n(z) ∈ Ã ⊂ [x − ε∗/M, x + ε∗/M] ⇒ |f N(y)−n(z) − z| < ε∗ and∑N(y)−n−1

i=0 φ(f i(z)) > δ/4 > 0. But this contradicts the lemma hypothesis, so for all x ∈ A

and n > 0, such that |f n(x) − x| < ε∗/2, we get that
∑n−1

i=0 φ(f i(x)) = 0. �
We will also make use of proposition 1.

Proposition 1. For every constant a > 0, there exists a positive integer m0 = m0(a) such
that, for all m � m0 and x ∈ S1,

1

m

m−1∑
i=0

φ(f i(x)) � a

2
.
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Proof. This follows from

lim sup
n→∞

max
x∈S1

1

n

n−1∑
i=0

φ(f i(x)) = sup
µ∈Minv(f )

∫
φ dµ = 0,

which can be derived by the weak∗ compactness of probability measures in S1, see
proposition 2.1 of [6]. �

2.2. Outline of the proof of theorem 1

Here we present the main ideas behind the proof of theorem 1. Our argument is perturbative.
We perform a small change to f , with support in a small interval in order to obtain f̃ . The
idea is to close a ‘finitely’-recurrent orbit into a periodic one.

We use lemma 1 in order to find a recurrent point x̄ in a special set C, defined in section 3,
and n > 0 such that |f n(x̄) − x̄| < ε and the partial average

1

n

n−1∑
i=0

φ(f i(x̄))
def= a0 � 0. (2)

There are two cases.

(1) For all possible choices of x̄ and n > 0, a0 = 0.
(2) a0 > 0.

In case 1 we have to consider other pre-images of f n(x̄) contained in the small interval
(x̄, f n(x̄)]. Also, for each of these pre-images (if any), we look at the φ partial average over
the finite piece of the orbit starting at the pre-image and ending at f n(x̄). There are 2 subcases.

(1.1) These partial averages are all less than or equal to zero; in this case we consider the point
in the small interval [x̄, f n(x̄)] which returns to this interval and has the largest possible
partial average. This may be x̄ itself. The rest of the proof, in this case, consists of
performing a perturbation which turns this maximizing partial orbit into a periodic one.

(1.2) There is a partial average which is strictly positive; this subcase is handled together with
case 2.

The proof of the main theorem in cases 1.2 and 2 has several details. The main difficulty
is that, if a perturbation is performed in order to create a periodic orbit OP with positive
φ-average, other non-periodic invariant measures may appear. These new measures may have
φ-average larger then the φ-average on OP . So, care must be taken when we perturb f in order
to create a periodic maximizing measure; we must guarantee that all non-periodic invariant
measures created in the process have a ‘small’ average.

Therefore, in section 3.2 we derive some technical properties of the interval where the
perturbation takes place. The perturbation itself is done in section 4.

3. Finding the return interval

We begin by considering the sets

A0 = {d0, d1, . . . , dK} = {x ∈ S1 : f ′ is not continuous at x}
⊃ {x ∈ S1 : x is a turning point of f }
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and

A =
∞⋃
i=0

f i(A0), B =
∞⋃
i=0

f −i (A).

From the above definitions we get that A and B are denumerable, since every point in S1 has
at most a finite number of pre-images, and µmax(B) = 0 because µmax is non-atomic. Also
note that f (A) ⊂ A, f −1(A) ⊃ A, f (B) = B and f −1(B) = B.

Now let us define two important sets.

• Let C be the set of points in supp(µmax) \ B that are recurrent by both sides, that is, x ∈ C

if and only if there are sequences nl
i, n

r
i → ∞ as i → ∞ and f nl

i (x)
i→∞→ x through the

left and f nr
i (x)

i→∞→ x through the right.
• Let C ′ ⊂ supp(µmax) \ B be the set of points whose orbits are dense in supp(µmax).

Lemma 2. C has total µmax measure.

