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Abstract. In this paper we consider homeomorphisms f : T 2 → T 2 homotopic to the
identity and their rotation sets ρ(f̃ ), which are compact convex subsets of the plane.
We show that if ρ(f̃ ) has an extremal point (t, ω) which is not a rational vector, then
arbitrarily C0 close to f we can find a homeomorphism g such that ρ(g̃) ∩ ρ(f̃ )c �= ∅.
So in this case, we have instability for the rotation set.

1. Introduction and statement of the principal result
The dynamics of a homeomorphism of the circle has a well known and very important
invariant, the so called rotation number. Roughly speaking, it measures the average
speed the orbit of a point in the circle rotates around it, and its rationality or not has
strong implications on the dynamics of the homeomorphism (see [3] for a nice didactic
exposition). In particular, when the rotation number is irrational, by arbitrarily small
perturbations we can increase its value.

Homeomorphisms of the 2-torus homotopic to the identity are the most natural two-
dimensional generalization of circle homeomorphisms, but some care must be taken in this
generalization. For example, in the torus we do not have rotation numbers, but rotation
vectors, and there may be different rotation vectors for different points of the torus. So a
rotation set must be defined, which in this case will be a subset of the plane. There are some
different definitions for ‘rotation set’ in the literature, however the sets corresponding to
these different definitions can differ only on their boundaries. In particular, they all have the
same convex hull, which is equal to the Misiurewicz–Ziemian rotation set, the definition
we use. Our main result is inspired in some way by the result we mentioned for circle
homeomorphisms. More precisely, we prove that if the Misiurewicz–Ziemian rotation set
has an extremal point (t, ω) /∈ Q2, then by appropriate arbitrarily small perturbations
we can change the rotation set. Some consequences of this fact can be understood if we
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remember a series of results on the subject (due to Franks, Kwapisz, Misiurewicz and
Ziemian) and this will be done in the last section.

This paper is organized as follows. In the first section, we present some basic definitions
and the precise statement of our main result. In the second section, we present a brief
summary of the results used in the paper and proofs for some simple facts. In the third
section, we prove our main theorem. In the last section, we show some consequences and
present some questions.

Notation and definitions.
(1) Let T 2 = R2/Z2 be the ‘flat’ torus and p : R2 → T 2 be the associated covering

map. We also fix the Euclidean metric on the plane and the corresponding metric
on the torus. The distance between x, y ∈ T 2 (x̃, ỹ ∈ R2) is denoted by ‖x − y‖
(‖x̃ − ỹ‖).

(2) D0(T 2) is the set of homeomorphisms of the torus homotopic to the identity and
D0(R2) is the set of lifts to plane of elements from D0(T 2).

(3) Let p1 : R2 → R and p2 : R2 → R be the standard projections p1(x̃) = x̃1 and
p2(x̃) = x̃2, where x̃ = (x̃1, x̃2).

(4) Given a mapping f ∈ D0(T 2) and a lift f̃ ∈ D0(R2), in [5] Misiurewicz and
Ziemian define the rotation set as follows:

ρ(f̃ ) =
∞⋂
i=1

⋃
n≥i

{
f̃ n(x̃) − x̃

n
: x̃ ∈ R2

}
; (1)

that is, (a, b) ∈ ρ(f̃ ) if and only if there are sequences x̃i ∈ R2 and ni → ∞, such
that

lim
i→∞

f̃ ni (x̃i) − x̃i

ni

= (a, b).

Among other things, they prove that ρ(f̃ ) is a compact convex subset of R2, which
are important properties for this work.

Now we are ready to state our main result.

THEOREM 1. Let f̃ ∈ D0(R2) be such that ρ(f̃ ) has an extremal point (t, ω) /∈ Q2.
Then there exists a g̃ ∈ D0(R2) arbitrarily C0 close to f̃ such that ρ(g̃) �= ρ(f̃ ).
Moreover, ρ(g̃) ∩ ρ(f̃ )c �= ∅.

2. Basic tools
First we recall some results about the rotation set due to Misiurewicz and Ziemian, Franks
and Kwapisz.

Given f̃ ∈ D0(R2), we can define a continuous function φ : T 2 → R2 by

φ(x) = f̃ (x̃) − x̃, where x̃ ∈ p−1(x). (2)

The rotation vector of an f -invariant measure µ is defined in the following way

ρ(µ) =
∫

T 2
φ(x) dµ.
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As we already said, in [5] it is proved that ρ(f̃ ), given by expression (1), is a compact
convex subset of the plane. The first result we recall is Theorem 2.4 of [5].

