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Abstract

In this note we give a simple computable criteria that assures the ex-
istence of hyperbolic horseshoes for certain diffeomorphisms of the torus.
The main advantage of our method is that it is very easy to check numer-
ically whether the criteria is satisfied or not.
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1 Introduction

In this note, we present a simple criteria, which gives information on the exis-
tence of hyperbolic horseshoes for certain diffeomorphisms (the so called twist
diffeomorphisms) of the 2-torus. As is well-known, the existence of a horseshoe
for a dynamical system implies ”chaotic” behavior, so an important subject in
dynamical systems theory is to develop methods that assure the presence of
horseshoes for a given system. What we present here is a simple application of
some well-known important results to a particular class of diffeomorphisms of
the 2-torus, the ones which satisfy a twist condition.

In order to be more precise, let us give some definitions.

Definitions

0) Let T2 = IR2/ZZ2 be the flat torus and let (φ, I) ∈ T2 denote coordinates
in the torus, (φ̂, Î) ∈ S1×IR=(IR/ZZ)×IR denote coordinates in the cylinder,
where φ̂ is defined modulo 1. Let p1 : S1×IR→IR and p2 : S1×IR→IR be given
by: p1(φ̂, Î) = φ̂ and p2(φ̂, Î) = Î (the corresponding projections in the plane
are denoted in the same way).

1) Let Diff1+ε
t (T2) be the set of C1+ε (for any ε > 0) torus diffeomorphisms

T (φ, I) = (Tφ(φ, I), TI(φ, I)) that are homotopic to the Dehn twist (φ, I) →
(φ+I mod 1, I mod 1) and satisfy ∂ITφ ≥ K > 0, where K is a positive number
(this is the so called twist condition).

2) Let D1+ε
t (S1 × IR) be the set of diffeomorphisms of the cylinder T̂ (φ̂, Î)

which are lifts of elements from Diff1+ε
t (T2). Clearly, such a T̂ satisfies: T̂ (φ̂, Î+

1) = T̂ (φ̂, Î) + 1.

Now we are ready to state our result:

Theorem 1 : Given T ∈ Diff1+ε
t (T2), there exists a number M > 0, which

depends only on T and can be easily computed, such that if for some lift T̂ of
T, there are points ẑ, ŵ ∈ S1×IR and natural numbers n > 1, k > 1 such that
p2 ◦ T̂n(ẑ)− p2(ẑ) > M and p2 ◦ T̂ k(ŵ)− p2(ŵ) < −M , then T has a hyperbolic
periodic point, whose stable and unstable manifolds intersect transversally.

The proof of this result will show that M can be computed from T in a very
simple way and as T̂ (φ̂, Î + 1) = T̂ (φ̂, Î) + 1, one just has to iterate a horizontal
curve Î = const. a sufficiently large number of times in order to see if the curve
contains points like ẑ and ŵ as in the theorem.

This paper is organized as follows. In the next section we present the state-
ments of some results we use. In section 3 we present the proof of our result.

2 Basic tools

Here we recall some topological results for twist mappings essentially due to Le
Calvez (see [6] and [7]). Let T̂ ∈ D1+ε

t (S1× IR) and T̃ ∈ D1+ε
t (IR2) be its lift to
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the plane. For every pair (s, q), s ∈ ZZ and q ∈ IN∗ we define the following sets
(π : IR2 →S1 × IR is given by π(φ̃, Ĩ) = (φ̃ mod 1, Ĩ)):

Klift(s, q) =
{

(φ̃, Ĩ) ∈ IR2: p1 ◦ T̃ q(φ̃, Ĩ) = φ̃ + s
}

and
K(s, q) = π ◦Klift(s, q)

(1)

Then we have the following:

Lemma 1 : For every s ∈ ZZ and q ∈ IN∗, K(s, q) ⊃ C(s, q), a connected
compact set that separates the cylinder.