Proof. As µmax is ergodic, Birkhoff’s ergodic theorem implies that µmax(C
′) = 1. Every

x ∈ C ′ is recurrent and if it is not recurrent by both sides, as the orbit of x is dense in the
closed set supp(µmax), x belongs to the boundary of an open interval in (supp(µmax))

c. But
this implies that the set of all x ∈ C ′ which are not recurrent by both sides is denumerable, as
it is contained in the boundary of the open set (supp(µmax))

c. As µmax is non-atomic, this set
has zero µmax measure. So, µmax(C) = 1. �

Now we prove lemma 3.

Lemma 3. C satisfies the hypothesis of lemma 1.

Proof. Clearly, if x ∈ C ⊂ C ′ ⊂ supp(µmax)\B, f is locally a linear homeomorphism (with
constant slope) at x. Thus f (x) ∈ C ⇒ f (C) ⊂ C. Also, it is easy to see that if we denote by
Per(f ) = {x ∈ S1 : f n(x) = x, for some integer n > 0} the set of f -periodic points and

Pr Per(f ) =
∞⋃
i=0

f −i (Per(f )),

we get that C ∩ Pr Per(f ) = ∅, so C satisfies the hypothesis of lemma 1. �
In the following we will start the proof of the main theorem, which will be divided into 2

cases and several sub-cases.
We proceed by choosing a point x̄ in C with an iterate y

def= f n(x̄) which satisfies (ε > 0
comes from the statement of theorem 1) that

(i) if there exists ε∗ > 0 as in lemma 1, then | x̄ − y |< min{ε, ε∗/100},
(ii) otherwise | x̄ − y |< ε.

In both cases the following holds:

1

n

n−1∑
i=0

φ(f i(x̄))
def= a0 � 0. (3)

By lemma 1 this can always be achieved. Furthermore, for all 1 � i �
n − 1, we can suppose that f i(x̄) /∈ [x̄, y], just by taking appropriate points in
{x̄, f (x̄), f 2(x̄), . . . , f n(x̄)} ⊂ C and renaming them as x̄ and y, if necessary. Recalling
that as x̄ /∈ B and f (C) ⊂ C , we get that f i(x̄) ∈ C for all integer i > 0, so y ∈ C.
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So, as y is recurrent by both sides, there is a positive integer k such that f k(y) ∈ (x̄, y) and
f i(y) /∈ (x̄, y), 0 < i < k. Also, by lemma 1, if a strictly positive a0 cannot be chosen
(in other words, if ε∗ > 0 exists), then

∑k−1
i=0 φ(f i(y)) = 0. By the notation (x̄, y), [x̄, y),

(x̄, y], [x̄, y] we denote the interval (open, semi-closed and closed) of the circle with length
less then ε whose extreme points are x̄ and y.

As stated in section 2.2, there are two cases to consider, precisely.

(1) For all possible choices of x̄ and n > 0, a0 = 0,
(2) a0 > 0.

In case 1, we look at the subset

PREy = {z ∈ [x̄, y] | ∃nz > 0, f nz (z) = y}.
We have two subcases, namely.

(1.1) for all z ∈ PREy,

1

nz

nz−1∑
i=0

φ(f i(z)) � 0,

(1.2) there is a z0 in PREy such that

1

nz0

nz0 −1∑
i=0

φ(f i(z0)) > 0.

3.1. Case 1.1

Let us first consider the situation where a0 (see (3)) cannot be chosen larger than 0 and such that
for all x ∈ (x̄, y) and all positive nx satisfying f nx (x) = y, we have

∑nx−1
i=0 φ(f i(x)) � 0.

The above hypotheses imply that if for some x ∈ (x̄, y) and n′
x < nx, f n′

x (x) = x̄, then∑n′
x−1

i=0 φ(f i(x)) � 0.

We further divide this case into two situations.

(1.1.1) For all x ∈ (x̄, y), if f j (x) also belongs to (x̄, y), then
∑j−1

i=0 φ(f i(x)) � 0.

(1.1.2) There exists a point p ∈ (x̄, y) such that its first return to (x̄, y) happens at a time
np > 0 and such that 1

np

∑np−1
i=0 φ(f i(p)) = a1 > 0.

