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Abstract
Let 𝑓 be a 𝐶1+𝜀 diffeomorphism of the closed annulus
𝐴 that preserves orientation and the boundary compo-
nents, and 𝑓 be a lift of 𝑓 to its universal covering space.
Assume that 𝐴 is a Birkhoff region of instability for 𝑓,
and the rotation set of 𝑓 is a nondegenerate interval.
Then there exists an open 𝑓-invariant essential annulus
𝐴∗ whose frontier intersects both boundary components
of 𝐴, and points 𝑧+ and 𝑧− in 𝐴∗, such that the positive
(resp., negative) orbit of 𝑧+ converges to a set contained
in the upper (resp., lower) boundary component of 𝐴∗

and the positive (resp., negative) orbit of 𝑧− converges
to a set contained in the lower (resp., upper) boundary
component of 𝐴∗. This extends a celebrated result origi-
nally proved byMather in the context of area-preserving
twist diffeomorphisms.
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1 INTRODUCTION AND STATEMENTS OF THE RESULTS

When studying the dynamics of 𝐶1-area-preserving twist diffeomorphisms of the closed annulus
𝐴 = 𝑆1 × [0, 1], a celebrated theorem due to Mather [17] states that if 𝑓 is such a diffeomorphism
and 𝐴 contains no essential 𝑓 -invariant continuum apart from each boundary component of 𝐴,
except for continua containing both boundary components, (in other words, 𝐴 is minimal with
respect to the inclusion: its interior contains no proper essential 𝑓-invariant open annulus), then
there are points 𝑧+, 𝑧− in 𝐴 such that the 𝛼-limit set of 𝑧+ is contained in 𝑆1 × {0}, the 𝜔-limit set
of 𝑧+ is contained in 𝑆1 × {1}, the 𝛼-limit set of 𝑧− is contained in 𝑆1 × {1} and the 𝜔-limit set of
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𝑧− is contained in 𝑆1 × {0}. Mather’s theoremwas proved using an intricate variational argument,
which gave a lot of insight about what happens in the 𝐶𝑟-generic situation, for all 𝑟 ⩾ 1. Later
on, Le Calvez developed a completely topological proof [13], extending Mather’s result to twist
area-preserving homeomorphisms.
In this paper, our main objective is to prove a version of this result in the 𝐶1+𝜀 world, without

the twist and area-preservation hypotheses and under the weaker condition of the annulus being
a Birkhoff region of instability, a situation that was widely considered for twist homeomorphisms,
see, for instance, [5, 13, 17] and [8]. Namely, we consider 𝐶1+𝜀 diffeomorphisms 𝑓 ∶ 𝐴 → 𝐴 that
preserve orientation and the boundary components, whose rotation sets are nondegenerate inter-
vals and as explained above, we assume that 𝐴 is a Birkhoff region of instability for 𝑓 (see below
for the precise definition). The nondegeneracy condition on the rotation set is always satisfied by
twist maps.
One last remark is that, in the area-preserving world, if 𝐴 is minimal as explained above, then

it is also a Birkhoff region of instability (this was originally proved by Birkhoff for twist maps in
[5]), but the two definitions are not equivalent.
To state our main theorems properly, below we present some definitions.

Definitions.

(1) Let Dif f r0(A) be the subset of 𝐶
𝑟 (for any 𝑟 ⩾ 0) diffeomorphisms 𝑓 ∶ 𝐴 → 𝐴 (when 𝑟 = 0, 𝑓

is just a homeomorphism) that preserve orientation and the boundary components of 𝐴 =

𝑆1 × [0, 1]. A lift of 𝑓 to the universal cover of the annulus 𝐴 = IR × [0, 1], is denoted 𝑓, a
homeomorphism that satisfies 𝑓(𝑧 + (1, 0)) = 𝑓(𝑧) + (1, 0) for all 𝑧 ∈ 𝐴.

(2) When 𝑟 = 1 + 𝜀 for some 0 < 𝜀 < 1 in the above definition, we mean that 𝐷𝑓 is 𝜀-Holder.
(3) The annulus 𝐴 is said to be a Birkhoff region of instability for some 𝑓 ∈ Dif f 00(A) if, for

all 𝜀 > 0, there exist integers 𝑁,𝑀 > 0 such that 𝑓𝑁(𝑆1×]0, 𝜀[) intersects 𝑆1×]1 − 𝜀, 1[ and
𝑓−𝑀(𝑆1×]0, 𝜀[) also intersects 𝑆1×]1 − 𝜀, 1[. We say that 𝐴 is aMather region of instability for
𝑓 if there are points 𝑧+, 𝑧− in 𝐴, such that the 𝛼-limit set of 𝑧+ is contained in the lower
boundary component of 𝐴 and its 𝜔-limit set is contained in the upper boundary component
of 𝐴. Similarly, the 𝛼-limit set of 𝑧− is contained in the upper boundary component of 𝐴 and
its 𝜔-limit set is contained in the lower boundary component of 𝐴.

(4) Let 𝑝1 ∶ 𝐴→ IR be the projection on the horizontal coordinate and as usual, let 𝑝 ∶ 𝐴→ 𝐴 be
the covering mapping. Fixed 𝑓 ∈ Dif f 00(A) and a lift 𝑓, the displacement function 𝜙 ∶ 𝐴→ IR

is defined as

𝜙(𝑧) = 𝑝1◦𝑓(𝑧) − 𝑝1(𝑧),

for any 𝑧 ∈ 𝑝−1(𝑧).
(5) Given any 𝑓 ∈ Dif f 00(A) and fixed some lift 𝑓, a point 𝑧 ∈ 𝐴 is said to have rotation number

𝜌0 if the limit lim𝑛→∞
1

𝑛

∑𝑛−1
𝑖=0 𝜙(𝑓

𝑖(𝑧)) exists and is equal to 𝜌0. We say that 𝜌0 is realized by
the compact set 𝐾 ⊂ 𝐴 if 𝐾 is 𝑓-invariant, and all points in 𝐾 have rotation number 𝜌0.

(6) Given any 𝑓 ∈ Dif f 00(A) and fixed some lift 𝑓, the rotation set of 𝑓 is defined as

𝜌(𝑓) =

{
𝜔 ∈ IR ∶ there exists a Borel probability 𝑓-invariant

measure 𝜇 such that 𝜔 = ∫𝐴 𝜙(𝑧)𝑑𝜇
}
.
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Clearly, from the convexity of the subset of Borel probability 𝑓-invariantmeasures, 𝜌(𝑓) is a
closed interval, maybe a single point.Moreover, its extremes are realized by ergodicmeasures,
see [18]. In this generality, not muchmore can be said. There are well-known examples with a
nondegenerate interval as a rotation set, for which only the extremes are the rotation numbers
of some orbits.

(7) Given 𝑓 ∈ Dif f 00(A), we say that it satisfies the curve intersection property, if for any homo-
topically nontrivial simple closed curve 𝛾 ⊂ 𝐴, we have 𝑓(𝛾) ∩ 𝛾 ≠ ∅. It is not hard to see that
if some 𝑓 ∈ Dif f 00(A) satisfies the curve intersection property, then 𝑓

𝑛 also satisfies it, for all
integers 𝑛 ≠ 0. Also, it is immediate that, in case 𝐴 is a Birkhoff region of instability for some
𝑓 ∈ Dif f 00(A), then 𝑓 satisfies the curve intersection property.

(8) Let 𝑓 ∈ Dif f 00(A) and 𝛾 contained in the interior of 𝐴 be a homotopically nontrivial simple
closed curve. Denote by 𝛾− the connected component of 𝛾𝑐 that contains 𝑆1 × {0} and analo-
gously, let 𝛾+ be the connected component of 𝛾𝑐 that contains 𝑆1 × {1}. Denote by 𝜉−(𝛾) the
connected component of the maximal invariant set in the closure of 𝛾− that contains 𝑆1 × {0}
and by 𝜉+(𝛾) the connected component of the maximal invariant set in the closure of 𝛾+
that contains 𝑆1 × {1}. Finally, for all integers 𝑛 > 1, denote by 𝜉−

1∕𝑛
= 𝜉−(𝑆1 × {1 − 1∕𝑛}) and

𝜉+
1∕𝑛

= 𝜉+(𝑆1 × {1∕𝑛}).

Note that, in case 𝐴 is a Birkhoff region of instability,

𝜕(𝜉−(𝛾))𝑐 ∩ 𝑆1 × {0} ≠ ∅ and 𝜕(𝜉+(𝛾))𝑐 ∩ 𝑆1 × {1} ≠ ∅.

We are ready to state our main theorem.

Theorem 1. Let 𝑓 ∈ Dif f 1+ε0 (A) for some 𝜀 > 0 be such that𝐴 is a Birkhoff region of instability and
for some fixed lift𝑓,𝜌(𝑓)has interior. Then there exists a homotopically nontrivial simple closed curve
𝛾 ⊂ 𝐴 and an𝑓-invariantminimal open annulus𝐴∗ ⊂ 𝐴 containing 𝛾 such that 𝜕𝐴∗ intersects both
𝑆1 × {0} and 𝑆1 × {1} and 𝐴∗ is a Mather region of instability.

Remark. Clearly, if 𝐴 is itself minimal as in the hypothesis of Mather’s original theorem, then
𝐴 = 𝐴∗ and so, the whole annulus is a Mather region of instability.