For all s ∈ ZZ and q ∈ IN∗ we can define the following functions on S1:

µ−(φ̂) = min{p2(z): z ∈ K(s, q) and p1(z) = φ̂}
µ+(φ̂) = max{p2(z): z ∈ K(s, q) and p1(z) = φ̂}

And we can define similar functions for T̂ q(K(s, q)):

ν−(φ̂) = min{p2(z): z ∈ T̂ q ◦K(s, q) and p1(z) = φ̂}
ν+(φ̂) = max{p2(z): z ∈ T̂ q ◦K(s, q) and p1(z) = φ̂}

Lemma 2 : Defining Graph{µ±}={(φ̂, µ±(φ̂)) : φ̂ ∈ S1} we have:

Graph{µ−} ∪Graph{µ+} ⊂ C(s, q)

So for all φ̂ ∈ S1 we have (φ̂, µ±(φ̂)) ∈ C(s, q).

The next lemma is a fundamental result in all this theory:

Lemma 3 : T̂ q(φ̂, µ−(φ̂)) = (φ̂, ν+(φ̂)) and T̂ q(φ̂, µ+(φ̂)) = (φ̂, ν−(φ̂)).

For proofs of the previous results see Le Calvez [6] and [7].
Now we remember some ideas from [8].
Given a triplet (s, p, q) ∈ ZZ2 × IN∗, if there is no point (φ̃, Ĩ) ∈ IR2 such

that T̃ q(φ̃, Ĩ) = (φ̃ + s, Ĩ + p), it can be proved that the sets T̂ q ◦K(s, q) and
K(s, q) + (0, p) can be separated by the graph of a continuous function from
S1 to IR, essentially because from all the previous results, either one of the
following inequalities must hold:

ν−(φ̂)− µ+(φ̂) > p (2)

ν+(φ̂)− µ−(φ̂) < p (3)

for all φ̂ ∈ S1, where ν+, ν−, µ+, µ− are associated to K(s, q).
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3 Proofs

The proof of theorem 1 depends on the next lemma, which is a variation of a
result of [1]. First we need some definitions:

Given T̂ ∈ D1+ε
t (S1 × IR) and a lift T̃ ∈ D1+ε

t (IR2), it can be written in the
following way,

T̃ :

{
φ̃
′
= T̃φ(φ̃, Ĩ)

Ĩ ′ = T̃I(φ̃, Ĩ)

and for all (φ̃, Ĩ) ∈ IR2 we have the following estimates:

∃ a > 0, such that
∣∣∣T̃I(φ̃, Ĩ)− Ĩ

∣∣∣ < a (4)

∃ b > 0, such that

∣∣∣∣∣∂T̃φ

∂φ̃

∣∣∣∣∣ < b (5)

∃ K > 0, such that
∂T̃φ

∂Ĩ
≥ K (twist condition) (6)

Now, let M =
[
3 + (2+b)

K

]
+ a > 0.

Lemma 4 : Let T̃ ∈ D1+ε
t (IR2) be such that, there exist points z, w ∈ [0, 1]2

and natural numbers n > 1, k > 1, such that p2 ◦ T̃n(z) − p2(z) > M and
p2 ◦ T̃ k(w) − p2(w) < −M. Then there are points z′, w′ ∈ [0, 1]2 and numbers
n′, k′ ∈ IN∗ such that{

T̃n′
(z′) = z′ + (s, pos)

T̃ k′
(w′) = w′ + (l, neg)

, for some s, l ∈ ZZ, pos ≥ 1 and neg ≤ −1.

Proof.
The proof of existence of w′ is analogous to the one for z′, so we omit it.
By contradiction, suppose that for all x ∈ [0, 1]2 (as T̃ is the lift of a torus

mapping homotopic to the Dehn twist, we can restrict ourselves to points in the
unit square) and n > 0 such that T̃n(x) = x + (s,m), for some s ∈ ZZ, we have
m < 1.

A very natural thing is to look for a point z′ as above, in the line segment
r =

{
(φ̃, Ĩ) ∈ [0, 1]2 : φ̃ = p1(z) = φ̃z

}
.

First, let us define

Max.H.L(T̃n(r)) = sup
Ĩ,Ĩ′∈[0,1]

∣∣∣p1 ◦ T̃n(φ̃z, Ĩ)− p1 ◦ T̃n(φ̃z, Ĩ
′)

∣∣∣ . (7)

It is clear that

Max.H.L(T̃n(r)) ≥
∣∣∣p1 ◦ T̃n(φ̃z, 0)− p1 ◦ T̃n(φ̃z, 1)

∣∣∣ = n
n→∞→ ∞. (8)
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So, for all n > 1, ∃ at least one s ∈ ZZ, such that φ̃z + s ∈ p1

(
T̃n(r)

)
.