In the first case we can consider the transformation f̃ = T ◦ f , where T is a continuous
transformation which is the identity outside (x̄, y), and T (x) = x̄ for all points in (x̄, f k(y))

(see figure 1). Now x̄ is a periodic point for f̃ with 0 average, because from lemma 1∑n+k−1
i=0 φ(f i(x̄)) = 0, and we did not create new orbits with φ average greater then 0.

In case 1.1.2, let m0(a1) be given by proposition 1. For every integer l ∈
{1, 2, . . . , m0(a1)}, we consider the compact set Kl = [x̄, y] ∪ f −l[x̄, y], and let ql be a
point of Kl that maximizes gl(x) = 1

l

∑l−1
i=0 φ(f i(x)). Now let q ∈ {q1, q2, . . . , qm0(a1)} be

such that nq is the first return of q to [x̄, y], and such that for all x ∈ (x̄, y), if f j (x) also
belongs to (x̄, y), then

1

j

j−1∑
i=0

φ(f i(x)) � 1

nq

nq−1∑
i=0

φ(f i(q)).

Since p must belong to a Ki for some i, we have

1

nq

nq−1∑
i=0

φ(f i(q)) � a1 > 0.

This implies that f nq (q) /∈ {x̄, y}.
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x y

x

y

Graph of T – First Case

f k (y)

Figure 1. The graph of T in case 1.1.1. x̄ is a periodic point of f̃ = T ◦ f .

We again consider an endomorphism of the form f̃ = T ◦f , but now T is any continuous
transformation such that T (f nq (q)) = q and such that T is the identity outside (x̄, y). Now q

is a periodic point for f̃ , and its orbit is clearly the one maximizing the φ average.
In both cases, it is still possible that another trajectory has a φ average equal either to 0

in case 1.1.1 or to the partial average of q in case 1.1.2. But since every point whose positive
orbit does not return to (x̄, y) has, at most, a 0 average, and for every point in (x̄, y), the φ

average of its first return for f̃ is the same as for f , the maximum possible φ-average must be
those of the periodic orbits.

3.2. The remaining case

Now we are left to consider the case where there exists x̃ ∈ [x̄, y) (note that x̃ may equal x̄ or
not) and an integer nx̃ > 0 satisfying f nx̃ (x̃) = y, with

1

nx̃

nx̃−1∑
i=0

φ(f i(x̃))
def= a > 0. (4)

Note that this case includes 1.2 and 2 of page 4.
Proposition 1 implies that for some

nmax < m0 = m0(a), (5)

there exists a point xmax ∈ [x̄, y] with f nmax(xmax) ∈ [x̄, y], f i(xmax) /∈ [x̄, y], for all
1 � i � nmax − 1, such that for every x ∈ [x̄, y] and m > 0 with f m(x) ∈ [x̄, y], we have

1

m

m−1∑
i=0

φ(f i(x)) � 1

nmax

nmax−1∑
i=0

φ(f i(xmax)) � a > 0.

It may be the case that more than one pair {xmax, f
nmax(xmax)} ⊂ [x̄, y] as above exists.

We choose one which minimizes the distance |xmax − f nmax(xmax)|.
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Now we have two possibilities.

(I) {xmax, f
nmax(xmax)} ⊂ (x̄, y),

(II) possibility 1 does not hold.

In case I, as in 1.1.2 of section 3.1, consider the endomorphism f̃ = T ◦ f , where T is
any continuous transformation such that T (f nmax(xmax)) = xmax and T is the identity outside
(x̄, y). This turns xmax into a periodic point for f̃ , and its orbit maximizes the φ average.

In case II, as f (C) ⊂ C and x̄, y ∈ C, we get that f nmax(xmax) ∈ C. From now on, for
notation’s sake, we denote xmax by x̄, nmax by n and f nmax(xmax) by y ∈ C. In this way, we get

(i) f i(x̄) /∈ [x̄, y], for all 1 � i � n − 1,
(ii) 1

n

∑n−1
i=0 φ(f i(x̄)) � a > 0,

(iii) for every x ∈ (x̄, y] and m > 0 with f m(x) ∈ [x̄, y], we have

1

m

m−1∑
i=0

φ(f i(x)) <
1

n

n−1∑
i=0

φ(f i(x̄)). (6)

The rest of the paper deals with this situation.
As we said y ∈ C, so there must be a first positive integer Nret(y) such that

f Nret(y)(y) ∈ (x̄, y).
The next step is to choose a δ1 > 0 sufficiently small such that the following conditions

are satisfied (recall that m0 comes from expression (5)).

