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Abstract

In this note we give a simple computable criteria that assures the ex-
istence of hyperbolic horseshoes for certain diffeomorphisms of the torus.
The main advantage of our method is that it is very easy to check numer-
ically whether the criteria is satisfied or not.
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1 Introduction

In this note, we present a simple criteria, which gives information on the exis-
tence of hyperbolic horseshoes for certain diffeomorphisms (the so called twist
diffeomorphisms) of the 2-torus. As is well-known, the existence of a horseshoe
for a dynamical system implies ”chaotic” behavior, so an important subject in
dynamical systems theory is to develop methods that assure the presence of
horseshoes for a given system. What we present here is a simple application of
some well-known important results to a particular class of diffeomorphisms of
the 2-torus, the ones which satisfy a twist condition.
In order to be more precise, let us give some definitions.

Definitions

0) Let T? = IR?/Z? be the flat torus and let (¢, I) € T? denote coordinates
in the torus, (a,f) € S'xIR=(IR/Z) xR denote coordinates in the cylinder,
where giig\deﬁried modulo 1. Let p; : S1xIR—IR and p; : S'xIR—IR be given
by: p1(¢,I) = ¢ and pa(d, I) = I (the corresponding projections in the plane
are denoted in the same way).

1) Let Dif f}T¢(T?) be the set of C'*¢ (for any € > 0) torus diffeomorphisms
T(p, 1) = (Tp(o,1),Tr(¢,I)) that are homotopic to the Dehn twist (¢,I) —
(¢p+1 mod 1,1 mod 1) and satisfy 91Ty > K > 0, where K is a positive number
(this is the so called twist condition).

~

2) Let D}7¢(S! x IR) be the set of diffeomorphisms of the cylinder (¢, )
which are lifts of elements from Dif f}+(T?). Clearly, such a T satisfies: T'(¢, [+

1) =T(¢,1) + 1.
Now we are ready to state our result:

Theorem 1 : Given T € Dif f} T¢(T?), there exists a number M > 0, which
depends only on T and can be easily computed, such that if for some lift T of
T, there are points Z,W € Sl><IRAand natural numbers n > 1,k > 1 such that
p2oT™(2) — pa(Z) > M and pa o T*(@0) — pa(@) < —M, then T has a hyperbolic
periodic point, whose stable and unstable manifolds intersect transversally.

The proof of this result will show that M can be computed from 7" in a very
simple way and as T(¢, I +1) = T(¢,I) + 1, one just has to iterate a horizontal
curve I = const. a sufficiently large number of times in order to see if the curve
contains points like Z and @ as in the theorem.

This paper is organized as follows. In the next section we present the state-
ments of some results we use. In section 3 we present the proof of our result.

2 Basic tools

Here we recall some topological results for twist mappings essentially due to Le
Calvez (see [6] and [7]). Let T € D;T¢(S* x R) and T € D} T¢(IR?) be its lift to



the plane. For every pair (s,q), s € Z and g € IN* we define the following sets
(m:IR? —S* x R is given by 7(¢, 1) = (¢ mod 1,1)):

Kiigi(s,q) = {(0.1) € R? pr o T3, 1) = 3+ s
and (1)
K(s,q) = 7o Kiii(s, q)

Then we have the following:

Lemma 1 : For every s € Z and ¢ € IN*, K(s,q) D C(s,q), a connected
compact set that separates the cylinder.

For all s € Z and q € IN* we can define the following functions on S':

1™ () = min{pa(2): = € K(s,q) and py(2) = o}
ut(¢) = max{pa(2): z € K(s,q) and p;1(z) = ¢}

And we can define similar functions for 7(K (s,9)):

1/_@) = min{pa(z): z € Jiq o K(s,q) and p;1(z) = @»
v (¢) = max{p2(z): 2 € T?0 K(s,q) and p1(z) = ¢}

Lemma 2 : Defining Graph{u*}={(¢, u=(3)) : ¢ € S*} we have:
Graph{p~} U Graph{u™} C C(s,q)
So for all ¢ € S* we have (¢, p=(d)) € C(s,q).
The next lemma is a fundamental result in all this theory:
Lemma 3 : 79(6, ™ () = (&,v*(9)) and T(6, u*(9)) = (6,0~ (9)).

For proofs of the previous results see Le Calvez [6] and [7].

Now we remember some ideas from [8].