The hypothesis we want to contradict implies that for all n > 0 and x ∈ r,
such that

p1 ◦ T̃n(x) = φ̃z (mod 1), (9)

we have:

p2 ◦ T̃n(x) < 1 + p2(x) < 2 (10)

As p2 ◦ T̃n(z) >
[
3 + (2+b)

K

]
+ a, ∃ z1 ∈ r such that:

p2 ◦ T̃n(z1) = 3 + a
and

∀ x ∈ z1z ⊂ r,

p2 ◦ T̃n(x) ≥ 3 + a

The reason why such a point z1 exists is the following: As n > 1, ∃ at least one
s ∈ ZZ such that φ̃z + s ∈ p1

(
T̃n(r)

)
. Thus, from (9) and (10), T̃n(r) must

cross the line l given by: l =
{

(φ̃, 3 + a), with φ̃ ∈ IR
}

Also from (9) and (10) we have that:

sup
x,y∈z1z

∣∣∣p1 ◦ T̃n(x)− p1 ◦ T̃n(y)
∣∣∣ < 1

Now let γn : J → IR2 be the following curve:

γn(t) = T̃n(φ̃z, t), t ∈ J = interval whose extremes are p2(z) and p2(z1) (11)

It is clear that it satisfies the following inequalities:

p2 ◦ γn(p2(z))− p2 ◦ γn(p2(z1)) > (2+b)
K

sup
t,s∈J

|p1 ◦ γn(t)− p1 ◦ γn(s)| < 1

Claim 1 : Given a continuous curve γ : J = [α, β] → IR2, with

sup
t,s∈J

|p1 ◦ γ(t)− p1 ◦ γ(s)| < 1 (12)

|p2 ◦ γ(β)− p2 ◦ γ(α)| > (2 + b)
K

(13)

Then ∃ s ∈ ZZ, such that φ̃z + s ∈ p1

(
T̃ ◦ γ(J)

)
.
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Proof.

sup
t,s∈J

∣∣∣p1 ◦ T̃ ◦ γ(t)− p1 ◦ T̃ ◦ γ(s)
∣∣∣ =

= sup
t,s∈J

∣∣∣T̃φ ◦ γ(t)− T̃φ ◦ γ(s)
∣∣∣ ≥ ∣∣∣T̃φ ◦ γ(β)− T̃φ ◦ γ(α)

∣∣∣ ≥
≥ −b + K. (2+b)

K = 2

So the claim is proved.

γn(t) (see (11)) satisfies the claim hypothesis, by construction. So ∃ s ∈ ZZ
such that φ̃z + s ∈ p1

(
T̃ ◦ γn(J)

)
= p1

(
T̃n+1(z1z)

)
.

As inf
t∈J

p2 (γn(t)) = p2 (γn(p2(z1))) = 3 + a, from the choice of a > 0 we get

that inf
t∈J

p2

(
T̃ ◦ γn(t)

)
> 3.

So there exists t′ ∈ J and z′ = (φ̃z, t
′) ∈ r such that:

p1 ◦ T̃n+1(z′) = φ̃z (mod 1)
p2 ◦ T̃n+1(z′) > 3

And this contradicts (9) and (10). So ∃ n′ > 0 and z′ ∈ r, such that
T̃n′

(z′) = z′ + (s, pos) for some s ∈ ZZ, with pos > 1.

Thus from theorem 1 hypotheses, applying lemma 4, we get that there are
points z′, w′ ∈ S1 × [0, 1] and numbers n′, k′ ∈ IN∗ such that

T̂n′
(z′) = z′ + (0, pos)

T̂ k′
(w′) = w′ + (0, neg)

, for constants pos > 1 and neg < −1.