• ∪m0+10
i=−m0−10f

i(A0) ∩ [y, y + δ1] = ∅ (f j is linear with constant slope in every connected
component of f −j ([y, y + δ1]), 1 � j � m0 + 1). This is possible because y /∈ B ⇒ y /∈
∪m0+10

i=−m0−10f
i(A0), which is a finite set. So, if δ1 > 0 is sufficiently small, this condition is

satisfied.
• For every 0 � j � m0, if x is in a connected component of f −j ([y, y + δ1])∩ [x̄, y + δ1] and

x̄ is not, then 1
j

∑j−1
i=0 φ(f i(x)) < 1

n

∑n−1
i=0 φ(f i(x̄)) (the average of φ over the trajectory of

x until its first return is less than the average of φ on the orbit of x̄).
• For all x ∈ [y, y + δ1] and 0 < j < nret(y), f j (x) /∈ [x̄, y + δ1). Furthermore,

f nret(y) ([y, y + δ1]) ⊂ (x̄, y) (that is, the first return, by f , of the interval [y, y + δ1] is
achieved at the iterate nret(y) and lies inside the open segment (x̄, y)).

• f n(y) /∈ [y, y + δ1].

4. Building f̃

We will construct an endomorphism f̃ : S1 → S1 that satisfies

• |f − f̃ | = max
x∈S1

|f (x) − f̃ (x)| < ε, where f̃ (x) = T (f (x)) and T (x) = x, if x is not in

[x̄, y + δ1] and of course T ([x̄, y + δ1]) = [x̄, y + δ1]

Also, T will be non-decreasing, and T (y) = x̄. Clearly, the dynamics of this new
endomorphism differs significantly only at those points returning infinitely many times to
the interval I = [x̄, y + δ1].

So let us consider the set

D = I ∩
( ∞⋃

i=0

f −i (I )

)
(7)
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of all those points in I returning to I , and let us define, for each point in D, the following
functions,

Nret(x) = inf{j ∈ N
∗ | f j (x) ∈ I },

f2(x) = f Nret(x)(x) (first return to I ),

ψ(x) = 1

Nret(x)

Nret(x)−1∑
i=0

φ(f i(x)).

(8)

Clearly, ψ gives the average of φ in the portion of a trajectory before returning to I . It
should be clear that ψ(x̄) � a > 0, see (6).

The following lemma will be useful.

Lemma 4. : Let x ∈ D ∩ f −1
2 ([y, y + δ1]) be a point not in the connected component of

f −n([y, y+δ1]) that contains x̄ (recall that n > 0 is such that f n(x̄) = y). Then ψ(x) < ψ(x̄).

Proof. The statement holds by the choice of x̄ and δ1 > 0 for every x in the hypotheses such
that Nret(x) � m0. It must also hold for any x such that Nret(x) > m0 by proposition 1. �

We recall that, by the requirements in the choice of δ1, in each connected component of
f −n([y, y + δ1]), f n is a linear isomorphism (n � m0 + 10). There are three different cases,
and we will choose T accordingly.

(a) The connected component of f −n([y, y + δ1]) ∩ I that contains x̄ is {x̄}.
(b) There is a point w in I such that f n is a linear isomorphism between [x̄, w] and [y, y +δ1],

and ψ is strictly increasing in [x̄, w].
(c) There is a point w in I such that f n is a linear isomorphism between [x̄, w] and [y, y +δ1],

and ψ has a local maximum in [x̄, w).

In cases (b) and (c), since f n is a linear isomorphism between [x̄, w] and [y, y + δ1], it
follows from the choice of δ1 that y /∈ [x̄, w].