THEOREM 2. Given f̃ ∈ D0(R2), for every extremal point (a, b) of ρ(f̃ ) there exists an
f -invariant, ergodic measure µ with rotation vector ρ(µ) = (a, b).

Now we present a theorem due to Franks (periodic case) [2] and Misiurewicz and
Ziemian (general case) [6] that gives information about points in the interior of ρ(f̃ ).

THEOREM 3. Let f̃ ∈ D0(R2) and (a, b) ∈ int(ρ(f̃ )). Then there is an f -invariant
compact set X ⊂ T 2 such that for all x ∈ X,

ρ(x, f̃ ) = lim
n→∞

f̃ n(x̃) − x̃

n
= (a, b), for any x̃ ∈ p−1(x).

If (a, b) ∈ Q2, then X can be chosen as a periodic orbit.

In [6] the following theorem is also proved.

THEOREM 4. The function ρ : D0(R2) → {space of all compact subsets of R2} with the
Hausdorff metric is continuous at all f̃ with int(ρ(f̃ )) �= ∅.

The next theorem about the existence of mappings f with certain types of rotation sets
was proven by Kwapisz in [4].

THEOREM 5. Given a convex polygon Q ⊂ R2 with vertices having rational coordinates,
there is a mapping f̃ ∈ D0(R2) such that ρ(f̃ ) = Q.

So Theorems 4 and 5 imply that there are convex sets with non-rational extremal points
that can be rotation sets for mappings from D0(R2).

In the following, we present a proof of a simple result, known as the C0-closing lemma.

LEMMA 1. Given f ∈ D0(T 2) and a lift f̃ ∈ D0(R2), δ > 0, n ∈ N∗ and a non-
periodic point x ∈ T 2 (x̃ ∈ p−1(x)), such that ‖f̃ n(x̃) − x̃ − (l,m)‖ < δ, for some
(l,m) ∈ Z2, then there is a mapping g̃ ∈ D0(R2) such that ‖g̃ − f̃ ‖0 < 2δ, gn(x) = x

and g̃n(x̃) = x̃ + (l,m), for any x̃ ∈ p−1(x).

Remark. As usual we denote:

‖g − f ‖0
def.= sup

x∈T 2
‖g(x) − f (x)‖ and ‖g̃ − f̃ ‖0

def.= sup
x̃∈R2

‖g̃(x̃) − f̃ (x̃)‖.

Proof. The geodesic segment xf n(x) connecting x and f n(x) of length less than δ does
not intersect the set O1,n−1(x) = ⋃n−1

i=1 f i(x) at its extremal points, because the orbit of
x is not periodic. However, some element from O1,n−1(x) may still belong to xf n(x).
So we must make a finite number of changes in xf n(x) in order to obtain a polygonal arc
γ connecting x and f n(x) disjoint from O1,n−1(x) and with length less than 3

2δ. Let V be
an open neighborhood of γ which also does not intersect O1,n−1(x). Let h : T 2 → T 2 be
a homeomorphism which is the identity outside V , h(f n(x)) = x and ‖h̃(ỹ) − ỹ‖ < 2δ,
for all ỹ ∈ p−1(V ). Finally, let g̃ ∈ D0(R2) be defined by g̃(•) = h̃ ◦ f̃ (•). It is easy to
see that ‖g̃ − f̃ ‖0 = ‖h̃ ◦ f̃ − f̃ ‖0 < 2δ and g̃n(x̃) = x̃ + (l,m) ⇒ gn(x) = x. �
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Now we present some results and ideas from the theory of cocycles of ergodic
transformation groups. A fundamental reference in this subject is the book of Schmidt [7].
In particular, our presentation will be directed towards the kind of application we need, so
the definitions and results will be stated with no generality. Another fundamental result for
us is due to Atkinson [1].

Given a mapping f ∈ D0(T 2), an f -invariant ergodic probability measure µ and a
continuous function ϕ : T 2 → R, we define the cocycle for f given by ϕ to be the
function a : Z × T 2 → R given by

a(n, x) =




n−1∑
i=0

ϕ ◦ f i(x), for n > 0,

0, for n = 0,

−a(−n, f n(x)), for n < 0.