Note that, in [6, Proposition 2.19], a result in the same direction was obtained. There, 𝑓 was
an area-preserving homeomorphism, instead of a 𝐶1+𝜀 diffeomorphism, and the thesis obtained
was that 𝐴∗ is a mixed 𝑆𝑁 region of instability, a condition weaker than being a Mather region
of instability.
Let us comment on the hypothesis and thesis of Theorem 1. First, we point out that the result

does not hold in case the rotation set of 𝑓 is a single point. There are known examples (see, for
instance, [4]) of smooth maps 𝑓 ∶ 𝐴 → 𝐴 having a single rotation number that are both weak-
mixing (therefore 𝐴 is a Birkhoff region of instability), but also rigid (meaning that there is a
sequence of positive iterates of 𝑓 that converges to the identity). So, no subannulus of 𝑓 can be a
Mather region of instability.
A natural question is also to understand, under our hypotheses, if 𝐴 itself is always a Mather

region of instability. But this is false, and we sketch an example of a 𝐶∞ area-preserving dif-
feomorphism. Take 𝑓 ∶ 𝐴 → 𝐴, which extends to a smooth area-preserving diffeomorphism g ∶

𝑆1 × IR → 𝑆1 × IR such that the restriction of 𝑓 to the upper boundary has a single degenerate
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F IGURE 1 Sketch of the smooth diffeomorphism for which 𝐴 (obtained by gluing the two lateral sides
together) is not a Mather region of instability.

topological saddle fixed point 𝑝1, that is, 𝑝1 is a fixed point such that the differential of g at 𝑝1
is the identity, and such that there exists a local topological conjugation between the dynamics
of g at 𝑝1 and a linear hyperbolic saddle at the origin. Likewise, we assume that 𝑓 has a sin-
gle degenerate topological saddle fixed point 𝑝0 in the lower boundary, so that each boundary
of 𝐴 consists of a single fixed point and a saddle connection. Furthermore, we assume that 𝑓
has two hyperbolic saddle points, 𝑞0 and 𝑞1, and that there exists saddle connections between
a branch of the unstable manifold of 𝑞0 and a branch of the stable manifold of 𝑝0, as well as a
connection between a branch of the stable manifold of 𝑞0 and a branch of the unstable manifold
of 𝑝0, so that there exists an essential invariant closed curve 𝛾0 that intersects the lower bound-
ary just at the point 𝑝0. One can do a similar picture, with two saddle connections between 𝑝1
and 𝑞1, and an invariant essential closed curve 𝛾1 made by these connections and the points 𝑝1
and 𝑞1, which intersects the upper boundary just at 𝑝1. Finally, one can assume that there are
transversal heteroclinic intersections between the “free” branches of the unstable manifold of 𝑞0
and the stable manifold of 𝑞1, and between the unstable manifold of 𝑞1 and the stable manifold
of 𝑞0, see Figure 1. Finally, we may assume that, for a given lift 𝑓 of 𝑓, 𝑝0 and 𝑝1 have different
rotation numbers.
In this picture, from the 𝜆-lemma one would get that the unstable manifold of 𝑞1 accumulates

on 𝑝0 and as the unstable manifold of 𝑞1 is contained in the closure of the future orbit of any
neighborhood of 𝑝1, one gets that there exists points arbitrarily close to 𝑝1 whose future orbit
lie arbitrarily close to 𝑝0. A similar argument shows that there exists points arbitrarily close to
𝑝0 whose future orbit lie arbitrarily close to 𝑝1, and so 𝐴 is a Birkhoff region of instability. But
we claim 𝐴 cannot be a Mather region of instability for 𝑓. Indeed, if the 𝜔-limit of a point 𝑧 in
the included in 𝑆1 × {1}, then either 𝑧 lies in a stable branch of 𝑝1, in which case the 𝛼-limit of
𝑧 is either {𝑝1} or {𝑞1}, or 𝑧 must lie above the graph determined by 𝛾1 ∪ {𝑝1}. As the closure of
the later region is invariant and disjoint from 𝑆1 × {0}, this implies that the 𝛼-limit of 𝑧 is disjoint
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from 𝑆1 × {0}. This shows that there does not exist a point whose 𝛼-limit lies in 𝑆1 × {0} andwhose
𝜔-limit lies in 𝑆1 × {1}.
The next lemma is a crucial step in the proof of Theorem 1. It also explains how the annulus𝐴∗

is constructed.

Lemma 1. Under the hypotheses of Theorem 1, there exists a homotopically nontrivial closed curve
𝛾 contained in the interior of 𝐴 such that 𝜉−(𝛽) ∩ 𝛾 = ∅ and 𝜉+(𝛽) ∩ 𝛾 = ∅ for any homotopically
nontrivial simple closed curve 𝛽 ⊂ 𝐴. So, there exist 𝑓-invariant continua 𝐾− ⊃ 𝑆1 × {0} and 𝐾+ ⊃
𝑆1 × {1} such that 𝐾− ∩ 𝐾+ = ∅ and for all sufficiently large integers 𝑛 > 1, 𝜉−

1∕𝑛
= 𝐾− and 𝜉+

1∕𝑛
=

𝐾+. Moreover, if 𝐴∗ is the 𝑓-invariant open annulus between 𝐾− and 𝐾+, then 𝜕𝐴∗ intersects both
𝑆1 × {0} and 𝑆1 × {1}.

When𝐴 is minimal, in the sense that its interior contains no 𝑓-invariant proper essential open
sub-annulus, then 𝜉−

1∕𝑛
= 𝑆1 × { 0} and 𝜉+

1∕𝑛
= 𝑆1 × { 1}, for all integers 𝑛 > 1, but when 𝐴 is just

a Birkhoff region of instability, we cannot avoid considering the sets 𝐾− and 𝐾+ from Lemma 1.
We also provide the following result, which is fundamental in the proof of Theorem 1, butwhose

interest stands alone for its possible applications:

Theorem 2. Again, under the hypotheses of Theorem 1, there exists 𝐸, an open and dense subset of
𝜌(𝑓), such that for any rational number 𝑝∕𝑞 ∈ 𝐸, there exists a hyperbolic periodic saddle point 𝑧
contained in the interior of 𝐴 whose rotation number is 𝑝∕𝑞 and a homotopically nontrivial closed
curve 𝛾𝑝∕𝑞 ∋ 𝑧, contained in the union of the stable and unstable manifolds of 𝑧.

Finally, we remark that part of the interest in regions of instability comes from the fact that
the dynamics in these regions is usually very rich. For instance, a classical result says that, if
𝑓 ∈ Dif f 00(A) has the curve intersection property (a condition that is satisfiedwhen𝐴 is a Birkhoff
region of instability), and if 𝜌(𝑓) = [𝑎, 𝑏], then for any rational number 𝑎 < 𝑝∕𝑞 < 𝑏, 𝑓𝑞 − (𝑝, 0)
has a fixed point. In other words, all rationals in the interior of the rotation set are realized by
periodic orbits. To prove this statement, note that in [18] it was proved that 𝑎 and 𝑏 are real-
ized by ergodic Borel 𝑓 -invariant probability measures, that is, 𝑎 and 𝑏 are equal to the rotation
numbers of actual points in 𝐴. So, if for some 𝑎 < 𝑝∕𝑞 < 𝑏, 𝑓𝑞 − (𝑝, 0) does not have a fixed
point, then the version of Brouwer’s translation theorem applied to the annulus that appears
in a 1928–1929 paper of Kerekjarto [11] implies the existence of a homotopically nontrivial sim-
ple closed curve disjoint from its image under 𝑓, a contradiction with the curve intersection
property.
Moreover, if the twist condition is present, even for any irrational number 𝜌0 in the rotation set,

one can find an 𝑓-invariant compact set 𝐾𝜌0 that realizes 𝜌0, such that the restriction of 𝑓 to 𝐾𝜌0
is semiconjugated to the irrational rotation of the circle with the same rotation number. The fact
that the full rotation set is realized by compact 𝑓-invariant sets was also proved in the absence of
the twist condition, for area preserving homeomorphisms [6, 14].
Our final result, a direct consequence of Theorems 1, 2 and [6, Theorem C], says that:

Theorem 3. Let 𝑓 ∈ Dif f 1+ε0 (A) for some 𝜀 > 0 be such that𝐴 is a Birkhoff region of instability and
let 𝑓 be a lift of 𝑓 to its universal covering space. Then there are at most two numbers in 𝜌(𝑓) that are
not realized by compact 𝑓-invariant sets.
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The paper is organized as follows. In the next section, we present all the necessary preliminary
results, with a brief overview and remainder of the tools needed in thiswork. Section 3 is dedicated
to the proofs of our main results.

2 PRELIMINARIES

In this section, we describe some theories we use and quote some results.

2.1 Prime ends compactification of open disks

If 𝐷 is an open topological disk of an oriented surface 𝑆 potentially with boundary, such that
𝜕𝐷 is a Jordan curve and 𝑓 is an orientation preserving homeomorphism of that surface which
satisfies 𝑓(𝐷) = 𝐷, then 𝑓 ∶ 𝜕𝐷 → 𝜕𝐷 is conjugate to a homeomorphism of the circle, and so a
real number 𝜌(𝐷), the rotation number of 𝑓 ∣𝜕𝐷 can be associated to this problem. By the classical
properties of rotation numbers, if 𝜌(𝐷) is rational, then there exists a periodic point in 𝜕𝐷 and if
it is not, then there are no such points. This is known since Poincaré. The difficulties arise when
we do not assume 𝜕𝐷 to be a Jordan curve.
The prime ends compactification is away to attach to𝐷 a circle called the circle of prime ends of

𝐷, obtaining a space𝐷 ⊔ 𝑆1with a topology thatmakes it homeomorphic to the closed unit disk. If,
as above, we assume the existence of an orientation preserving homeomorphism 𝑓 of 𝑆 such that
𝑓(𝐷) = 𝐷, then 𝑓 ∣𝐷 extends to 𝐷 ⊔ 𝑆1. The prime ends rotation number of 𝑓 in 𝐷, still denoted
𝜌(𝐷), is the usual rotation number of the orientation preserving homeomorphism induced on 𝑆1
by the extension of 𝑓 ∣𝐷 . But things may be quite different in this setting. In full generality, it is
not true that when 𝜌(𝐷) is rational, there are periodic points in 𝜕𝐷 and for some examples, 𝜌(𝐷)
is irrational and 𝜕𝐷 is not periodic point free. Anyway, the only result on this subject we need
is the following classical lemma (as usual, a point 𝑧 ∈ 𝜕𝐷 is said to be accessible if there exists
a simple arc 𝛾 ∶ [0, 1] → 𝐷 ∪ 𝜕𝐷 such that 𝛾([0, 1[) ⊂ 𝐷 and 𝛾(1) = 𝑧) whose proof, for instance,
can be found in [9, Theorem 16].

Lemma 2. Let 𝑓 ∈ Dif f 00(A) and let 𝐷 ⊂ 𝐴 be an 𝑓 -invariant open annulus given by the com-
plement of some 𝑓-invariant continuum 𝐾 that contains 𝑆1 × {0} and avoids 𝑆1 × {1}. Then the
boundary of 𝐷 has two connected components, one is 𝑆1 × {1} and the other one is some continuum
𝑀 ⊆ 𝐾. Moreover, if 𝑧1, 𝑧2 ∈ 𝑀 are periodic points, both accessible from 𝐷, then they have the same
rotation number.

Remark. As 𝐷 is not a disk, by prime ends rotation number of 𝐷 (denoted 𝜌(𝐷)), we mean the
following: Contract 𝑆1 × {1} to a point𝑁 in order to turn 𝐴 into a closed disk. Clearly, 𝑓 ∶ 𝐴 → 𝐴

induces a homeomorphism of this closed disk that fixes 𝑁. Now, 𝐷 becomes an open topological
disk and 𝜌(𝐷) is the prime ends rotation number of this disk.