In case (a), we will choose any T such that T (x) = x̄ for all x in [x̄, y], T (y +δ1) = y +δ1

and T is non-decreasing, see figure 2.
In case (c), let α be a local maximum and α ∈ [c, d] a subset of [x̄, w) such that

ψ(x) � ψ(α), for all x in [c, d]. We will choose T as

T (x) =




x̄, if x < f2(c),

α − (f2(α) − x)(α − x̄)

f2(α) − f2(c)
, if f2(c) � x � f2(α),

α − (f2(α) − x)(α − (y + δ1))

f2(α) − f2(d)
, if f2(α) � x � f2(d),

y + δ1, if f2(d) < x.

(9)

Just like in case 1.1.1 of section 3.1, in case (a) a maximizing measure is supported in the
periodic trajectory of x̄.

In case (c), by lemma 4, if x ∈ D \ [x̄, w], ψ(x) < ψ(x̄). If x ∈ [c, d], ψ(x) � ψ(α).
Finally, if x ∈ [x̄, w] \ [c, d], there is a positive iterate of x under f̃ which coincides with x̄

(see figure 3). Thus, a maximizing measure is supported either in the periodic orbit of α or in
the periodic orbit of x̄.

Finally, in case (b), note that for all x in [x̄, w], as Nret(x) = n, ψ is a strictly increasing
continuous function, so there must be a point α in the open interval (x̄, w) such that ψ is
differentiable at α, and ψ ′(α) = K, for some real number K .
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Figure 2. The graph of T in case (a). x̄ is a periodic point of f̃ = T ◦ f .

Figure 3. The graph of T in case (c). α is a periodic point of f̃ = T ◦ f .

We can choose δ2 > 0 sufficiently small such that all of the following happens.

• [α − δ2, α + δ2] ⊂ (x̄, w).
• For all x in [α − δ2, α + δ2], we have | ψ(x) − ψ(α) |� (K + 1) | x − α |.
• For all x in [α − δ2, α + δ2], we have

| ψ(x) − ψ(α) |� ψ(α) − ψ(x̄)

4m0
. (10)
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Figure 4. The graph of T in case (b). α is a periodic point of f̃ = T ◦ f .

In this context, we can choose T (see figure 4) as to satisfy the following conditions (recall
that f2 is defined in (8)).

1. T is non-decreasing and is the identity outside [x̄, y + δ1].
2. T (x) = x̄ if x̄ � x � f2(α − δ2), and T (x) = y + δ1 if f2(α + δ2) � x � y + δ1.
3. T is strictly increasing in some subinterval J of [f2(α−δ2), f2(α+δ2)] such that f2(α) ∈ J .

Also, T (f2(α)) = α.
4. If x belongs to [α − δ2, α + δ2], and

1
2 (ψ(α − δ2) − ψ(α)) � ψ(x) − ψ(α) � 1

2 (ψ(α + δ2) − ψ(α)),

then

ψ(T (f2(x))) − ψ(α) = 2(ψ(x) − ψ(α)). (11)

5. For every x in [α − δ2, α), we have (T ◦ f (x))i.n = x̄ for all sufficiently large i > 0.

Item 4 may be satisfied since both ψ and f2 are strictly increasing in [α − δ2, α + δ2]. One
useful fact is that (11) ensures that α is a repelling source for T ◦ f2.

Item 5 follows from the previous items but is included for simplicity. Figure 5 presents a
sketch of the graph of T ◦ f2 in [x̄, w], the first return for f̃ .

We claim that, in case (b), the invariant measure supported in the periodic orbit of α

maximizes
∫

φ dµ. To see this, first note that for any point in the circle, if its positive orbit
by f̃ = T ◦ f falls inside [x̄, w], but outside [α, α + δ2], it must eventually end at x̄ (since
T ◦ f2(α − δ2) = x̄ and by the choice of δ1, f2(y + δ1) ∈ (x̄, y), so T ◦ f2(y + δ1) = x̄, see
figure 5).

Also, if a point x ∈ D is such that f2(x) /∈ [y, y + δ1], then T (f2(x)) = x̄, and since x̄ is
a periodic point for f̃ with φ average smaller than ψ(α) we need not be concerned.

If we consider those points x in D ∩ (w, y + δ1] such that f2(x) ∈ [y, y + δ1], then the
choice of δ1 gives ψ(x) < ψ(x̄).

