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Abstract

Let f be a Cr-diffeomorphism of the closed annulus A that preserves
the orientation, the boundary components and the Lebesgue measure.
Suppose that f has a lift f̃ to the infinite strip Ã which has zero Lebesgue
measure rotation number. If the rotation number of f̃ restricted to both
boundary components of A is positive, then for such a generic f (r ≥ 16),
zero is an interior point of its rotation set. This is a partial solution to a
conjecture of P. Boyland.
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1 Introduction and statement of the main result

In this paper we consider diffeomorphisms f of the closed annulus A = S1×[0, 1],
which satisfy certain special conditions, namely:

1. f preserves orientation and the boundary components;

2. f preserves the Lebesgue measure of A;

3. there exists a special lift f̃ of f to the universal cover of the annulus
Ã =IR×[0, 1], satisfying the following: If p1 : Ã →IR is the projection on
the first coordinate and p : Ã → A is the covering mapping, we can define
the displacement function φ : A→IR as

φ(x, y) = p1 ◦ f̃(x̃, ỹ)− x̃, (1)

for any (x̃, ỹ) ∈ p−1(x, y). Then the rotation number of the Lebesgue
measure λ satisfies

ρ(λ)
def.
=
∫
A

φdλ = 0.

Following the usual definition (see [2]), we refer to such mappings as rotation-
less diffeomorphisms. Every time we say that f is a rotationless diffeomorphism,
a special lift f̃ is fixed and used to define φ.

Our objective here is to study a problem posed by P. Boyland, which will
be explained below.

Given a rotationless homeomorphism of the annulus f , by a result of Franks
(see [6]), if there are two f -invariant Borel probability measures µ1 and µ2

with ρ(µ1) < ρ(µ2), then for every rational ρ(µ1) < p
q < ρ(µ2), there exists

a q-periodic orbit for f with this rotation number. So, suppose there exists a
measure with positive rotation number. By a classical result (a version of the
Conley-Zehnder theorem to the annulus) there must be fixed points with zero
rotation number, so Boyland’s question is: Is it true that in the above situation
there must be orbits with negative rotation number? This is a very difficult
problem, which we did not solve in full generality. We considered a generic
approach:

Theorem 1 : For r ≥ 16, there exists a residual subset V of

Diffr+rot(A) =
{
Cr rotationless diffeomorphisms of A, such that
p1 ◦ f̃(x̃, i)− x̃ > 0 for all x̃ ∈ IR and i = 0, 1

}
, (2)

such that if f ∈ V , then 0 is contained in the interior of the rotation set of f̃ ,
ρ(f̃) = {ω ∈ IR : ω =

∫
A
φdµ for some Borel probability f -invariant measure

µ}.

Remarks:
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1. Our proof will show that V contains the subset of Moser generic diffeo-
morphisms of Diffr+rot(A), that is, all periodic points of f ∈ V, not in
the boundary of A, are either hyperbolic saddles or Moser stable elliptic
points. By Moser stable, we mean the usual: z ∈ A is a Moser stable ellip-
tic periodic point for f (of period n), if z is accumulated by homotopically
trivial simple closed fn-invariant curves, the dynamics of fn restricted to
each of these curves is minimal and the rotation numbers of fn on these
curves is not constant in any neighborhood of z. Moreover, there are no
saddle connections between invariant manifolds of hyperbolic periodic sad-
dles in interior(A) and if z ∈ interior(A) is a hyperbolic periodic saddle,
then any two branches of z, one stable and one unstable, have non-empty
intersection;

2. There are two main restrictions in our result, namely:

(a) The rotation number in the boundaries must be positive. It is much
harder (at least following our approach to the problem) to consider
the case when some boundary (or both) has a fixed point for f̃ .We
are considering this case in an ongoing work;

(b) Our proof holds only for a residual subset of Diffr+rot(A) and we need
r ≥ 16 in order to generically have Moser stable elliptic periodic
points, see subsection 2.3.