Some interesting facts related to the previous result, but not necessary for us are the following:
𝜌(𝐷) is equal to the rotation number (in 𝐴) of any accessible periodic point in𝑀. More generally,
the main result of [9] says that for any accessible point in𝑀 = 𝜕𝐷, either its forward or backward
annulus rotation number is equal to 𝜌(𝐷).
For more information on the theory of prime ends, see, for instance, [12, 17] and [9].
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2.2 Topologically transverse intersections

Let 𝑆 be a compact orientable surface. We say that a closed topological disk 𝑅 ⊂ 𝑆 is a topological
rectangle if its boundary, which is a Jordan curve, is given by the union of four 𝐶1 oriented arcs,
𝛾1, 𝛾2, 𝛾3, 𝛾4 such that: the end point of 𝛾1 is the first point of 𝛾2, the end point of 𝛾2 is the first
point of 𝛾3, the end point of 𝛾3 is the first point of 𝛾4 and the end point of 𝛾4 is the first point of 𝛾1.
We also assume that for 𝑖, 𝑗 ∈ {1, 2, 3, 4}, 𝑖 ≠ 𝑗, the intersection between 𝛾𝑖 and 𝛾𝑗 is either empty
or 𝐶1-transversal.
Suppose 𝑓 is a diffeomorphism of 𝑆 and assume it has a hyperbolic 𝑛 -periodic saddle point 𝑝

contained in the interior of 𝑆.
Definition of topological transversality: We say that some continuum 𝐾 ⊂ 𝑆 has a topolog-

ically transverse intersection with a branch 𝛼 at 𝑝 (stable or unstable), if there exists a topological
rectangle 𝑅 ⊂ 𝑆, whose boundary is given by arcs 𝛾1, 𝛾2, 𝛾3, 𝛾4 as explained above, and there exists
an arc 𝛼′ ⊂ 𝛼, whose interior is contained in the interior of 𝑅 and its extreme points belong, one
to the interior of 𝛾1 and the other one to the interior of 𝛾3 (the intersections between 𝛾1 and 𝛼′ and
𝛾3 and 𝛼′ are both 𝐶1-transverse), such that 𝐾 contains a subcontinuum 𝐾∗ ⊂ 𝑅 that intersects
both 𝛾2 and 𝛾4, and avoids 𝛾1 and 𝛾3.
Such intersections are important because of the following result:

Proposition 1. In the above setting, if𝐾 is a continuum that has a topologically transverse intersec-
tion with a stable branch 𝛼 at𝑝 (the unstable case is analogous), then given any 𝜇 > 0 and a compact
arc 𝜃 ⊂ 𝑊𝑢(𝑝), there exists𝑀 > 0 such that for all𝑚 ⩾ 𝑀, 𝑓𝑚.2𝑛(𝐾) contains a continuum 𝜃𝑚 that
is 𝜇-close to 𝜃 for the Hausdorff distance.

Proof. By considering 𝑓2𝑛 instead of 𝑓, we can assume that 𝑝 is fixed and all branches at 𝑝 are
𝑓-invariant. From the Hartman–Grobman theorem, there exists 𝑉, an open neighborhood of 𝑝,
𝑊 ⊂ IR2, an open neighborhood of the origin and a homeomorphism 𝜑 ∶ 𝑉 → 𝑊 that conjugates
𝑓 ∣𝑉 to the linear model 𝐻(𝑥, 𝑦) = (𝑥∕2, 2𝑦) restricted to𝑊. Suppose, without loss of generality,
that, locally, 𝜑(𝛼) corresponds to the positive 𝑥-axis in𝑊.
Consider the rectangle 𝑅𝑐,𝑑 = [−𝑐, 𝑐] × [−𝑑, 𝑑] for 𝑐, 𝑑 > 0 such that 𝐻(𝑅𝑐,𝑑) ∪ 𝑅𝑐,𝑑 ⊂ 𝑊. As 𝐾

is topologically transverse to𝛼, there exists a topological rectangle𝑅, such that𝐾∗ ⊂ 𝑅 is a subcon-
tinuum of 𝐾 that intersects both 𝛾2 and 𝛾4, and avoids 𝛾1 and 𝛾3 (see the definition of topological
transversality above). It is clearly possible tomodify 𝑅 by choosing 𝛾∗

2
and 𝛾∗

4
much closer (in a𝐶1-

way) to 𝛼′ (the connected arc contained in 𝛼 whose interior is contained in 𝑅 and whose extreme
points are contained, one in the interior of 𝛾1 and the other, in the interior of 𝛾3), and choosing
𝛾∗
1
and 𝛾∗

3
subarcs of 𝛾1 and 𝛾3, respectively, in a way that 𝛾∗1 , 𝛾

∗
2
, 𝛾∗
3
, 𝛾∗
4
form the boundary of a

new rectangle 𝑅∗, such that for some integer𝑁 ⩾ 0, 𝑓𝑁(𝑅∗) ⊂ 𝑉 and the corresponding rectangle
𝑅′ = 𝜑(𝑓𝑁(𝑅∗)) belongs to ]0, 𝑐[×] − 𝑑, 𝑑[⊂ 𝑅𝑐,𝑑. Furthermore, there exists some subcontinuum
𝐾∗∗ of𝐾∗ that is disjoint from 𝛾∗

1
and 𝛾∗

3
, intersects both 𝛾∗

2
and 𝛾∗

4
and is contained in𝑅∗. Related to

𝐾∗∗, let us choose real numbers𝑎, 𝑏, 𝛿 > 0 such that 0 < 𝑎 < 𝑏 < 𝑐, 0 < 𝛿 < 𝑑,𝑅′ ⊂]𝑎, 𝑏[×] − 𝑑, 𝑑[
and [−𝑐, 𝑐] × [−𝛿, 𝛿] ∩ 𝜑(𝑓𝑁(𝛾∗

2
∪ 𝛾∗

4
)) = ∅. Clearly, both [𝑎, 𝑏] × {𝛿} and [𝑎, 𝑏] × {−𝛿} intersect𝑅′.

Let Γ ⊂ [𝑎, 𝑏] × [−𝛿, 𝛿] be a connected component of

[𝑎, 𝑏] × [−𝛿, 𝛿] ∩ 𝜑(𝑓𝑁(𝐾∗∗))

which intersects both [𝑎, 𝑏] × {−𝛿} and [𝑎, 𝑏] × {𝛿}. Clearly, Γ ∩ {𝑎, 𝑏} × [−𝛿, 𝛿] = ∅.
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Claim. For any 𝜀 > 0, there exists 𝑀 > 0 such that for all integers 𝑚 ⩾ 𝑀, there is a subcontin-
uum Γ′ ⊂ Γ, depending on 𝜀 and𝑚, such that𝐻𝑚(Γ′) ⊂ [0, 𝜀[×[−𝑑, 𝑑] and𝐻𝑚(Γ′) intersects both
[0, 𝜀[×{−𝑑} and [0, 𝜀[×{𝑑}.

Let us, before proving the claim, show that it implies the proposition. Indeed, if it holds, then
as 𝜀 → 0, 𝜑−1(𝐻𝑚(Γ′)) ⊂ 𝑓𝑚+𝑁(𝐾∗∗) converges in the Hausdorff topology to 𝜑−1({0} × [−𝑑, 𝑑]), a
local unstable manifold at 𝑝.
For 𝜃 as in the statement of the proposition, there exists some integer 𝐽 > 0 such that 𝜃 ⊂

𝑓𝐽(𝜑−1({0} × [−𝑑, 𝑑])). As 𝜀 → 0, 𝑓𝐽(𝜑−1(𝐻𝑚(Γ′))) ⊂ 𝑓𝐽+𝑚+𝑁(𝐾∗∗) converges in the Hausdorff
topology to 𝑓𝐽(𝜑−1({0} × [−𝑑, 𝑑])), which contains 𝜃. So, there exists a subcontinuum 𝜃𝑚 of
𝑓𝐽+𝑚+𝑁(𝐾∗∗) that converges to 𝜃 in the Hausdorff topology as 𝜀 → 0.
Therefore, to conclude the proof of Proposition 1, we have to show that the above claim holds.

For this, given 𝜀 > 0, let𝑀 > 0 be an integer such that:

∙ 𝑏∕2𝑀 < 𝜀;
∙ 𝑑∕2𝑀 < 𝛿,

Clearly, 𝑀 →∞ as 𝜀 → 0. Moreover, for all 𝑚 ⩾ 𝑀, let Γ′ be a connected component of Γ ∩
[𝑎, 𝑏] × [−𝑑∕2𝑚, 𝑑∕2𝑚] that intersects both [𝑎, 𝑏] × {−𝑑∕2𝑚} and [𝑎, 𝑏] × {𝑑∕2𝑚}. From the choice
of 𝑀 > 0, Γ′ is not empty and it clearly satisfies 𝐻𝑚(Γ′) ⊂ [0, 𝜀[×[−𝑑, 𝑑] and 𝐻𝑚(Γ′) intersects
both [0, 𝜀[×{−𝑑} and [0, 𝜀[×{𝑑}.
This proves the claim and concludes the proof of the proposition. □

Still in the above setting, if 𝜃, the compact subarc of a branch, has a topologically transverse
intersection with some other continuum 𝑇, then 𝑓𝑚.2𝑛(𝐾) also intersects 𝑇 provided 𝑚 > 0 is
large enough. For more about topologically transverse intersections, see, for instance, [2] and [3].
The next result will be used in the proof of Theorem 1.

Lemma 3. In the above setting, assume 𝐾 is a continuum that does not have a topologically trans-
verse intersection with the stable branch 𝛼 at a saddle 𝑝. Then, for every 𝜀 > 0 and any 𝜃, subarc of
𝛼 such that 𝐾 is disjoint from the endpoints of 𝜃, there exists a simple arc 𝜃𝜀 that is contained in the
𝜀-neighborhood of 𝜃, has the same endpoints as 𝜃, and is disjoint from 𝐾.