(3)

The skew-product extension of f , determined by ϕ, is given by the following mapping
V : T 2 × R → T 2 × R:

V (x, α) = (f (x), α + ϕ(x)). (4)

So, the powers of V can be expressed as

V n(x, α) = (f n(x), α + a(n, x)).

We say that the cocycle a is recurrent, if and only if, for every B ∈ σB(T 2) = {Borel
σ -algebra of T 2} with µ(B) > 0 and every ε > 0, there is an n �= 0 such that

µ(B ∩ f −n(B) ∩ {x : |a(n, x)| < ε}) > 0.

Now we present a result from [1].

THEOREM 6. Suppose that (T 2, σB(T 2), µ) is a non-atomic probability space, f ∈
D0(T 2) is ergodic with respect to µ and ϕ : T 2 → R is a continuous function such
that

∫
T 2 ϕ(x) dµ = 0. Then the cocycle a(n, x) (see (3)) is recurrent.

It is easy to see that the skew-product V (see (4)) leaves the product measure µ × λ

invariant, where λ is the Lebesgue measure in R. The problem here is that the space
T 2 × R is not compact, so we need to work a little more in order to get some kind of
recurrence for V . An important definition for this purpose is the following (see Schmidt
[7, ch. 1]).

We say that the skew-product V is conservative if for every A ∈ σB(T 2 × R) with
µ × λ(A) > 0 and for µ × λ-a.e. (x, α) ∈ A, the set[ ⋃

n∈Z
V n(x, α)

]
∩ A

is infinite. Finally, we present a theorem relating the concepts of recurrence and
conservativeness (see [7, ch. 5]).

THEOREM 7. Suppose that (T 2, σB(T 2), µ) is a non-atomic probability space, the
homeomorphism f ∈ D0(T 2) is ergodic with respect to µ and the cocycle a(n, x) (see (3))
is recurrent. Then the skew-product V (x, α) given by (4) is conservative.
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So, Theorems 6 and 7 imply that for any continuous function ϕ : T 2 → R such
that

∫
T 2 ϕ(x) dµ = 0, the cocycle a(n, x) is recurrent and the skew-product V (x, α) is

conservative. Another consequence of the conservativeness of a skew-product V as in (4)
is the following.

LEMMA 2. If a skew-product V as in (4) is conservative, then given any B ∈ σB(T 2),
with µ(B) > 0 and any δ > 0, for µ-a.e. x ∈ B we have

f n(x) ∈ B and |a(n, x)| < δ, for infinitely many n ∈ Z.

The proof is immediate from the definitions.

3. Proof of the main result
In this section we prove our main result, Theorem 1. First we present a sketch of the main
idea, as an attempt to help the understanding of the reader.

Sketch of the proof. From the theorem hypothesis and the results in §2, we know that ρ(f̃ )

is a compact convex subset of the plane, which has an extremal point (t, ω) /∈ Q2. As (t, ω)

is an extremal point of ρ(f̃ ), there is a line (called supporting line) passing through (t, ω)

with the following property:
• ρ(f̃ ) does not intersect both components of the complement of this line; it is contained

in the union of the line and one connected component of this complement.
Our main idea is to perturb f̃ in order to create a periodic point whose rotation vector

belongs to the other side of the supporting line through (t, ω). As ρ(f̃ ) does not intersect
this side of the line, we get that the rotation set for the perturbed mapping intersects ρ(f̃ )c.

The reason why such a perturbation is possible is roughly the following. From
Theorem 2, there is an ergodic measure with rotation vector equal to (t, ω). So, in
particular, there are recurrent points for f with rotation vector equal to (t, ω). Consider a
point x0 ∈ T 2 of this type and an arbitrarily small neighborhood V0 of it. As x0 is recurrent
for f , arbitrarily large iterates of x0 fall inside V0. As ρ(x0, f̃ ) = (t, ω), there exists a

sequence ni
i→∞→ ∞ such that for any x̃0 ∈ p−1(x0), f̃ ni (x̃0) − (li,mi) ∈ Ṽ0, for some

(li,mi) ∈ Z2 with (li/ni,mi/ni)
i→∞→ (t, ω). Finally, we have two possibilities:

(1) for some i > 0, (li/ni ,mi/ni) belongs to the other side (the side that does not contain
any point of ρ(f̃ )) of the supporting line through (t, ω);