2 Basic tools

2.1 The set B−

In this subsection we define the set B−, introduced in [1], that will play an
important role in the proof of our theorem. Although much of what is done in
this subsection can be found in [1], for completeness sake we present all results
needed with proofs.

To this purpose, we will sometimes make use of the left and right compactifi-
cation of Ã = IR× [0, 1], denoted L,R-compactification, that is, we compactify
the infinite strip adding two points, L (left end) and R (right end), getting a
closed disk, denoted Â. Clearly f̃ induces a homeomorphism f̂ : Â → Â, such
that f̂(L) = L and f̂(R) = R.

Given a real number a, let

Va = {a} × [0, 1],

V −a =]−∞, a]× [0, 1] andV +
a = [a,+∞[×[0, 1].

Denote the corresponding sets on Â by V̂a, V̂ −a and V̂ +
a . We will also denote the

sets V0, V
−
0 and V +

0 simply by V, V − and V + respectively.
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If we consider the closed set,

B̂ =
⋂
n≤0

f̂n(V̂ −),

we get that, f̂(B̂) ⊂ B̂ and L ∈ B̂. Denote by B̂− the connected component
of B̂ which contains L, and by B− the corresponding set on the strip, that is
B− = B̂−\{L}.

Lemma 1 : If (f, f̃) is a rotationless homeomorphism, then B̂−∩V̂ 6= ∅ (equiv-
alently for the strip: B− ∩ V 6= ∅).

Proof:
See [3], [9] and even Birkhoff ’s paper [4]. 2

So, we know that B− ⊂ Ã is a closed non-empty set, limited to the right
(B− ⊂ V −), whose connected components (which may be unique) are all un-
bounded to the left, and at least one connected component of B− intersects
V.

An important point here is that, as the rotation numbers in the boundaries
of the annulus are both positive, B and thus B−, do not intersect IR× {0} and
IR× {1} (because f̃(B) ⊂ B ⊂ V −).

2.2 The limit set of B−

Here we examine some properties of the set ω(B̂−) =
⋂∞
n=0

⋃∞
i=n f̂

i(B̂−), a
subset of Â, and the corresponding set ω(B−) ⊂ Ã.

Since f̂(B̂−) ⊂ B̂−,and since B̂−is closed, we have

ω(B̂−) =
∞⋂
n=0

f̂n(B̂−),

therefore ω(B̂−) is the intersection of a nested sequence of compact connected
sets, and so it is also a compact connected set. Moreover, the following lemma
holds:

Lemma 2 : If ω(B−) is not empty, then it is a closed, f̃ -invariant set, whose
connected components are all unbounded.

Proof:
Since L ∈ B̂− and f̂(L) = L, we get that L ∈ ω(B̂−). This implies, since

ω(B̂−) is connected, that each connected component of ω(B−) is unbounded.
The other properties follow directly from the previous considerations. 2

Of course, since B− is closed and positively invariant, we also have that
ω(B−) ⊂ B−, and as such, ω(B−) ∩ IR× {i} = ∅, i ∈ {0, 1}, and ω(B−) ⊂ V −.
Note that, it is still possible that ω(B−) = ∅ and later, see lemma 4, it will be
shown that if this is the case, then theorem 1 is proved.

3



2.3 Generic properties of diffeomorphisms of the annulus

In this subsection we state a result which describes the set V of Moser generic
elements of

Diffrrot(A) = {Cr rotationless diffeomorphisms of A},

which appears in the statement of theorem 1.

Theorem 2 : For all r ≥ 16, the subset of Moser generic diffeomorphisms V ⊂
Diffrrot(A) (see remark 1, right after the statement of theorem 1) is residual.