Proof. Fix 𝜀 > 0 and 𝜃 as in the statement of the lemma. Let 𝑓𝜃(𝑡), 𝑡 ∈ [0, 1] be a parameteri-
zation of 𝜃. One can find an 𝜀-neighborhood 𝑉 of 𝜃, a neighborhood 𝑊 of [0, 1] × {0} and a 𝐶1
diffeomorphism 𝜙 ∶ 𝑉 → 𝑊 such that 𝜙(𝑓𝜃(𝑡)) = (𝑡, 0). Also, if 𝛿 > 0 is sufficiently small, then
𝑅 = [0, 1] × [−𝛿, 𝛿] is a subset of 𝑊 and 𝜙(𝐾 ∩ 𝑉) is disjoint from {0, 1} × [−𝛿, 𝛿] and not con-
tained in 𝑅. Consider the subset of 𝑅, denoted 𝐹 ∶= 𝜙(𝐾 ∩ 𝑉) ∩ 𝑅. If it separates {0} × [−𝛿, 𝛿]
from {1} × [−𝛿, 𝛿], then, as 𝐹 is closed, there is a connected component of 𝐹 that separates the
former two sets in 𝑅. So, this component intersects both [0, 1] × {−𝛿} and [0, 1] × {𝛿}, something
that contradicts the assumption that 𝐾 does not have a topologically transverse intersection with
𝛼.
In this way, there is a connected component 𝐵 of 𝑅 ⧵ 𝐹 that contains {0} × [−𝛿, 𝛿] and {1} ×

[−𝛿, 𝛿]. And it is open. So if we pick 𝛽 ∶ [0, 1] → 𝐵, a simple arc joining (0, 0) and (1, 0), it suffices
to take 𝜃𝜀 = 𝜙−1(𝛽). □
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2.3 Some Pesin theory

In this subsection, assume that 𝑓 ∶ 𝐴 → 𝐴 is a 𝐶1+𝜀 diffeomorphism, for some 𝜀 > 0. Recall that
an 𝑓-invariant Borel probability measure 𝜇 is hyperbolic if all the Lyapunov exponents of 𝑓 are
nonzero at 𝜇 -almost every point (for instance, see the supplement of [10]). Remember that for
𝜇-almost every 𝑧 ∈ 𝐴, there are two Lyapunov exponents 𝜆+(𝑧) ⩾ 𝜆−(𝑧) defined as follows:

𝜆+(𝑧) = lim
𝑛→∞

1

𝑛
log ‖‖𝐷𝑓𝑛(𝑧)‖‖ and 𝜆−(𝑧) = − lim

𝑛→∞

1

𝑛
log ‖‖𝐷𝑓−𝑛(𝑧)‖‖

The next paragraphs were taken from [7]. They consist of an informal description of the theory
of nonuniformly hyperbolic systems, together with some definitions and lemmas from [7].
Let 𝜇 be a nonatomic hyperbolic ergodic 𝑓-invariant Borel probability measure. Given 0 < 𝛿 <

1, there exists a compact setΛ𝛿 (called Pesin set) with 𝜇(Λ𝛿) > 1 − 𝛿, having the following proper-
ties: for every 𝑝 ∈ Λ𝛿, there exists an open neighborhood 𝑈𝑝, a compact neighborhood 𝑉𝑝 ⊂ 𝑈𝑝

and a diffeomorphism 𝐹 ∶ (−1, 1)2 → 𝑈𝑝, with 𝐹(0, 0) = 𝑝 and 𝐹([−1∕10, 1∕10]2) = 𝑉𝑝, such
that:

∙ The local unstable manifolds𝑊𝑢
loc
(𝑞), 𝑞 ∈ Λ𝛿 ∩ 𝑉𝑝, given by the connected component of the

set of 𝑧 ∈ 𝑈𝑝 sucht that dist(𝑓𝑛(𝑧), 𝑓𝑛(𝑞)) → 0 as𝑛 → −∞ that contains 𝑞, are the images under
𝐹 of graphs of the form {(𝑥, 𝐹2(𝑥)) ∶ 𝑥 ∈ (−1, 1)}, 𝐹2 a function with 𝑘-Lipschitz constant, for
some 0 < 𝑘 < 1. Any two such local unstable manifolds are either disjoint or equal and they
depend continuously (in the Hausdorff topology) on the point 𝑞 ∈ Λ𝛿 ∩ 𝑉𝑝.

∙ Similarly, local stable manifolds 𝑊𝑠
loc
(𝑞), 𝑞 ∈ Λ𝛿 ∩ 𝑉𝑝, given by the connected component of

the set of 𝑧 ∈ 𝑈𝑝 such that dist(𝑓𝑛(𝑧), 𝑓𝑛(𝑞)) → 0 as 𝑛 → ∞ that contains 𝑞, are the images
under𝐹 of graphs of the form {(𝐹1(𝑦), 𝑦) ∶ 𝑦 ∈ (−1, 1)},𝐹1 a functionwith 𝑘-Lipschitz constant,
for some 0 < 𝑘 < 1. Any two such local stable manifolds are either disjoint or equal and they
depend continuously (again in the Hausdorff topology) on the point 𝑞 ∈ Λ𝛿 ∩ 𝑉𝑝.

These are the properties that characterize a Pesin set.
It follows that there exists a continuous product structure in Λ𝛿 ∩ 𝑉𝑝 ∶ given any 𝑟, 𝑟′ ∈ Λ𝛿 ∩

𝑉𝑝, the intersection𝑊𝑢
𝑙𝑜𝑐
(𝑟) ∩ 𝑊𝑠

𝑙𝑜𝑐
(𝑟′) is transversal and consists of exactly one point, which will

be denoted [𝑟, 𝑟′]. This intersection varies continuously with the two points and may not be in
Λ𝛿. Hence, we can definemaps 𝑃𝑠𝑝 ∶ Λ𝛿 ∩ 𝑉𝑝 → 𝑊𝑠

𝑙𝑜𝑐
(𝑝) and 𝑃𝑢𝑝 ∶ Λ𝛿 ∩ 𝑉𝑝 → 𝑊𝑢

𝑙𝑜𝑐
(𝑝) as 𝑃𝑠𝑝(𝑞) =

[𝑞, 𝑝] and 𝑃𝑢𝑝(𝑞) = [𝑝, 𝑞].
Let 𝑅± denote the set of all points in 𝐴 that are both forward and backward recurrent. By the

Poincaré recurrence theorem, 𝜇(𝑅±) is equal to 1.

Definition (Accessible and inaccessible points). A point 𝑝 ∈ Λ𝛿 ∩ 𝑉𝑝 ∩ 𝑅
± is inaccessible if

it is accumulated on both sides of𝑊𝑠
𝑙𝑜𝑐
(𝑝) by points in 𝑃𝑠𝑝(Λ𝛿 ∩ 𝑉𝑝 ∩ 𝑅

±) and also accumulated
on both sides of𝑊𝑢

𝑙𝑜𝑐
(𝑝) by points in 𝑃𝑢𝑝(Λ𝛿 ∩ 𝑉𝑝 ∩ 𝑅

±). Otherwise, 𝑝 is accessible.

After this definition, we can state two lemmas from [7] about accessible and inaccessible points
and the relation between these points and nearby hyperbolic periodic points.

Lemma 4. Let 𝑞 ∈ Λ𝛿 ∩ 𝑉𝑝 ∩ 𝑅
± be an inaccessible point. Then there exist rectangles enclosing 𝑞,

having sides along the invariant manifolds of two hyperbolic periodic saddle points in𝑉𝑝 (which are
corners of the rectangles) and having arbitrarily small diameter.
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The boundary of such a rectangle is a Jordan curve made up of alternating segments of stable
and unstable manifolds, two of each. The segments forming the boundary are its sides and the
intersection points of the sides are the corners. As explained above, two of the corners are hyper-
bolic periodic saddle points and the other two corners are𝐶1-transverse heteroclinic intersections.
A rectangle is said to enclose 𝑝 if its interior, which is an open topological disk, contains 𝑝.

Lemma 5. The subset of accessible points in Λ𝛿 ∩ 𝑉𝑝 ∩ 𝑅± has 𝜇measure equal to zero.

Another concept that will be a crucial hypothesis for us is positive topological entropy. In the
following, we describe why.
When the topological entropy ℎ(𝑓|𝐾) is positive, for some compact 𝑓-invariant set 𝐾, by the

variational principle, there exists an 𝑓 -invariant Borel probability measure 𝜇0 with supp(μ0)

(the topological support of 𝜇0) contained in 𝐾 and positive metric entropy ℎ𝜇0(𝑓). Using the
ergodic decomposition of 𝜇0 we find an extremal point 𝜇 of the set of Borel probability 𝑓-invariant
measures, such that supp(μ) is also contained in 𝐾 and ℎ𝜇(𝑓) > 0. As the extremal points of
this set are ergodic measures, 𝜇 is ergodic. The ergodicity and the positiveness of the entropy
imply that 𝜇 has no atoms and applying the Ruelle inequality (which, in our case, says that
𝜆+(𝑧) = 𝜆+(𝜇) ⩾ ℎ𝜇(𝑓) > 0 for 𝜇-almost every 𝑧 ∈ 𝐴), we get that 𝜇 has a positive Lyapunov
exponent, see [10]. Working with 𝑓−1 and using the fact that ℎ𝜇(𝑓−1) = ℎ𝜇(𝑓) > 0, we see that
𝑓−1 must also have a positive Lyapunov exponent with respect to 𝜇, which is the opposite of the
negative Lyapunov exponent for 𝑓.
Hence, when 𝐾 is a compact 𝑓-invariant set and the topological entropy of f∣𝐾 is positive,

there always exists an ergodic, nonatomic, invariant measure supported in 𝐾, with nonzero Lya-
punov exponents, one positive and one negative, the measure having positive entropy: That is, an
hyperbolic measure.
The existence of this kind of measure will be important for us because of Lemmas 4 and 5.

2.4 Some forcing results

This subsection is mostly based on the work of Le Calvez and the second author [15, 16] on forcing
theory for surface homeomorphisms, which we restrain to explain in more detail as not to sub-
stantially increase the length of this paper. We refer the interested reader to the above works, as
well as [6].
Given 𝑓 ∈ Dif f 00(A) and a lift 𝑓, we say that 𝑓 has a rotational topological horseshoe if there

exists, for some power g = 𝑓𝑟 of 𝑓:

∙ a lift g̃ = 𝑓𝑟 − (𝑠, 0) to 𝐴, where 𝑠 is an integer,
∙ a compact g-invariant subset Λ ⊂ 𝐴,
∙ a compact subset Λ̃ ⊂ 𝐴 such that 𝑝(Λ̃) = Λ and the restriction of 𝑝 to Λ̃ is a homeomorphism
onto its image,

∙ an integer𝑀0, a compactmetric space𝑌, a homeomorphism𝑇 of𝑌, and a surjective continuous
map 𝜋1 ∶ 𝑌 → Λ semiconjugating 𝑇 and g , such that for each 𝑥 ∈ Λ, the cardinality of 𝜋−1

1
(𝑥)

is not larger than𝑀0,
∙ a continuous surjective map 𝜋2 ∶ 𝑌 → Σ2 ∶= {0, 1}ZZ, semiconjugating 𝑇 to the shift map 𝜎 ∶
Σ2 → Σ2 defined so that (𝜎(𝑢))𝑗 = (𝑢)𝑗+1, 𝑢 ∈ Σ2,