(2) the above is not true.
Possibility (1) above is very easy to work with: we just have to perturb f in order to

close the orbit of x0. Clearly its rotation vector will be equal (li/ni ,mi/ni). If we suppose
that (1) does not happen, then using all the machinery developed in the previous section,
we can prove that there exist i0, i1 ∈ N∗ and a point x1 arbitrarily close to x0 such that

‖f̃ ni1 (x̃1) − (li1 − li0 ,mi1 − mi0) − f̃ ni0 (x̃1)‖
is less than the diameter of V0 � x0 and ((li1 − li0)/(ni1 − ni0)), (mi1 − mi0)/(ni1 − ni0)

belongs to the other side of the supporting line through (t, ω). And so, everything continues
as in the above case. �
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FIGURE 1. Diagram showing ρ(f̃ ), r1 and r2.

In the following, we present a detailed proof for our main result. We are going to
prove that for any given ε > 0, there is a g̃ ∈ D0(R2), such that ‖f̃ − g̃‖0 < ε and
ρ(g̃) ∩ ρ(f̃ )c �= ∅. So, from now on, we fix an ε > 0. As f̃ ∈ D0(R2) we know that
ρ(f̃ ) is a compact convex subset of the plane, which from the theorem hypothesis, has an
extremal point (t, ω) /∈ Q2. This means, among other things, that there is a line r passing
through (t, ω) such that ρ(f̃ ) does not intersect one of the open connected components
of rc—see Figure 1 for a diagram of this fact. So, if the line r is given by

r : {(a, b) ∈ R2 : L(a, b) = u(a − t) + v(b − ω) = 0}, for certain u, v ∈ R,

then we can suppose without loss of generality that ρ(f̃ ) ⊂ {L(a, b) ≤ 0}.
If we recall Theorem 2, we know that there is an f -invariant, ergodic measure µ with

rotation vector ρ(µ) = (t, ω), which is non-atomic because an atom of µ would constitute
a periodic point with rational rotation vector.

Now let A ⊂ T 2 be the following set: A = {x ∈ supp(µ) : x is recurrent and
ρ(x, f̃ ) = (t, ω)}, which has full µ-measure, µ(A) = 1, and is f -invariant, f (A) = A.

Let φu,v : T 2 → R be the following continuous function:

φu,v(x) = (u, v) · (φ(x) − (t, ω)),

where φ(x) is given by expression (2). We recall that (u, v) is the direction of the line r ,
which passes through (t, ω).

As ρ(µ) = (t, ω), we get that ∫
T 2

φu,v(x) dµ = 0.

So, Theorems 6 and 7 imply that the cocycle au,v(n, x) and the skew-product Vu,v(x, α)

associated to f and φu,v are, respectively, recurrent and conservative.
Let δ = ε/8 and choose any x0 ∈ A. As x0 is recurrent, there is an n0 > 0 such

that f n0(x0) ∈ Bδ(x0). This means that there is a pair (l0,m0) ∈ Z2, such that for all
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x̃0 ∈ p−1(x0) we have
‖f̃ n0(x̃0) − x̃0 − (l0,m0)‖ < δ.

If (l0/n0,m0/n0) /∈ ρ(f̃ ), then we apply the C0-closing lemma (see Lemma 1) in order to
obtain a mapping g̃ ∈ D0(R2), such that gn0(x0) = x0, ρ(x0, g̃) = (l0/n0,m0/n0) /∈
ρ(f̃ ) and ‖f̃ − g̃‖0 < 2δ < ε and the proof is complete. So we can suppose that
(l0/n0,m0/n0) ∈ ρ(f̃ ). Therefore, it is left to consider the case L(l0/n0,m0/n0) ≤ 0.
Of course (l0/n0,m0/n0) �= (t, ω), because (t, ω) /∈ Q2. The following technical lemma
shows that we can in fact suppose that L(l0/n0,m0/n0) < 0.

LEMMA 3. Given δ > 0, it is not possible that for all x ∈ A (x̃ ∈ p−1(x)) and n > 0
such that ‖f̃ n(x̃) − x̃ − (l,m)‖ < δ, for some pair (l,m) ∈ Z2, (l/n,m/n) ∈ ρ(f̃ ) and
L(l/n,m/n) = 0.

Proof. The proof of this lemma is driven by an idea analogous to that used in the remaining
part of the proof of the main theorem. So we hope this proof will help the reader in
understanding the rest of the proof of the main theorem. We just remark that if ρ(f̃ ) is
a polygon or a strictly convex set, then through the extremal point (t, ω) of ρ(f̃ ) passes
a line r which intersects ρ(f̃ ) only at (t, ω). This implies that if (l/n,m/n) ∈ ρ(f̃ ),
as (l/n,m/n) �= (t, ω), then L(l/n,m/n) < 0. So the proof is immediate in this case.
The general situation goes as follows.