Proof:
If we had no restriction on the rotation number of the Lebesgue measure,

this result would be standard; Kupka-Smale theorem + a result by Douady on
genericity of Moser stable elliptic points (this is the part where r ≥ 16 is needed)
+ theorems due to Pixton [13], Oliveira [12] and Robinson [16]. See for instance
theorem 6.3 of [8].

To see that the residual subset we want exists, proceed as follows:
Given g ∈ Diffrrot(A), if we follow the main ideas in the proof of the Kupka-

Smale theorem, as in chapter 10 of [14], the following steps appear naturally:
1) we must perturb g so that all periodic points for the perturbed mapping

are non-elementary, that is 1 is not allowed as an eigenvalue at a periodic point.
This is achieve by a series of perturbations which rely on the transversality
theorem of Thom (a parametric version, see theorem 2.3 of chapter 10 of [14]),
each supported in a small disk of A. After this step, we end with a rotationless
diffeomorphism g1 arbitrarily Cr-close to g. We do not loose the rotationless
property because it is preserved by area preserving perturbations supported on
disks of A.

2) here, g1 must be perturbed so that all its periodic points become either
hyperbolic or elliptic, with no root of the unity up to order 5 as an eigenvalue,
and there shall not be any saddle connections. As seen in Robinson’s book
[14] and in [15], this is also achieved by a series of local perturbations (again
supported on small disks of A), that is, the perturbed mapping g2 still belongs
to Diffrrot(A).

3) here, g2 must be perturbed so that all its elliptic periodic points become
Moser stable. As seen in [5], this is also achieved by a series of small local
perturbations supported on disks of A. As above, the perturbed mapping g3
still belongs to Diffrrot(A).

4) finally g3 must be perturbed so that for any hyperbolic periodic saddle,
any two branches of it, one stable and one unstable, have non-empty intersection.
As seen in [12] this can be achieved by a series of perturbations again supported
on disks, which implies, as in all the previous steps, that we do not lose the
rotationless property.

So after these four steps, we end with an element g4 of Diffrrot(A). An
important remark here is that Robinson’s proof in [14] is not for the conservative
world, but the main ideas in this case are the same, the major difference is that
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the type of local perturbations applied in steps 1 and 2 is much more delicate,
see [15] for the conservative version of these perturbations. 2

2.4 Some consequences of Prime Ends theory

Here we state two theorems we use. The first is contained in proposition 5.2 of
[7] and the second is corollary 8.2 of [7]:

Theorem 3 : Let f : A→ A be an orientation and area preserving homeomor-
phism of A and let K ⊂ interior(A) be a compact connected f -invariant set,
such that S1 × {0} and S1 × {1} are in different connected components of Kc.
If K has no periodic points, then there exists an irrational α such that for all
z ∈ K and z̃ ∈ p−1(z),

lim
n→∞

p1 ◦ f̃n(z̃)− z̃
n

= α.

Theorem 4 : If f is a Moser generic diffeomorphism of A (see theorem 2) and
K ⊂ interior(A) is a boundary component of some f -invariant annulus of A,
then there are no periodic points in K.

2.5 A general result for area preserving homeomorphisms
of the annulus

In this section we prove a lemma that will be useful in the proof of our main
result.

Lemma 3 : Let f be a homeomorphism of A that preserves the orientation,
the boundary components of A and the Lebesgue measure λ and let f̃ be a lift
of f to Ã. Let Ω be an open subset of the strip, Ω ⊂ (−∞, 0]× [0, 1], such that
Ω ⊂ f̃(Ω) and λ(f̃(Ω) \ Ω) > 0. Clearly Ω is unbounded. Then there is an open
f -invariant set E ⊂ A such that ∫

E

φdλ > 0.

Proof:
Since Ω is open, p(Ω) is also open, as is f(p(Ω)). Also, since Ω ⊂ f̃(Ω),

p(Ω) ⊂ f(p(Ω)). Therefore, the set

E = ∪∞i=0f
i(p(Ω)),

is an f -invariant open set. But f is measure preserving, and since λ(f(p(Ω)))
and λ(p(Ω)) are equal, we have λ(f(p(Ω))\p(Ω)) = 0, and thus λ(E\(p(Ω)) = 0.