Therefore, if a trajectory is such that lim sup
N→∞

1
N

∑N−1
i=0 φ(f̃ i(x)) > ψ(α), then x must

return to [α, α + δ2] infinitely many times.
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Figure 5. Sketch of the graph of f̃ n in the domain [x̄, w] for case (b). α is a repelling source for
this function.

Now, since α is repelling (see condition (11)), a point x in (α, α + δ2] cannot have all its
returns inside this interval without visiting (w, y + δ1].

Therefore, we fix a point x in (α, α + δ2] returning infinitely many times to this interval
and consider the following increasing sequences of positive integers.

• nj , where n0 = 0 and ni+1 = ni + Nret(f̃
ni (x)). This is the sequence of iterates for the

return of x to I = [x̄, y + δ1].

• aj , where a1 = 0 and ai+1 is the smallest integer larger than ai such that f̃ nai+1 (x) is in
[α, α + δ2], but f̃ n(ai+1−1) (x) is not.

• bj , where bi is the smallest integer larger than ai such that f̃ n(bi−1) (x) is in [α, α + δ2], but
f̃ nbi (x) is not.

We have that

1

nak

nak
−1∑

i=0

φ(f̃ i(x)) = 1

nak

ak−1∑
l=0

Nret(f̃
nl )(x)ψ(f̃ nl (x))

= 1

nak

k−1∑
j=1


bj −1∑

l=aj

Nret(f̃
nl )(x)ψ(f̃ nl (x)) +

aj+1−1∑
l=bj

Nret(f̃
nl )(x)ψ(f̃ nl (x))


 .

(12)

Since, for all integers l in [bk, ak+1 − 1), we have that ψ(f̃ nl (x)) � ψ(x̄) (because if
the orbit of x does not belong to [α, α + δ2], it must be outside [x̄, w], otherwise it would be
attracted to x̄), then

aj+1−1∑
l=bj

Nret(f̃
nl )(x)ψ(f̃ nl (x)) � (naj+1 − nbj

)ψ(x̄). (13)
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We recall that for any x in [x̄, w], Nret(x) = Nret(x̄) = n and so, by the construction of T

and the sequences aj , bj ,

bj −1∑
l=aj

Nret(f̃
nl )(x)(ψ(f̃ nl (x)) − ψ(α)) =

bj −aj∑
i=0

2−iNret(x̄)(ψ(f̃
n(bj )−1(x)) − ψ(α))

< 2Nret(x̄)(ψ(α + δ2) − ψ(α)) <
ψ(α) − ψ(x̄)

2
, (14)

where in the first equality we used (11) in the definition of T , and the last inequality made use
of the choice of δ2 and (10).

Substituting the two previous equations in (12) yields that

1

nak

nak
−1∑

i=0

φ(f̃ i(x)) < ψ(α),

and since this is valid for a strictly increasing sequence nak
, there cannot be an ergodic measure

ν, invariant by f̃ , such that
∫

φ dν > ψ(α), and we are done.
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[5] Jenkinson O, Mauldin R D and Urbański M 2006 Ergodic optimization for countable alphabet subshifts of finite

type Ergod. Theory Dyn. Syst. 26 1791–803
[6] Jenkinson O 2006 Ergodic optimization Discrete Contin. Dyn. Syst. 15 197–224
[7] Morris I D 2007 A sufficient condition for the subordination principle in ergodic optimization Bull. London Math.

Soc. 39 214–20
[8] Tal F and Addas-Zanata S 2008 On maximizing measures of homeomorphisms on compact manifolds Fundam.

Math. 200 145–59
[9] Tal F and Addas-Zanata S 2008 Support of maximizing measures for typical C0 dynamics on compact manifolds

Preprint

http://dx.doi.org/10.1016/S0246-0203(00)00132-1
http://dx.doi.org/10.1080/14689360701450543
http://dx.doi.org/10.1017/S014338570600040X
http://dx.doi.org/10.1112/blms/bdl030

	1. Introduction
	2. Preliminaries and outline of the proof
	2.1. Initial assumptions and an important lemma
	2.2. Outline of the proof of theorem 1

	3. Finding the return interval
	3.1. Case 1.1
	3.2. The remaining case

	4. Building "707E f
	 Acknowledgment
	 References