Given a triplet (s,p,q) € Z? x IN*, if there is no point (5,?) € IR? such
that T‘I@,f) = (:b + s, I+ p), it can be proved that the sets T90 K(s,q) and
K(s,q) + (0,p) can be separated by the graph of a continuous function from
S1 to IR, essentially because from all the previous results, either one of the
following inequalities must hold:

v () — ut (@) > p (2)

vi(@) —u(¢) <p (3)

for all ¢ € S, where v+, v, u+, = are associated to K(s,q).



3 Proofs

The proof of theorem 1 depends on the next lemma, which is a variation of a
result of [1]. First we need some definitions:

Given T € D}¢(S! x R) and a lift T € D}T(IR?), it can be written in the
following way,

f: %:T}@v@
I'="Ti(,1I)

and for all (qNb, ) ) € IR? we have the following estimates:

3 a > 0, such that }Tl(i,f)—fka (4)
3b >0, such that 3712;5 <b (5)
2]
oT, . .
3 K > 0, such that o7 > K (twist condition) (6)

Now, let M = [3+%}+a>0.

Lemma 4 : Let T € D}"(IR?) be such that, there exist points z,w € [0,1]2
and natural numbers n > 1,k > 1, such that py o T™(z) — pa(z) > M and
p2 0 T*(w) — pa(w) < —M. Then there are points 2/, w' € [0,1]2 and numbers
n', k" € IN* such that
m' (N o
Ik, (Z/) = /+ (5, pos) , for some s,l € Z, pos > 1 and neg < —1.
T (w") = w' + (I, neg)
Proof.
The proof of existence of w’ is analogous to the one for 2/, so we omit it.
By contradiction, suppose that for all z € [0,1]? (as T is the lift of a torus
mapping homotopic to the Dehn twist, we can restrict ourselves to points in the
unit square) and n > 0 such that T"(z) = = + (s,m), for some s € Z, we have
m < 1.
A very natural thing is to look for a point 2z’ as above, in the line segment
r={@.De.1: d=pn(z)=a.}.
First, let us define

Maz.H.L(T"(r)) = sup |p1oT"($,,1) —p1 o T"(,,1")
I.7¢[0,1]

: (7)

It is clear that

Maz. H.L(T"(r)) > ’pl o T™®,,0) —pr o T, )| =n"=F 0. (8)



So, for all n > 1, 3 at least one s € 7, such that :ﬁz +seEp (T”(T)) .
The hypothesis we want to contradict implies that for all n > 0 and = € r,

such that
pP1o Tn(x) = 5,2 (mOd 1)7 (9)

we have:

pooT"(x) < 1+ pa(w) <2 (10)
As ppoT(2) > [3 + @] +a, 3 z; € r such that:

proT™(z1)=3+a
and

Yrxe zmzCr,

ppoT™(x) >3+a
The reason why such a point z; exists is the following: As n > 1, 3 at least one
s € Z such that ¢. + s € py (T"(r)) . Thus, from (9) and (10), 7"(r) must
cross the line [ given by: [ = {(5, 3+ a), with 5 € IR}

Also from (9) and (10) we have that:

sup
T, YEZ12

pioT™(x) — pi ofn(y)’ <1

Now let ,, : J — IR? be the following curve:
v, (t) = T"(¢,,t), t € J = interval whose extremes are p,(z) and py(z1) (11)

It is clear that it satisfies the following inequalities:

P2 07 (p2(2)) — 2 0 7 (p2(z1)) > &2

sup |p1 O’Yn(t) — D Or}/n(s)| <1
t,seJ

Claim 1 : Given a continuous curve v : J = [a, 8] — IR?, with

sup lpro~(t) —prov(s)| <1 (12)
,8€

(2+0)
K

Ip2 0 ¥(B) — p2 o y(a)| > (13)

Then 3 s € Z, such that ¢, + s € p; (To'y(J)) .



Proof.

sup [0 Tor(t) o Tor(s)] =
t,seJ

= sup [Ty 03(t) =Ty 09(s)| > | Ty 04(8) = Ty 0 1()| >
,8€E
(2+b) _
> b4+ K. =9
So the claim is proved. |

v, (t) (see (11)) satisfies the claim hypothesis, by construction. So 3 s € Z
such that 52 +sep (fo vn(J)) =m (T"H(ZTZ)>
As tuelg P2 (7, (1)) = p2 (7, (p2(21))) = 3 + a, from the choice of a > 0 we get
hat inf py (T ) >3
that inf py oy,(t)) >3 .
So there exists t' € J and 2’ = (¢,,t') € r such that:
p1o Tn+1 (') = 5
p2o T () >3

And this contradicts (9) and (10). So 3 n’ > 0 and 2’ € r, such that
T”,(z’) =2 + (s, pos) for some s € 7, with pos > 1. |