Let C = ∪∞i=1(Ω − (i, 0)), and D = Ω \ C. From Ω ⊂ f̃(Ω), it follows that
C ⊂ f̃(C).

Let (x, y) be a point in p(Ω), and (x̃, ỹ) ∈ Ω ∩ p−1(x, y). Since Ω is limited
to the right, there must exist a positive integer k such that (x̃+ k, ỹ) ∈ Ω and,
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for all j > k, (x̃ + j, ỹ) /∈ Ω. But then the point (x̃ + k, ỹ) must belong to D.
This shows that p(D) = p(Ω), and that

Ω ⊂ ∪∞i=0(D − (i, 0)). (3)

It also follows that ∫
E

φdλ =
∫
p(D)

φdλ.

Also, since λ(f(p(D)) \ p(D)) = 0, we get that

λ
[
f̃(D)\(p−1(p(D)))

]
= 0. (4)

As D ⊂ Ω, from the definition of C we get that C ⊃ ∪∞i=1(D − (i, 0)). On the
other hand, from (3) we have C ⊂ ∪∞i=1(D − (i, 0)) and so

C = ∪∞i=1(D − (i, 0)).

From the fact that C ⊂ f̃(C) and C ∩D = ∅, we obtain

f̃(D) ∩ (∪∞i=1(D − (i, 0))) = ∅. (5)

This and (4) imply that

λ
[
f̃(D)\(∪∞i=0(D + (i, 0)))

]
= 0, since p−1(p(D)) = ∪∞i=−∞(D + (i, 0)).

Now denote for every integer i ≥ 0,

Di = f̃(D) ∩ (D + (i, 0)).

From (4) and (5), we have that f(p(D))∩p(D) = ∪∞i=0p(Di). Note that, since the
covering mapping p restricted to D is injective, it is also injective when restricted
to f̃(D), and so p(Di)∩p(Dj) is empty if i 6= j. Finally, from λ(f(p(D))\p(D)) =
λ(f(p(D)) \ (∪∞i=0p(Di))) = 0, we obtain

λ [D \ (∪∞i=0(Di − (i, 0)))] = 0. (6)

We claim that λ(∪∞i=1Di) 6= 0. If this was not so, we would have λ(f̃(D) \
D) = 0. Let Fi = Ω ∩ (D − (i, 0)), and so Ω = ∪∞i=0Fi, see (3). Of course, since
the covering mapping p is injective on D, λ(D) ≤ 1, and so λ(Fi) ≤ 1. Now
f̃(Fi) = f̃(D−(i, 0))∩ f̃(Ω) ⊃ f̃(D−(i, 0))∩Ω. This implies that λ(f̃(Fi)\Fi) =
0, and so λ(f̃(Ω) \ Ω) = 0, which contradicts our hypothesis.

Now ∫
E

φdλ =
∫
p(D)

φdλ =
∫
D

p1(f̃(x, y))dλ−
∫
D

xdλ,

but ∫
D

p1(f̃(x, y))dλ =
∫
f̃(D)

xdλ =
∞∑
i=0

∫
Di

xdλ >

∞∑
i=0

∫
Di−(i,0)

xdλ
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where the last equality comes from (6) and from (Di− (i, 0))∩ (Dj− (j, 0)) = ∅,
if i 6= j, and the strict inequality comes from λ(∪∞i=1Di) > 0.

Since
∫
D
xdλ =

∑∞
i=0

∫
Di−(i,0)

xdλ, we have the result. 2

An immediate corollary is

Corollary 1 : Let (f, f̃) be a rotationless homeomorphism and let Ω be an open
subset of the strip, Ω ⊂ (−∞, 0]×[0, 1], such that Ω ⊂ f̃(Ω) and λ(f̃(Ω)\Ω) > 0.
Then 0 is an interior point of the rotation set of f̃ .