∙ also, if 𝑦 ∈ 𝑌, 𝑥 = 𝜋1(𝑦), �̃� = 𝑝−1(𝑥) ∩ Λ̃, then g̃(𝑥) ∈ Λ̃ if (𝜋2(𝑦))0 = 0 and g̃(𝑥) ∈ Λ̃ + (1, 0)

if (𝜋2(𝑦))0 = 1.
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In general terms, if 𝑓 has a rotational topological horseshoe, thenmodulo some finite extension
and taking a power of the dynamics, we obtain a compact invariant set where the displacement of
points in the lift can be estimated by a symbolic coding, and for which every possible coding with
two symbols is admitted. We remark that it follows directly from the definition, that the rotation
set of g̃ contains the interval [0, 1], and so the rotation set of𝑓 contains the interval [𝑠∕𝑟, (𝑠 + 1)∕𝑟].
We also say that the 𝑓-rotation set of the horseshoe contains the interval [𝑠∕𝑟, (𝑠 + 1)∕𝑟]. But we
can obtain a little more, which will be useful:

Lemma 6. Let 𝑓 ∈ Dif f 00(A) and let 𝑓 be a lift of 𝑓. Let Λ, Λ̃, g , g̃ , 𝑌, 𝑇, 𝜋1 and 𝜋2 be as above.
Then there exists a compact g-invariant set Λ0 ⊂ Λ, such that the restriction of g to Λ0 is transitive
and such that, for every rational 0 < 𝑝∕𝑞 < 1, one can find a g𝑞-invariant compact set 𝐾𝑝∕𝑞 ⊂ Λ0
satisfying:

(1) the restriction of g𝑞 to 𝐾𝑝∕𝑞 has strictly positive topological entropy;
(2) if 𝐾𝑝∕𝑞 = 𝜋−1(𝐾𝑝∕𝑞) ∩ Λ̃, then g̃𝑞(𝐾𝑝∕𝑞) = 𝐾𝑝∕𝑞 + (𝑝, 0).

Proof. Let 𝑢0 ∈ Σ2 be a point whose future 𝜎 orbit is dense, and for notation sake denote 𝐿0 =
𝜋−1
2
(𝑢0). We claim that there exists some 𝑦0 ∈ 𝐿0 that is recurrent for 𝑇. Indeed, let us consider

the set  of all closed and𝑇-invariant subsets of𝑌 that have nonempty intersectionwith 𝐿0, which
is naturally ordered by inclusion, that is, where for 𝐹1, 𝐹2 ∈  we denote 𝐹1 ⪯ 𝐹2 if 𝐹1 ⊂ 𝐹2. Note
that  is not empty as 𝑌 belongs to it. Consider a chain (𝐹𝑖)𝑖∈𝐼 with each 𝐹𝑖 in  and such that
for all 𝑖, 𝑗 in 𝐼, either 𝐹𝑖 ⪯ 𝐹𝑗 or 𝐹𝑗 ⪯ 𝐹𝑖 . We claim that 𝐹 =

⋂
𝑖∈𝐼 𝐹𝑖 also belongs to  . Indeed,

𝐹 is compact as it is the intersection of compact sets. We will show that 𝐹 ∩ 𝐿0 is nonempty. If
not, by compactness of 𝐿0, as the complements of 𝐹𝑖 would form an open covering of 𝐿0, there
would be finitely many indices {𝑖1, 𝑖2, … , 𝑖𝑛} such that 𝐿0 ⊂

⋃𝑛
𝑗=1 𝑌 ⧵ 𝐹𝑖𝑗 . But as 𝐹 is a chain and

we chose finitely many indices, there must exists some smallest element 𝐹𝑘 ∈ {𝐹𝑖1 , … , 𝐹𝑖𝑛 }. Note
that 𝐹𝑘 ∩ 𝐿0 is not empty and 𝐹𝑘 is disjoint from

⋃𝑛
𝑗=1 𝑌 ⧵ 𝐹𝑖𝑗 , a contradiction. Therefore, 𝐹 is

nonempty and belongs to  . One verifies trivially that 𝐹 ⪯ 𝐹𝑖 for all 𝑖 ∈ 𝐼 and so we can apply
Zorn’s lemma to obtain that  has an element 𝐹 that is minimal for inclusion. Let 𝑦0 be a point in
𝐹 ∩ 𝐿0. Note that, if 𝜔(𝑦0) is the 𝜔-limit of 𝑦0 by 𝑇, then it is also a compact invariant subset of 𝑌,
and as 𝑢0 is recurrent, 𝜔(𝑦0)must also intersect 𝐿0. One deduces that 𝜔(𝑦0) is also an element of which is contained in 𝐹, and thus is equal to 𝐹 by minimality. But this implies 𝑦0 ∈ 𝜔(𝑦0) and
the claim is proved.
Let then𝑌′ be the closure of the forward orbit of 𝑦0 by𝑇, which is a compact𝑇-invariant set such

that the restriction of 𝑇 to 𝑌′ is both transitive and an extension of the shift 𝜎. Let Λ0 = 𝜋1(𝑌
′),

a compact g-invariant set for which the restriction of g is also transitive. Given 𝑝∕𝑞 as in the
statement, consider

𝐴𝑝∕𝑞 =

{
𝑢 ∈ 𝜎2; for all 𝑗 ∈ ZZ,

(
𝑗(𝑞+1)−1∑
𝑖=𝑗𝑞

𝑢𝑖

)
= 𝑝

}

which is invariant by 𝜎𝑞, and let 𝑌𝑝∕𝑞 = 𝜋−1
2
(𝐴𝑝∕𝑞) ∩ 𝑌

′, and 𝐾𝑝∕𝑞 = 𝜋1(𝑌𝑝∕𝑞). Note that the
restriction of 𝜎𝑞 to𝐴𝑝∕𝑞 has strictly positive topological entropy (as it is conjugated to the full shift
on

(𝑞
𝑝

)
symbols). This implies that the restriction of 𝑇𝑞 to 𝑌𝑝∕𝑞 has positive topological entropy

and, as the cardinality of the fibers of 𝜋1 is uniformly bounded, the same holds for the restric-
tion of g𝑞 to 𝐾𝑝∕𝑞. The second assertion from the lemma follows directly from noticing that, if
𝑦 ∈ 𝑌′, 𝑥 = 𝜋1(𝑦) and 𝑥 ∈ 𝑝−1(𝑥) ∩ Λ̃, then g̃𝑘(𝑥) lies in Λ̃ + (

∑𝑘−1
𝑖=0 (𝜋2(𝑦))𝑖, 0), concluding the

proof. □
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The following result is basically contained in [6, subsection 6.1.2]:

Proposition 2. Let 𝐴 be a Birkhoff region of instability for some 𝑓 ∈ Dif f 00(A) with a lift 𝑓 whose
rotation set is a nondegenerate interval. Then 𝑓 has a rotational topological horseshoe. Moreover, for
any nonempty open interval 𝐽 ⊂ 𝜌(𝑓), there exists a rotational topological horseshoe whose rotation
set intersects 𝐽.

Let us just explain how to perform the necessarymodifications to that subsection, so as to obtain
this result. Using the same language and definitions of [6], the main idea in order to show that
𝑓 has a rotational topological horseshoe is to apply [16, Theorem M]. For this, consider an open
interval 𝐽 ⊂ 𝜌(𝑓) and choose some rational 𝑠∕𝑟 in 𝐽 such that 𝑠∕𝑟 is not the rotation number for 𝑓
of any point in the boundary of 𝐴. Let g = 𝑓𝑟. Then there exists amaximal isotopy 𝐼′ joining g to
the identity, that lifts to a maximal isotopy 𝐼′ joining the identity in 𝐴 to a lift g̃ = 𝑓𝑟 − (𝑠, 0) of g .
This can be done in such a way that the rotation set of g̃ is an interval containing the origin, and
such that the rotation number of points in the upper boundary of 𝐴 is not null. For such maps,
one can find a Brouwer–Le Calvez foliation  for 𝐼′ that is lifted to a Brouwer–Le Calvez foliation
̃ for 𝐼′ and one can consider the set of admissible ̃ -transverse paths, as defined in [15]. To show
the existence of a rotational topological horseshoe, it is then sufficient to show that there exists an
𝑛-admissible ̃ -transverse path 𝛾′ such that 𝛾′ has a ̃ -transverse intersection with 𝛾′ + (𝑝, 0) for
somenonnull integer𝑝. This implies that there exists𝑛 > 0 such that g has a rotational topological
horseshoe whose g̃-rotation set contains [0, 𝑝∕𝑛] if 𝑝 > 0, or contains [𝑝∕𝑛, 0] if 𝑝 is negative. In
any case, this implies that 𝑓 has a rotational topological horseshoe whose rotation set contains an
interval having 𝑠∕𝑟 as an endpoint, and thus intersecting 𝐽.
Most of the work contained in [6, subsection 6.1.2] is concerned with estimating the size of

the rotation set contained in the rotational topological horseshoe for 𝑓, and for such a reason a
stronger hypothesis than just asking 𝐴 to be a Birkhoff region of instability was assumed. But in
what concerns us here, which is to show that a rotational topological horseshoe exists without
requiring its rotation set to be of any specific length, that extra hypothesis is unnecessary. The
curve 𝛾′ we need is obtained much in the same way as in the quoted subsection: One shows that,
assuming without loss of generality that the rotation number of the upper boundary is strictly
positive for g̃ , any point 𝑧 in IR × {1} has a full ̃ -transverse trajectory that is equivalent to a ̃ -
transverse simple curve 𝛾 ∶ IR → 𝐴 satisfying 𝛾(𝑡 + 1) = 𝛾(𝑡) + (1, 0). In particular, using that𝐴 is
a Birkhoff region of instability, there exist positive integers𝑁0,𝑁1, a point 𝑍0,1 that is sufficiently
close to the lower boundary of 𝐴 with g̃𝑁0(𝑍0,1) sufficiently close to the upper boundary of 𝐴, so
that its transverse path up to time 𝑁0 contains a subpath equivalent to 𝛾 ∣[0,2] that starts at a leaf
not intersected by 𝛾, and another point 𝑍1,0 that is sufficiently close to the upper boundary of 𝐴
with g̃𝑁1(𝑍1,0) sufficiently close to the lower boundary of 𝐴, and such that its transverse path up
to time 𝑁1 contains a subpath equivalent to 𝛾 ∣[0,2], which ends at a leaf not intersected by 𝛾. The
construction of 𝛾′ then follows exactly as in [6, subsection 6.1.2].
A direct consequence of the two previous results is the following:

Corollary 1. Let 𝐴 be a Birkhoff region of instability for some 𝑓 ∈ Dif f 00(A) and assume 𝜌(𝑓) is a
nondegenerate interval for some fixed lift 𝑓. Then there exists an open and dense subset 𝐸 of 𝜌(𝑓)
such that for any 𝑝∕𝑞 ∈ 𝐸, there exists:
∙ integers 𝑠, 𝑟, 𝐿 depending on 𝑝∕𝑞 and a rotational topological horseshoe for 𝑓 whose rotation
set contains an interval [𝑠∕𝑟, (𝑠 + 1)∕𝑟]with 𝑠∕𝑟 < 𝑝∕𝑞 < 𝑝1∕𝑞1 < (𝑠 + 1)∕𝑟, where 𝑝1 = 𝑝.𝑟.𝐿 +

1, 𝑞1 = 𝑞.𝑟.𝐿;
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∙ a compact and transitive 𝑓-invariant set Λ′ = Λ′(𝑝∕𝑞);
∙ two compact 𝑓-invariant sets 𝐺0 = 𝐺0(𝑝∕𝑞) and 𝐺1 = 𝐺1(𝑝∕𝑞), both contained in Λ′, such that
the restriction of 𝑓 to each of them has strictly positive topological entropy;

∙ two compact sets 𝐺0, 𝐺1 in 𝐴 projecting surjectively onto 𝐺0 and 𝐺1, respectively, and such that
𝑓𝑞1(𝐺0) − (𝑝.𝑟.𝐿, 0) = 𝐺0 and 𝑓𝑞1(𝐺1) − (𝑝1, 0) = 𝐺1.