(mod 1)

z

Thus from theorem 1 hypotheses, applying lemma 4, we get that there are
points 2/, w’ € S x [0, 1] and numbers n’, k' € IN* such that

T (') = 2/ + (0, pos)

fk’( 3 /(0 ) for constants pos > 1 and neg < —1.
w') =w ,neg

For some s,l € Z, 2/ € K(s,n') and v’ € K(I,k"), see definition (1) and
lemma 1. If we remember lemmas 2 and 3, we get that v 7 (py(2'))—u~ (p1(2')) >
pos > 1. So, we have 2 possibilities: R

i) there exists z* € C(s,n’) such that 7™ (z*)

ii) as C'(s,n’) is connected, for all z € C(s,n
v (¢) — put(9) > 1, for all ¢ € SL.

So there exists a simple closed curve v C S' x IR, which is a graph over S*,
that satisfies:

=z"+(0,1)
Ny paoT™ (z) —pa(z) > 1 =

T" (v) is above 7 + (0,1) (14)

As T is the lift of a torus mapping homotopic to the Dehn twist, expression
(14) implies that T™ (v + (0,m)) is above v+ (0,1 + m), for all m € Z. So, for
all z € S! x IR,

lim inf p20oT"(z) — p2(z)

n— o0 n

> — > 0. (15)

1
n/
Now we consider w’ € K(I,k'). In the same way as above, we get that
v (p1(w")) — uT(p1(w')) < meg < —1. So, again, we have 2 possibilities:
a) there exists w* € C(I, k') such that T% (w*) = w* — (0, 1). But this clearly
contradicts (15).



b) as C(I, k') is connected, for all z € C(I,k'), ps o TF (z) — pa(z) < -1 =
v (@) — u(¢) < —1, for all ¢ € S*.
So there exists a simple closed curve o« C S' x IR, which is a graph over S?,
that satisfies: R
T (a) is below a — (0,1) (16)
As above, expression (16) implies that 7% (a4 (0, m)) is below a4 (0, m—1),
for all m € Z. So, for all z € S! x IR,

T (z) — 1
lim sup p2oT"(x) — pa(x) <_— <o,

n—00 n - K

which again contradicts (15). Thus possibility ii) above does not happen and
we get that there exists z* € C(s,n’) such that 7 (2*) = z* + (0, 1). From the
existence of z*, possibility b) can not happen and so there exists w* € C(l, k')
such that 7% (w*) = w* — (0,1). The orbits of z* and w* project to periodic
orbits for T, the mapping on the torus. Let O.« and O, denote these periodic
orbits and let Q@ = O.+ U O,+. Now blow-up each = € @ to a circle S,. Let
T(QQ be the compact manifold (with boundary) thereby obtained ; TQQ is the
compactification of T?\Q, where S, is a boundary component where z was
deleted. Now we extend T : T*\Q — T*\Q to T, : Tg — Tg by defining
Tq : Sy — S, via the derivative; we just have to think of S, as the unit circle
in 7, T2 and define

B DT, (v)
o) = 1Bz, )

Ty is continuous on Té because T is C' on T?. Let b : T(Qg — T2 be the map
that collapses each S, onto . Then T'ob = boT(. This gives h(Tg) > h(T) (see
[5], page 111). Actually h(Tg) = h(T), because each fibre b~!(y) is a simple
point or an S, and the entropy of T" on any of these fibres is 0 (the map on the
circle induced from any linear map has entropy 0). This construction is due to
Bowen (see [2]). In [1] we proved the following theorem:

forv € S,.

Theorem 2 : The mapping Tq : T(QQ — T(Qg is isotopic to a pseudo-Anosov
homeomorphism of T¢,.

In a certain sense, pseudo-Anosov homeomorphisms are the less ”complex”
mappings in their isotopy classes. One of the many motivations for this impre-
cise notion is the following theorem (see [3] and [4] for a proof and for more
information on the theory):

Theorem 3 : Let M be a compact, connected oriented surface possibly with
boundary, and f,qg: M — M be two isotopic homeomorphisms. If g is pseudo-
Anosov, then their topological entropies satisfy: h(f) > h(g) > 0.

The above results imply that h(T) = h(Tg) > 0. Finally, in order to conclude
the proof, we just have to remember the following result due to Katok, see for
instance the appendix of [5].



Lemma 5 : Let f : M — M be a C**¢ (for any € > 0) diffeomorphism of a
closed surface M. If h(f) > 0, then f has a hyperbolic periodic point, whose
stable and unstable manifolds intersect transversally.

And the proof of our criteria is complete.
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