Proof:
From the previous lemma we know that there is an invariant set E in the

annulus such that
∫
E
φdλ > 0. Therefore there is a point in E with a strictly

positive rotation number. On the other hand, since
∫
A
φdλ = 0, we have∫

EC φdλ < 0 and since EC is invariant, there must be a point in EC with
strictly negative rotation number. 2

3 Proof of the main theorem

First, let us suppose that ω(B−) = ∅. In this case, as in [1], we can prove the
following:

Lemma 4 : There exists an integer N1 > 0 such that f̃N1(B−) ⊂ B− − (1, 0).

Proof:
There is an integer N1 > 0 such that, for all n ≥ N1, f̃

n(B−) ⊂ V −−2. So,
f̃n(B−) + (1, 0) ⊂ V − and as each connected component of f̃n(B−) + (1, 0) is
unbounded and this set is positively invariant, it must be the case that f̃n(B−)+
(1, 0) ⊂ B−. 2

As f̃N1(B−) ⊂ B− − (1, 0), for any positive integer k,

f̃kN1(B−) ⊂ B− − (k, 0) ⊂ V −−k,

and so it follows that, for any point z̃ ∈ B−,

lim sup
n→∞

p1 ◦ f̃n(z̃)− p1(z̃)
n

≤ − 1
N1

,

and this proves our theorem. So, we can suppose that ω(B−) 6= ∅.
Since the rotation number of f̃ restricted to S1×{0} and S1×{1} is strictly

positive, there exists σ > 0 such that p1(f̃(x̃, i)) > x̃+ 2σ for all x̃ ∈ IR and i =
0, 1. Let ε > 0 be sufficiently small such that for all (x̃, ỹ) ∈ IR×{[0, ε]∪[1−ε, 1]},
p1 ◦ f̃(x̃, ỹ) > x̃+ σ.

Let us first consider the case when S1 × {[0, ε/2] ∪ [1 − ε/2, 1]} intersects
p(ω(B−)). Then there is a real a such that

ω(B−) ∩ {a} × [0, ε] 6= ∅ or ω(B−) ∩ {a} × [1− ε, 1] 6= ∅. (7)
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Without loss of generality, we can suppose that the first intersection in
expression (7) is non-empty. The fact that ω(B−) ⊂ B− is closed implies
that there must be a δ ≤ ε such that (a, δ) ∈ ω(B−), and such that for all
0 ≤ ỹ < δ, (a, ỹ) /∈ ω(B−) (remember that IR× {0} and IR× {1} do not inter-
sect B−). In other words, (a, δ) is the “lowest” point of ω(B−) in {a} × [0, ε].
We denote by v the interval {a} × [0, δ[.

Let Ω be the connected component of (ω(B−) ∪ v)c that contains ]−∞, a[×{0}.
In this case, our main theorem follows from corollary 1 and the next propo-

sition:

Proposition 1 : The following holds: Ω ⊂ f̃(Ω) and λ(f̃(Ω) \ Ω) > 0.

Proof:
First, note that the boundary of f̃(Ω) is contained in ω(B−)∪f̃(v). We claim

that ∂f̃(Ω) ∩ Ω = ∅. This follows from the two conditions below:
1) By the choice of ε > 0, f̃(v) ∩ v = ∅;
2) As ω(B−) is f̃ -invariant, ω(B−) ∩ f̃(v) = ∅;
So, as Ω∩ f̃(Ω) 6= ∅, we get that Ω ⊂ f̃(Ω). In order to see that λ(f̃(Ω)\Ω) >

0, we note that for sufficiently small ξ > 0, Bξ(f̃(a, 0))∩ f̃(Ω) is non-empty and
contained in closure(Ω)c. 2

So let us deal with the remaining case, when S1 × {[0, ε/2] ∪ [1− ε/2, 1]} ∩
p(ω(B−)) = ∅, but ω(B−) is not empty. In this case, let A∗ be the connected

component of
(
p(ω(B−))

)c
which contains S1 × {0}.