Proof. Let 𝐸 be the union of the interior of the rotation sets of all rotational topological horseshoes
of 𝑓. Proposition 2 shows that 𝐸 is dense, and as it is the union of open intervals, it is also open. If
𝑝∕𝑞 is a rational point in 𝐸, then by definition one can find a rotational horseshoe whose rotation
set contains 𝑝∕𝑞 in its interior, and let then 𝑠, 𝑟 be integers such that 𝑠∕𝑟 < 𝑝∕𝑞 < (𝑠 + 1)∕𝑟 and
such that [𝑠∕𝑟, (𝑠 + 1)∕𝑟] is also contained in the interior of the rotation set of this topological
horseshoe. If we then choose 𝐿 sufficiently large, than taking 𝑝1 = 𝑝.𝑟.𝐿 + 1, 𝑞1 = 𝑞.𝑟.𝐿, we get
that 𝑝1∕𝑞1 < (𝑠 + 1)∕𝑟. This shows the first item.
To get the other items of the proposition, note first that, by setting𝑝∗ = 𝑟𝑝 − 𝑠𝑞, 𝑝∗

1
= 1

𝑟
⋅ (𝑟𝑝1 −

𝑠𝑞1) = 𝑝1 − 𝑠𝑞𝐿, then 𝑝∗∕𝑞 = 𝑟(𝑝∕𝑞) − 𝑠, 𝑝∗
1
∕(𝐿𝑞) = 𝑟(𝑝1∕𝑞1) − 𝑠 and so 0 < 𝑝∗∕𝑞 < 𝑝∗

1
∕(𝐿𝑞) <

1. We apply Lemma 6 with g = 𝑓𝑟, g̃ = 𝑓𝑟 − (𝑠, 0), giving us a set Λ0 in 𝐴 which is transitive for
g , as well as two sets 𝐾𝑝∗∕𝑞, 𝐾𝑝∗

1
∕(𝐿𝑞), both contained in Λ0, such that the former is invariant by g𝑞

and the latter is invariant by g𝐿𝑞, and such that the topological entropy of the restriction of g𝐿𝑞
to either 𝐾𝑝∗∕𝑞 or 𝐾𝑝∗

1
∕(𝐿𝑞) is strictly positive. Furthermore, there exists sets 𝐾𝑝∗∕𝑞, 𝐾𝑝∗

1
∕(𝐿𝑞) in 𝐴

projecting onto 𝐾𝑝∗∕𝑞, 𝐾𝑝∗
1
∕(𝐿𝑞), respectively, and such that g̃𝑞(𝐾𝑝∗∕𝑞) = 𝐾𝑝∗∕𝑞 + (𝑝

∗, 0) and such
that g̃ (𝐿𝑞)(𝐾𝑝∗

1
∕(𝐿𝑞)) = 𝐾𝑝∗

1
∕(𝐿𝑞) + (𝑝

∗
1
, 0).

Define now Λ′ =
⋃𝑟−1
𝑖=0 𝑓

𝑖(Λ0), and note that, as Λ0 was an invariant set for g = 𝑓𝑟 and the
restriction of g to this set was transitive, then Λ′ is invariant for 𝑓 and the restriction of 𝑓 to it is
also transitive. This gives us the second item of the corollary. Define also

𝐺0 =

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞−1⋃
𝑗=0

g𝑗(𝐾𝑝∗∕𝑞)

)
, and 𝐺1 =

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞1−1⋃
𝑗=0

g𝑗(𝐾𝑝∗
1
∕(𝐿𝑞))

)
,

which are both subsets of Λ′ as they are each contained in the 𝑓-orbit of 𝐾𝑝∗∕𝑞 and 𝐾𝑝∗
1
∕(𝐿𝑞),

respectively, and 𝐾𝑝∗∕𝑞 and 𝐾𝑝∗
1
∕(𝐿𝑞) are contained in Λ′ which is invariant. One also observes

that𝐺0 and𝐺1 are 𝑓 invariant by construction, and the restriction of 𝑓 to both this sets has strictly
positive topological entropy. This gives us the third item of the proposition.
Finally, set

𝐺0 =

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞−1⋃
𝑗=0

g̃𝑗(𝐾𝑝∗∕𝑞)

)
, and 𝐺1 =

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞1−1⋃
𝑗=0

g̃𝑗(𝐾𝑝∗
1
∕(𝐿𝑞))

)
.

Note that, as 𝑓 and g̃ commute, we get that

𝑓𝑟𝑞(𝐺0) = g̃𝑞(𝐺0) + (𝑠𝑞, 0)

=

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞−1⋃
𝑗=0

g̃𝑗(g̃𝑞(𝐾𝑝∗∕𝑞))

)
+ (𝑠𝑞, 0)
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=

𝑟−1⋃
𝑖=0

𝑓𝑖

(
𝑞−1⋃
𝑗=0

g̃𝑗(𝐾𝑝∗∕𝑞)

)
+ (𝑠𝑞, 0) + (𝑝∗, 0)

= 𝐺0 + (𝑟𝑝, 0)

and so 𝑓𝑞1(𝐺0) = 𝑓𝐿⋅𝑟𝑞(𝐺0) = 𝐺0 + (𝐿 ⋅ 𝑟𝑝, 0). A similar computation shows that 𝑓𝑞1(𝐺1) = 𝐺1 +

(𝑠𝑞𝐿 + 𝑝∗
1
, 0) = 𝐺1 + (𝑝1, 0) ending the claim. □

We remark that from the corollary, every point in the set 𝐺0(𝑝∕𝑞) has rotation number 𝑝∕𝑞 for
𝑓, and every point in 𝐺1(𝑝∕𝑞) has rotation number 𝑝1∕𝑞1 for 𝑓.

2.5 Onmaximal invariant sets

Let 𝛾 ⊂ 𝑆1×]0, 1[ be a homotopically nontrivial simple closed curve and, as we defined before, let
𝛾− be the connected component of 𝛾𝑐 that contains 𝑆1 × {0} (similarly for 𝛾+ and 𝑆1 × {1}).
If we consider the sets

𝐵𝑠0,𝛾 =
⋂

𝑛⩽0
𝑓𝑛(𝛾−), 𝐵𝑢0,𝛾 =

⋂
𝑛⩾0

𝑓𝑛(𝛾−),

𝐵𝑠1,𝛾 =
⋂

𝑛⩽0
𝑓𝑛(𝛾+) and 𝐵𝑢1,𝛾 =

⋂
𝑛⩾0

𝑓𝑛(𝛾+),

we get that

𝑓(𝐵𝑠0,𝛾) ⊂ 𝐵𝑠0,𝛾, 𝑓
−1(𝐵𝑢0,𝛾) ⊂ 𝐵𝑢0,𝛾,

𝑓(𝐵𝑠1,𝛾) ⊂ 𝐵𝑠1,𝛾 and 𝑓
−1(𝐵𝑢0,𝛾) ⊂ 𝐵𝑢0,𝛾.

Denote by 𝐵𝑠
0,𝛾

the connected component of 𝐵𝑠
0,𝛾

that contains 𝑆1 × {0} and define similarly
𝐵𝑢
0,𝛾
. Analogously, let 𝐵𝑠

1,𝛾
be the connected component of 𝐵𝑠

1,𝛾
that contains 𝑆1 × {1} and define

similarly 𝐵𝑢
1,𝛾
.

The next result appears in Le Calvez [13] and even in Birkhoff’s paper [5].

Lemma 7. Let 𝑓 ∶ 𝐴 → 𝐴 be an orientation and boundary components preserving homeomor-
phism, which has the curve intersection property. Then, for any 𝛾 as above, 𝐵𝑠

0,𝛾
, 𝐵𝑠

1,𝛾
, 𝐵𝑢

0,𝛾
and 𝐵𝑢

1,𝛾
intersect 𝛾.

As 𝑓(𝐵𝑠
0,𝛾
) ⊂ 𝐵𝑠

0,𝛾
, 𝑓(𝐵𝑠

1,𝛾
) ⊂ 𝐵𝑠

1,𝛾
, 𝑓−1(𝐵𝑢

0,𝛾
) ⊂ 𝐵𝑢

0,𝛾
, and 𝑓−1(𝐵𝑢

1,𝛾
) ⊂ 𝐵𝑢

1,𝛾
, we get that the

maximal invariant sets 𝜉−(𝛾) and 𝜉+(𝛾) satisfy the following conditions:

∩𝑛⩾0𝑓
−𝑛(𝐵𝑢0,𝛾) = ∩𝑛⩾0𝑓

𝑛(𝐵𝑠0,𝛾) = 𝜉−(𝛾)

and

∩𝑛⩾0𝑓
−𝑛(𝐵𝑢1,𝛾) = ∩𝑛⩾0𝑓

𝑛(𝐵𝑠1,𝛾) = 𝜉+(𝛾)
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3 PROOFS

3.1 Proof of Theorem 2

Let us remember our set of hypotheses: 𝑓 ∈ Dif f 1+ε0 (A) for some 𝜀 > 0, 𝐴 is a Birkhoff region of
instability and for some fixed lift 𝑓, 𝜌(𝑓) has interior.
Let𝐸 be the set fromCorollary 1,whichwe further assumedoes not contain the rotationnumber

of the boundaries. Fix some 𝑝∕𝑞 ∈ 𝐸 and consider, as in Corollary 1, the setsΛ′, 𝐺0(𝑝∕𝑞), 𝐺1(𝑝∕𝑞)
as well as the integers 𝑟, 𝑠, 𝐿, 𝑝1 and 𝑞1, all depending on 𝑝∕𝑞. As ℎ(f∣𝐺0) > 0 and ℎ(f∣𝐺1) > 0, there
exist two hyperbolic ergodic Borel nonatomic 𝑓-invariant measures 𝜇𝑝∕𝑞 and 𝜇𝑝1∕𝑞1 , such that
supp(𝜇𝑝∕𝑞) ⊂ 𝐺0(𝑝∕𝑞) and supp(𝜇𝑝1∕𝑞1) ⊂ 𝐺1(𝑝∕𝑞). Note that, by the choice of 𝐺0(𝑝∕𝑞) (respec-
tively, 𝐺1(𝑝∕𝑞)), every point in it has rotation number 𝑝∕𝑞 (respectively, 𝑝1∕𝑞1). From Lemma 5,
pick inaccessible points 𝑧0 ∈ supp(𝜇𝑝∕𝑞) and 𝑧1 ∈ supp(𝜇𝑝1∕𝑞1).