By contradiction, suppose that for all x ∈ A (x̃ ∈ p−1(x)) and n > 0 such that
‖f̃ n(x̃) − x̃ − (l,m)‖ < δ, for some pair (l,m) ∈ Z2, we have (l/n,m/n) ∈ ρ(f̃ ) and
L(l/n,m/n) = 0. As (t, ω) is an extremal point of ρ(f̃ ), we know that it divides the line
r into a closed half-line r1 � (t, ω) and an open half-line r2, with r2 ∩ ρ(f̃ ) = ∅; see
Figure 1. If we choose some x0 ∈ A, as x0 is recurrent, there is an n0 > 0 and a pair
(l0,m0) ∈ Z2 such that for all x̃0 ∈ p−1(x0) we have

‖f̃ n0(x̃0) − x̃0 − (l0,m0)‖ <
δ

2
. (5)

Our hypothesis implies that (l0/n0,m0/n0) ∈ ρ(f̃ ) ∩ r1. As (t, ω) /∈ Q2, without loss of
generality we can suppose that ω /∈ Q. As r1 is a closed half-line starting at (t, ω) and
containing rational points, we have two possibilities:
(i) any (a, b) ∈ r1\{(t, ω)} satisfies ω > b;
(ii) any (a, b) ∈ r1\{(t, ω)} satisfies ω < b.

As the two possibilities above are analogous, we only analyze the first. As (l0/n0,

m0/n0) ∈ r1, we have that ω > m0/n0 and let C = n0ω−m0 > 0. As f n0(x0) ∈ Bδ/2(x0),
there exists 0 < δ1 < δ/2 such that for all z ∈ Bδ1

(x0) we have f n0(z) ∈ Bδ/2(x0).

Let δ1 = min{δ1/10, C/10}. As x0 ∈ A and µ(A) = 1, we know that µ(A ∩ Bδ1(x0)) =
µ(Bδ1(x0)) > 0.

Now we define a function φ2 : T 2 → R by

φ2(x) = p2 ◦ φ(x) − ω,

where φ(x) is given by expression (2). As ρ(µ) = (t, ω) we get∫
T 2

φ2(x) dµ = 0.
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So, Theorems 6 and 7 imply that the cocycle a2(n, x) and the skew-product V2(x, α)

associated to f and φ2 are, respectively, recurrent and conservative.
As µ(A ∩ Bδ1(x0)) = µ(Bδ1(x0)) > 0, by Lemma 2 we know that there exists

z ∈ A ∩ Bδ1(x0) such that f n1(z) ∈ Bδ1(x0) and |a2(n1, z)| < δ1, for some n1 > n0.
Now we make two observations (as always, z̃ is any point in p−1(z)):

(1) as δ1 < δ1, f n0(z) ∈ Bδ/2(x0);
(2) there exists (l1,m1) ∈ Z2 such that

‖f̃ n1(z̃)−z̃−(l1,m1)‖ < 2δ1 and |a2(n1, z)| = |p2◦f̃ n1(z̃)−p2(z̃)−n1ω| < δ1.

The second observation implies that

|n1ω − m1| < 3δ1 < C = n0ω − m0. (6)

So ω satisfies the following inequality:

ω <
m1 − m0

n1 − n0
. (7)

From the observations above and expression (5), defining w = f n0(z) ∈ Bδ/2(x0), we
get that f n1−n0(w) = f n1(z) ∈ Bδ1(x0) and for any w̃ ∈ p−1(w),

‖f̃ n1−n0(w̃) − w̃ − (l1 − l0,m1 − m0)‖ <
δ

2
+ δ1 < δ.

Finally, as z ∈ A and f (A) = A we get that w ∈ A. Our initial hypothesis implies that(
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
∈ ρ(f̃ ) and L

(
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
= 0.

However, this is a contradiction, since from (7) we know that if

L

(
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
= 0,

then (
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
∈ r2 ⇒

(
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
/∈ ρ(f̃ ).