Lemma 5 : The set A∗ is a f -invariant open sub-annulus.

Proof:
This follows from the fact that each connected component of the complement

of a compact connected subset of a sphere is an open disk, see for instance [11].
2

The boundary of A∗ has two connected components, one is S1 × {0} and
the other is denoted by K. Clearly, K ⊂ S1 × [ε/2, 1 − ε/2] and as A∗ is a f -
invariant annulus, we can compute the rotation number of the Lebesgue measure
restricted to A∗. If it is non-zero, then the proof is over. So, suppose it is zero.
First, note that theorems 4 and 3 imply that there exists an irrational α such
that for all z ∈ K and z̃ ∈ p−1(z),

lim
n→∞

p1 ◦ f̃n(z̃)− z̃
n

= α. (8)

If α < 0, then the proof is over. If it is positive, then using prime end theory
(see for instance proposition 5.2 of [7]), we know that there exists a homeo-
morphism g of the open annulus S1×]0, 1[ which is conjugate to f |A∗ (by an
orientation preserving conformal homeomorphism), preserves a measure equiv-
alent to Lebesgue and has a rotationless lift g̃. Moreover, there is a rotationless
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homeomorphism of the closed annulus, which extends (g, g̃), denoted (g′, g̃′),
such that:

ρ(g̃′) |S1×{0}= ρ(f̃) |S1×{0}> 0

ρ(g̃′) |S1×{1}= ρ(f̃) |K= α > 0
(9)

To conclude our proof, let us consider the set (B−)′ for g̃′. It is not empty,
does not contain any point of IR× {0, 1} (because of the two conditions in (9))
and may or may not have a ω-limit. If ω((B−)′) = ∅, then lemma 4 and the
argument right after it imply that g has points with negative rotation number.
And this finishes the proof, because g is conjugate to f |A∗ . If ω((B−)′) 6= ∅,
then we get that p(ω(B−)) intersects A∗, again because g′ |S1×]0,1[ is conjugate
to f |A∗ . This contradicts the definition of A∗ and proves our main theorem. 2

The proof of the main theorem can be adapted to obtain a interesting
byproduct. If A is a region of instability for f, i.e., A has no f -invariant proper
sub-annulus, then lemma 5 implies that it is not possible that

S1 × {[0, ε/2] ∪ [1− ε/2, 1]} ∩ p(ω(B−)) = ∅,
but ω(B−) is not empty.

This was the only case where we needed the genericity hypothesis. Therefore,
the following result is true:

Theorem 5 : If A is a region of instability for f ∈ Hom+
rot(A) = { rotationless

homeomorphisms of A, such that p1 ◦ f̃(x̃, i)− x̃ > 0 for all x̃ ∈ IR and i = 0, 1},
then 0 is an interior point of ρ(f̃).

This result is a particular case of the main theorem in [17], where we replace
the hypothesis of f being rotationless with: For every M < 0 there exists a point
z̃ in [0,∞[×[0, 1] and a positive integer n such that f̃n(z̃) ∈]−∞,M ]× [0, 1].
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troisième cycle, Université de Paris 7.

[6] Franks J. (1988) Recurrence and fixed points of surface homeomorphisms.
Ergodic Theory Dynam. Systems 8∗ , 99-107.

[7] Franks J. and Le Calvez P. (2003) Regions of instability for non-twist maps.
Ergodic Theory Dynam. Systems 23, 111-141

[8] Franks J. (2003) Rotation numbers and instability sets. Bull. of the A.M.S.
40, 263-279

[9] Le Calvez P. (1987) Propriétés dynamiques des régions d’instabilité. Ann.
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