For some s, l ∈ ZZ, z′ ∈ K(s, n′) and w′ ∈ K(l, k′), see definition (1) and
lemma 1. If we remember lemmas 2 and 3, we get that ν+(p1(z′))−µ−(p1(z′)) ≥
pos > 1. So, we have 2 possibilities:

i) there exists z∗ ∈ C(s, n′) such that T̂n′
(z∗) = z∗ + (0, 1)

ii) as C(s, n′) is connected, for all x ∈ C(s, n′), p2 ◦ T̂n′
(x) − p2(x) > 1 ⇒

ν−(φ̂)− µ+(φ̂) > 1, for all φ̂ ∈ S1.
So there exists a simple closed curve γ ⊂ S1 × IR, which is a graph over S1,

that satisfies:
T̂n′

(γ) is above γ + (0, 1) (14)

As T̂ is the lift of a torus mapping homotopic to the Dehn twist, expression
(14) implies that T̂n′

(γ + (0,m)) is above γ + (0, 1 + m), for all m ∈ ZZ. So, for
all x ∈ S1 × IR,

lim inf
n→∞

p2 ◦ T̂n(x)− p2(x)
n

≥ 1
n′

> 0. (15)

Now we consider w′ ∈ K(l, k′). In the same way as above, we get that
ν−(p1(w′))− µ+(p1(w′)) ≤ neg < −1. So, again, we have 2 possibilities:

a) there exists w∗ ∈ C(l, k′) such that T̂ k′
(w∗) = w∗−(0, 1). But this clearly

contradicts (15).
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b) as C(l, k′) is connected, for all x ∈ C(l, k′), p2 ◦ T̂ k′
(x) − p2(x) < −1 ⇒

ν+(φ̂)− µ−(φ̂) < −1, for all φ̂ ∈ S1.
So there exists a simple closed curve α ⊂ S1 × IR, which is a graph over S1,

that satisfies:
T̂ k′

(α) is below α− (0, 1) (16)

As above, expression (16) implies that T̂ k′
(α+(0,m)) is below α+(0,m−1),

for all m ∈ ZZ. So, for all x ∈ S1 × IR,

lim sup
n→∞

p2 ◦ T̂n(x)− p2(x)
n

≤ − 1
k′

< 0,

which again contradicts (15). Thus possibility ii) above does not happen and
we get that there exists z∗ ∈ C(s, n′) such that T̂n′

(z∗) = z∗ + (0, 1). From the
existence of z∗, possibility b) can not happen and so there exists w∗ ∈ C(l, k′)
such that T̂ k′

(w∗) = w∗ − (0, 1). The orbits of z∗ and w∗ project to periodic
orbits for T, the mapping on the torus. Let Oz∗ and Ow∗ denote these periodic
orbits and let Q = Oz∗ ∪ Ow∗ . Now blow-up each x ∈ Q to a circle Sx. Let
T2

Q be the compact manifold (with boundary) thereby obtained ; T2
Q is the

compactification of T2\Q, where Sx is a boundary component where x was
deleted. Now we extend T : T2\Q → T2\Q to TQ : T2

Q → T2
Q by defining

TQ : Sx → Sx via the derivative; we just have to think of Sx as the unit circle
in TxT2 and define

TQ(v) =
DTx(v)
‖DTx(v)‖

, for v ∈ Sx.

TQ is continuous on T2
Q because T is C1 on T2. Let b : T2

Q → T2 be the map
that collapses each Sx onto x. Then T ◦b = b◦TQ. This gives h(TQ) ≥ h(T ) (see
[5], page 111). Actually h(TQ) = h(T ), because each fibre b−1(y) is a simple
point or an Sx and the entropy of T on any of these fibres is 0 (the map on the
circle induced from any linear map has entropy 0). This construction is due to
Bowen (see [2]). In [1] we proved the following theorem:

Theorem 2 : The mapping TQ : T2
Q → T2

Q is isotopic to a pseudo-Anosov
homeomorphism of T2

Q.

In a certain sense, pseudo-Anosov homeomorphisms are the less ”complex”
mappings in their isotopy classes. One of the many motivations for this impre-
cise notion is the following theorem (see [3] and [4] for a proof and for more
information on the theory):

Theorem 3 : Let M be a compact, connected oriented surface possibly with
boundary, and f, g : M → M be two isotopic homeomorphisms. If g is pseudo-
Anosov, then their topological entropies satisfy: h(f) ≥ h(g) > 0.

The above results imply that h(T ) = h(TQ) > 0. Finally, in order to conclude
the proof, we just have to remember the following result due to Katok, see for
instance the appendix of [5].
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Lemma 5 : Let f : M → M be a C1+ε (for any ε > 0) diffeomorphism of a
closed surface M. If h(f) > 0, then f has a hyperbolic periodic point, whose
stable and unstable manifolds intersect transversally.

And the proof of our criteria is complete.
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