Lemma 4 implies that there are four hyperbolic periodic saddle points, 𝑦0 and 𝑦′0, 𝑦1 and 𝑦
′
1
,

such that 𝑧0 is enclosed by the rectangle determined by compact subarcs of stable and unstable
branches at 𝑦0 and at 𝑦′0, an analogous statement holding for 𝑧1 and 𝑦1 and 𝑦

′
1
. The corners of

each rectangle are either the saddles, or 𝐶1-transverse intersections between stable branches at
one saddle and unstable branches at the other. In particular, the 𝜆-lemma implies that for each of
these four periodic points 𝑦0, 𝑦′0, 𝑦1 and 𝑦

′
1
, there are 𝐶1-transverse homoclinic intersections.

As the rectangles can be chosen in an arbitrarily small way, the rotation numbers of 𝑦0 and 𝑦′0
are both equal to 𝑝∕𝑞 (but their periods might be larger than 𝑞) and the rotation numbers of 𝑦1
and 𝑦′

1
are both equal to 𝑝1∕𝑞1, which is different from 𝑝∕𝑞. So, as𝑊𝑢(𝑦0) = 𝑊𝑢(𝑦′

0
),𝑊𝑢(𝑦1) =

𝑊𝑢(𝑦′
1
),𝑊𝑠(𝑦0) = 𝑊𝑠(𝑦′

0
) and𝑊𝑠(𝑦1) = 𝑊𝑠(𝑦′

1
), and there is a dense orbit in Λ′, arbitrarily large

positive iterates of the interior of the rectangle enclosing 𝑧0 intersect the interior of the rectangle
enclosing 𝑧1 and vice versa. And this implies (see [2, Lemma 24]) that for some integer 𝑖, there
exists an unstable branch at 𝑦0 that has a topologically transverse intersectionwith a stable branch
at 𝑓𝑖(𝑦1) and an unstable branch at 𝑓𝑖(𝑦1) has a topologically transverse intersection with a stable
branch at 𝑦0. As the rotation number of 𝑦0 is 𝑝∕𝑞 and the rotation number of 𝑓𝑖(𝑦1) is not 𝑝∕𝑞,
the theorem follows from the 𝐶0-𝜆 -lemma that holds for topologically transverse intersections,
see Proposition 1.

3.2 Proof of Lemma 1

Under the lemma hypotheses, Theorem 2 implies that for any rational point 𝑝∕𝑞 in the set 𝐸,
we can find a hyperbolic periodic saddle 𝑧𝑝∕𝑞 with rotation number 𝑝∕𝑞 and unstable and stable
branches, 𝜆𝑢

𝑝∕𝑞
and 𝜆𝑠

𝑝∕𝑞
, both at 𝑧𝑝∕𝑞, which intersect at a point𝑤𝑝∕𝑞, such that if we concatenate

the arc in 𝜆𝑢
𝑝∕𝑞

from 𝑧𝑝∕𝑞 to𝑤𝑝∕𝑞 to the arc in 𝜆𝑠𝑝∕𝑞 from𝑤𝑝∕𝑞 to 𝑧𝑝∕𝑞, then we get a homotopically
nontrivial closed curve 𝛾𝑝∕𝑞 contained in the interior of 𝐴 (because the rotation numbers on the
boundary components do not lie in 𝐸).

Proposition 3. For each 𝑝∕𝑞 ∈ 𝐸, 𝜆𝑢
𝑝∕𝑞

and 𝜆𝑠
𝑝∕𝑞

intersect 𝑆1 × {0} and 𝑆1 × {1}.

Proof. Fixed some 𝑝∕𝑞 ∈ 𝐸, let 𝑞.𝑘𝑝∕𝑞 be twice the period of 𝑧𝑝∕𝑞. As 𝐴 is a Birkhoff region of
instability, ∪𝑛⩾0𝑓

𝑛.𝑞.𝑘𝑝∕𝑞 (𝛾𝑝∕𝑞) accumulates on both boundary components, 𝑆1 × {0} and 𝑆1 × {1}.
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An analogous statement holds for ∪𝑛⩾0𝑓
−𝑛.𝑞.𝑘𝑝∕𝑞 (𝛾𝑝∕𝑞). The proposition follows from the 𝑓𝑞.𝑘𝑝∕𝑞 -

positive invariance of the arc in 𝜆𝑠
𝑝∕𝑞

from 𝑧𝑝∕𝑞 to 𝑤𝑝∕𝑞 and the 𝑓
𝑞.𝑘𝑝∕𝑞 -negative invariance of the

arc in 𝜆𝑢
𝑝∕𝑞

from 𝑧𝑝∕𝑞 to 𝑤𝑝∕𝑞. □

The curve 𝛾𝑝∕𝑞 may not be simple, but in any case, (𝛾𝑝∕𝑞)𝑐 still has one connected compo-
nent that contains 𝑆1 × {0}, denoted 𝛾−

𝑝∕𝑞
, another connected component that contains 𝑆1 × {1},

denoted 𝛾+
𝑝∕𝑞

and maybe other contractible components.

Proposition 4. For any 𝑝∕𝑞 ∈ 𝐸 and any integer 𝑛 > 1,

𝜉−
1∕𝑛

⊂ 𝛾−
𝑝∕𝑞

and 𝜉+
1∕𝑛

⊂ 𝛾+
𝑝∕𝑞

.

In particular, there exist𝑓-invariant continua𝐾− ⊃ 𝑆1 × {0}and𝐾+ ⊃ 𝑆1 × {1} such that 𝜉−
1∕𝑛

= 𝐾−

and 𝜉+
1∕𝑛

= 𝐾+ for all sufficiently large 𝑛.

Proof. First, note that Proposition 3 implies that 𝜉−
1∕𝑛

cannot contain 𝜆𝑢
𝑝∕𝑞

or 𝜆𝑠
𝑝∕𝑞

because both
branches accumulate on𝑆1 × {1}.Moreover, if for some𝑛 > 1, 𝜉−

1∕𝑛
is not contained in 𝛾−

𝑝∕𝑞
, then as

𝜉−
1∕𝑛

is 𝑓-invariant, connected and contains 𝑆1 × {0}, 𝜉−
1∕𝑛

would contain two sequences of points,
one in 𝛾−

𝑝∕𝑞
and one in (𝛾−

𝑝∕𝑞
)𝑐, both converging to 𝑧𝑝∕𝑞. At least one of them converges to 𝑧𝑝∕𝑞

through the local quadrant at 𝑧𝑝∕𝑞 adjacent to 𝜆𝑢𝑝∕𝑞 and 𝜆
𝑠
𝑝∕𝑞

. So, [1, Proposition 6, item 2] (which
says that any 𝑓-invariant continuum that contains a hyperbolic saddle periodic point 𝑝 and accu-
mulates on 𝑝 through a certain local quadrant 𝑄 at 𝑝, must contain at least one branch at 𝑝
adjacent to 𝑄) implies that 𝜉−

1∕𝑛
contains either 𝜆𝑢

𝑝∕𝑞
or 𝜆𝑠

𝑝∕𝑞
, a contradiction as explained above.

One shows by a similar argument that 𝜉+
1∕𝑛

is contained in 𝛾+
𝑝∕𝑞

.
The above argument implies that, for any homotopically nontrivial simple closed curve 𝛾

contained in the interior of 𝐴, such that 𝛾−
𝑝∕𝑞

⊂ 𝛾−, 𝜉−(𝛾) must be equal to the connected com-
ponent of the maximal invariant set contained in the closure of 𝛾−

𝑝∕𝑞
that contains 𝑆1 × {0}. A

similar statement holds for 𝜉+(𝛾). Therefore, if 𝑁 > 0 is such that 𝑆1 × {1 − 1∕𝑁} ⊂ 𝛾+
𝑝∕𝑞

and
𝑆1 × {1∕𝑁} ⊂ 𝛾−

𝑝∕𝑞
, then for all 𝑛 ⩾ 𝑁, 𝜉−

1∕𝑛
= 𝜉−

1∕𝑁
∶= 𝐾− and 𝜉+

1∕𝑛
= 𝜉+

1∕𝑁
∶= 𝐾+. □

Note that the intersection between 𝐾− and 𝐾+ must be empty because otherwise one could
apply as before, [1, Proposition 6, item 2] and get that either 𝐾− or 𝐾+ (maybe both), contains
𝜆𝑢
𝑝∕𝑞

or 𝜆𝑠
𝑝∕𝑞

. As explained above, this is a contradiction.
So, as (𝐾−)𝑐 and (𝐾+)𝑐 are both connected, (𝐾− ∪ 𝐾+)𝑐 ∶= 𝐴∗ is an open 𝑓-invariant essential

annulus contained in 𝐴. As 𝐴 is a Birkhoff region of instability, 𝜕𝐴∗ intersects both 𝑆1 × {0} and
𝑆1 × {1}.
We finish with the following proposition.

Proposition 5. For all rationals𝑝∕𝑞 ∈ 𝐸, with the exception of atmost two points, 𝛾𝑝∕𝑞 is contained
in 𝐴∗.

Proof. If, for some𝑝∕𝑞 in𝐸, 𝛾𝑝∕𝑞 intersects𝐾−, then as𝐾− is compact and𝑓-invariant, 𝑧𝑝∕𝑞 ∈ 𝐾−,
and it is clearly accessible from (𝐾−)𝑐. This happens because 𝐾− ⊂ 𝛾−

𝑝∕𝑞
and every point in the
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upper boundary of 𝛾−
𝑝∕𝑞

(which contains 𝑧𝑝∕𝑞) is the endpoint of a 𝐶1 end cut contained in the
complement of 𝛾−

𝑝∕𝑞
. This is a trivial consequence of the fact that 𝛾𝑝∕𝑞 is a piecewise 𝐶1 curve.