So the lemma is proved. �

Thus, from the above lemma we can suppose that L(l0/n0,m0/n0) < 0 ⇒ u(l0/n0 − t)

+ v(m0/n0 − ω) < 0 ⇒ C = u(n0t − l0) + v(n0ω − m0) > 0.
Let 0 < δ1 < δ be such that for all z ∈ Bδ1

(x0), f n0(z) ∈ Bδ(x0) and let

δ1 = min

{
δ1

10
,

C

4(|u| + |v| + 1)

}
.

As x0 ∈ A we get that µ(Bδ1(x0)) > 0, which implies (by Lemma 2) that there exist
z ∈ Bδ1(x0) and n1 > n0 such that f n1(z) ∈ Bδ1(x0) and |au,v(n1, z)| < δ1. This means
that there exist (l1,m1) ∈ Z2 such that for any z̃ ∈ p−1(z) we have

‖f̃ n1(z̃) − z̃ − (l1,m1)‖ < 2δ1 < δ (8)
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|au,v(n1, z)| =
∣∣∣∣
n1−1∑
i=0

φu,v ◦ f i(z)

∣∣∣∣
= |u(p1 ◦ f̃ n1(z̃) − p1(z̃) − n1t) + v(p2 ◦ f̃ n1(z̃) − p2(z̃) − n1ω)| < δ1.

(9)

Expressions (8) and (9) imply that

|u(n1t −l1)+v(n1ω−m1)| < (2|u|+2|v|+1)δ1 < C = u(n0t −l0)+v(n0ω−m0). (10)

So u(n1t − l1) + v(n1ω − m1) < u(n0t − l0) + v(n0ω − m0), which gives

u

(
l1 − l0

n1 − n0
− t

)
+ v

(
m1 − m0

n1 − n0
− ω

)
> 0.

The last inequality implies that(
l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
/∈ ρ(f̃ ).

From the choice of δ1 > 0, defining w = f n0(z) ∈ Bδ(x0) we get that (w̃ ∈ p−1(w))

‖f̃ n1−n0(w̃) − w̃ − (l1 − l0,m1 − m0)‖ < δ + δ1 < 2δ.

Thus the C0-closing Lemma 1 implies that we can obtain a mapping g̃ ∈ D0(R2), such
that

gn1−n0(w) = w, ρ(w, g̃) =
(

l1 − l0

n1 − n0
,
m1 − m0

n1 − n0

)
/∈ ρ(f̃ )

and ‖f̃ − g̃‖0 < 4δ < ε, which completes the proof. �

4. Consequences of the main result and some questions
A simple corollary of our main theorem and Theorems 3 and 4 is the following.

COROLLARY 1. Let f̃ ∈ D0(R2) be a Cr diffeomorphism (r ≥ 0) such that ρ(f̃ ) has an
extremal point (t, ω) /∈ Q2 and int(ρ(f̃ )) �= ∅. Then, given ε > 0, there exists an isotopy
g̃t ∈ D0(R2), which is also a Cr diffeomorphism for all t ∈ [0, 1], g0 = f , g1 = g, with
‖g̃t − f̃ ‖0 < ε for all t ∈ [0, 1] and ρ(g̃) ∩ ρ(f̃ )c �= ∅. Moreover, as t goes from zero to
one, infinitely many periodic points are created for the mappings of the torus.

Proof. In order to see that infinitely many periodic points are created as t goes from zero to
one, we just have to observe that as int(ρ(f̃ )) �= ∅, Theorem 4 implies that int(ρ(g̃t )) �= ∅
for all t ∈ [0, 1], if ε > 0 is sufficiently small. As ρ(g̃) ∩ ρ(f̃ )c �= ∅, ρ(g̃) has infinitely
many rational interior points that do not belong to ρ(f̃ ). Theorem 3 implies that for each
of these points, there is a periodic orbit for g with that rotation vector, something that does
not hold for f . The rest is easy. �

There are many open questions about this subject, but one of the most natural is the
following.

Question 1. Can we prove Theorem 1 in the C1 topology?
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Also, we would like to know what happens when all the extremal points of the rotation
set have rational coordinates.

Question 2. Is there an f̃ ∈ D0(R2) with a rational polygon Q as a rotation set and
sequences f̃ i

n, f̃ o
n ∈ D0(R2) such that f̃ i

n, f̃ o
n

n→∞→ f̃ in the C0 topology and ρ(f̃ i
n) is

strictly contained in Q and ρ(f̃ o
n ) strictly contains Q?

The above question is motivated by some simple properties of circle homeomorphisms
with rational rotation number.
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