So, Lemma 2 implies that all accessible periodic points in 𝐾− have 𝑝∕𝑞 as rotation number (the
rotation number of the prime ends compactification of (𝐾−)𝑐 is equal to 𝑝∕𝑞). A similar argument
holds for𝐾+, and so,with the exception of atmost two rational numbers in𝐸, for all other rationals
𝑝∕𝑞 ∈ 𝐸, 𝛾𝑝∕𝑞 avoids 𝐾− ∪ 𝐾+, in other words, 𝛾𝑝∕𝑞 is contained in 𝐴∗.
As 𝐸 is an infinite set, this concludes the proof of the lemma. □

3.3 Proof of Theorem 1

From Proposition 5, there exists 𝑝∕𝑞 ∈ 𝐸 such that 𝛾𝑝∕𝑞 ⊂ 𝐴∗. Moreover, 𝛾𝑝∕𝑞 = 𝑧𝑝∕𝑞 ∪ 𝜆
𝑢
comp ∪

𝜆𝑠comp, where 𝜆
𝑢
comp is the closed arc in 𝜆

𝑢
𝑝∕𝑞

from 𝑧𝑝∕𝑞 to 𝑤𝑝∕𝑞 and 𝜆𝑠comp is the closed arc in 𝜆
𝑠
𝑝∕𝑞

from 𝑤𝑝∕𝑞 to 𝑧𝑝∕𝑞, where 𝑤𝑝∕𝑞 is a point in the intersection between 𝜆𝑢𝑝∕𝑞 and 𝜆
𝑠
𝑝∕𝑞

.
Denote the lower (resp., upper) connected component of the boundary of 𝐴∗ by 𝐾∗0 ⊂ 𝐾−

(resp., 𝐾∗1 ⊂ 𝐾+). For 𝛾 ⊂ 𝐴 a homotopically nontrivial simple closed curve, which is also con-
tained in 𝐴∗, we can define 𝜉∗−(𝛾) as the connected component of the maximal invariant set
contained in 𝛾− ∩ 𝐴∗ that contains 𝐾∗0. Analogously for 𝜉∗+(𝛾). From the construction of 𝐾−
and 𝐾+ in Lemma 1, we get that

𝜉∗−(𝛾) = 𝐾∗0 and 𝜉∗+(𝛾) = 𝐾∗1. (1)

Now consider homotopically nontrivial simple closed curves 𝛼1 and 𝛼0, both contained in 𝐴∗,
such that 𝛼1 ⊂ 𝛾+

𝑝∕𝑞
and 𝛼0 ⊂ 𝛾−

𝑝∕𝑞
.

Also consider the sets𝐵∗𝑠
0,𝛼1

,𝐵∗𝑢
0,𝛼1

,𝐵∗𝑠
1,𝛼0

and𝐵∗𝑢
1,𝛼0

defined in Subsection 2.5, but nowwith respect

to 𝐴∗.
Clearly,

∩𝑛⩾0𝑓
𝑛
(
𝐵∗𝑠
0,𝛼1

)
= ∩𝑛⩾0𝑓

−𝑛
(
𝐵∗𝑢
0,𝛼1

)
= 𝐾∗0

and

∩𝑛⩾0𝑓
𝑛
(
𝐵∗𝑠
1,𝛼0

)
= ∩𝑛⩾0𝑓

−𝑛
(
𝐵∗𝑢
1,𝛼0

)
= 𝐾∗1.

(2)

The above equalities imply that for any 𝑧 ∈ 𝐵∗𝑠
0,𝛼1

, its 𝜔-limit set is contained in 𝐾∗0 and for any
𝑤 ∈ 𝐵∗𝑢

0,𝛼1
, its 𝛼-limit set is also contained in𝐾∗0. And analogously, for any 𝑧 ∈ 𝐵∗𝑠

1,𝛼0
, its𝜔-limit set

is contained in 𝐾∗1 and for any 𝑤 ∈ 𝐵∗𝑢
0,𝛼1

, its 𝛼-limit set is also contained in 𝐾∗1. As 𝐾∗0 and 𝐾∗1

are, respectively, the lower and the upper connected components of the boundary of 𝐴∗, we will
conclude the proof of the theorem by showing that for some integer 𝑛 ⩾ 0, 𝑓𝑛(𝐵∗𝑢

0,𝛼1
) ∩ 𝑓−𝑛(𝐵∗𝑠

1,𝛼0
)

and 𝑓𝑛(𝐵∗𝑢
1,𝛼0

) ∩ 𝑓−𝑛(𝐵∗𝑠
0,𝛼1

) are both nonempty.

Lemma8. The sets𝐵∗𝑠
0,𝛼1

and𝐵∗𝑠
1,𝛼0

intersect 𝜆𝑢
𝑝∕𝑞

in a topologically transverse way, and analogously,
𝐵∗𝑢
0,𝛼1

and 𝐵∗𝑢
1,𝛼0

intersect 𝜆𝑠
𝑝∕𝑞

also in a topologically transverse way.

Proof. The proof is analogous in all four cases, for 𝐵∗𝑠
0,𝛼1

, 𝐵∗𝑠
1,𝛼0

, 𝐵∗𝑢
0,𝛼1

and 𝐵∗𝑢
1,𝛼0

. So, without loss of
generality, let us only analyze 𝐵∗𝑠

0,𝛼1
.
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Let Θ be a connected component of the intersection between 𝐵∗𝑠
0,𝛼1

and the closed annulus
bounded by 𝛼0 and 𝛼1 that intersects 𝛼1 (see Lemma 7). As Θ intersects 𝛼1, as 𝐵∗𝑠0,𝛼1 is connected
and contains 𝐾∗0, and as each connected component of 𝐵∗𝑠

0,𝛼1
is entirely contained in the closed

annulus bounded by 𝛼1 and the lower boundary of 𝐴, one obtains that Θmust also intersect 𝛼0.
From expression (2), 𝐵∗𝑠

0,𝛼1
does not intersect 𝜆𝑠

𝑝∕𝑞
. Assume, for a contradiction, thatΘ does not

intersect 𝜆𝑢
𝑝∕𝑞

in a topologically transverse way. Let 𝜀> 0 be sufficiently small in a way that the
𝜀-neighborhood of 𝜆𝑢comp, denoted 𝑉, is contractible in 𝐴

∗ and disjoint from 𝛼0 and 𝛼1. Then, as
the endpoints of 𝜆𝑢comp do not belong to 𝐵

∗𝑠
0,𝛼1

, by Lemma 3, one can find a curve 𝜇𝜀 contained in
𝑉, with the same endpoints as 𝜆𝑢comp, which is disjoint fromΘ. But as𝑉 is contractible, 𝜇𝜀 ∪ 𝜆𝑠comp
is a homotopically nontrivial closed curve separating 𝛼0 and 𝛼1 and disjoint from Θ. And this is a
contradiction because Θ is connected and intersects 𝛼0 and 𝛼1. □

Thus, from the above lemma and Proposition 1, 𝑓𝑛(𝐵∗𝑢
0,𝛼1

) and 𝑓𝑛(𝐵∗𝑢
1,𝛼0

) both contain subcon-
tinua that accumulate on compact sub arcs of𝑊𝑢(𝑧𝑝∕𝑞) in the Hausdorff topology as 𝑛 → ∞, and
analogously, 𝑓−𝑛(𝐵∗𝑠

0,𝛼1
) and 𝑓−𝑛(𝐵∗𝑠

1,𝛼0
) both contain subcontinua that accumulate on compact

sub arcs of𝑊𝑠(𝑧𝑝∕𝑞) in the Hausdorff topology as 𝑛 → ∞. And this means that, for a sufficiently
large 𝑛 > 0,

𝑓𝑛
(
𝐵∗𝑢
0,𝛼1

)
intersects both 𝑓−𝑛

(
𝐵∗𝑠
0,𝛼1

)
and 𝑓−𝑛

(
𝐵∗𝑠
1,𝛼0

)
,

and

𝑓𝑛
(
𝐵∗𝑢
1,𝛼0

)
intersects both 𝑓−𝑛

(
𝐵∗𝑠
0,𝛼1

)
and 𝑓−𝑛

(
𝐵∗𝑠
1,𝛼0

)
.

Denoting a point in 𝑓𝑛(𝐵∗𝑢
0,𝛼1

) ∩ 𝑓−𝑛(𝐵∗𝑠
1,𝛼0

) by 𝑧+ and a point in 𝑓𝑛(𝐵∗𝑢
1,𝛼0

) ∩ 𝑓−𝑛(𝐵∗𝑠
0,𝛼1

) by 𝑧−, the
theorem is proved.

3.4 Proof of Theorem 3

If the rotation set of 𝑓 is the singleton {𝑎}, there is nothing to be done, as it follows easily that each
point in the boundary of 𝐴 has rotation number 𝑎 (and one can even show that every point in 𝐴
has rotation number 𝑎). So we can assume that the rotation set of 𝑓 has nonempty interior and
therefore we are in the hypotheses of Theorem 1. Let𝐴∗ be given by this result, which is obtained
as in Lemma 1. Note that, from Theorem 2 we know that there exists 𝐸 that is open and dense in
𝜌(𝑓) such that for any rational 𝑝∕𝑞 in 𝐸 we find the homotopically nontrivial closed curve 𝛾𝑝∕𝑞
as described there, and from the end of the proof of Lemma 1, we know that all but at most two of
these curves are contained in 𝐴∗.
As is done for the disk, one can consider the prime ends compactification of𝐴∗, by adding two

circles in order to obtain 𝐴′ = 𝐴∗ ⊔ 𝑆1 ⊔ 𝑆1, so that 𝐴′ is homeomorphic to 𝐴, and the restric-
tion of 𝑓 to 𝐴∗ extends continuously to a homeomorphism ℎ of 𝐴′, with a lift ℎ̃ to the universal
covering of 𝐴′. The rotation number of the lower boundary component of 𝐴′ is the prime ends
rotation number of 𝐾∗0 and the rotation number of the upper boundary component of 𝐴′ is
the prime ends rotation number of 𝐾∗1. Note that 𝐴′ is a Mather region of instability for ℎ.
Note also that, as every rational in 𝐸 is the ℎ̃-rotation number of a point in 𝐴∗, then the rota-
tion set of ℎ̃ must be the same as that of 𝑓, as rotation sets are closed. Now, [6, Theorem C]
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shows that every point in the rotation set of ℎ̃ is realized by a compact ℎ-invariant set, which
implies that, except maybe for the two prime ends rotation numbers of the boundary compo-
nents of 𝐴∗, every point in the rotation set of 𝑓 is realized by a compact 𝑓-invariant subset in
𝐴∗.
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