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1 Introduction and main results

In this paper we study homeomorphisms f of the torus homotopic to Dehn

twists. These homotopy classes are in some way simpler to analyze than the

identity case. One of the reasons for this is the fact that there is no sense

in defining a two dimensional rotation set for torus maps homotopic to Dehn

twists, instead a vertical rotation set is defined, see expression (1).

Many important conjectures for homotopic to the identity maps have their

analogs in this setting. For instance, how is the rotation interval of a min-

imal Dehn twist homeomorphism? Does the set of minimal Dehn twist Cr-

diffeomorphisms (r ≥ 2) have no interior? If f is a Dehn twist homeomorphism

which preserves area and has zero Lebesgue measure vertical rotation number,

is it true that either f is more or less like an annulus homeomorphism or the

vertical rotation interval has no empty interior?

One of the main motivations for our work is a recent example of F. Tal and

A. Koropecki, where they present an area preserving torus homeomorphism h

homotopic to the identity, such that its rotation set is only (0, 0), satisfying the

following property:

• h has a lift to the plane, denoted h̃, such that h̃ has fixed points and some

points in the plane have unbounded h̃-orbits in every direction

In other words, this example implies that the existence of sub-linear dis-

placement does not imply linear displacement, at least in the homotopic to the

identity class. In this work we show that maps homotopic to Dehn twists have

a different behavior. Before presenting our results, we need some definitions.

Definitions:

1. Let T2 = IR2/ZZ2 be the flat torus and let p : IR2 −→ T2 and π : IR2 −→

S1 × IR be the associated covering maps. Coordinates are denoted as

(x̃, ỹ) ∈ IR2, (x̂, ŷ) ∈ S1 × IR and (x, y) ∈ T2.

2. Let DT (T2) be the set of homeomorphisms of the torus homotopic to a

Dehn twist (x, y) −→ (x+ ky mod 1, y mod 1), for some k ∈ ZZ∗, and let
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DT (S1 × IR) and DT (IR2) be the sets of lifts of elements from DT (T2)

to the cylinder and plane. Homeomorphisms from DT (T2) are denoted f

and their lifts to the vertical cylinder and plane are respectively denoted

f̂ and f̃ .

3. Let p1,2 : IR2 −→ IR be the standard projections; p1(x̃, ỹ) = x̃ and

p2(x̃, ỹ) = ỹ. Projections on the cylinder are also denoted by p1 and

p2.

4. Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), the so called vertical

rotation set can be defined as follows, see [12]:

ρV (f̂) =
⋂
i ≥ 1

⋃
n ≥ i

{
p2 ◦ f̂n(ẑ)− p2(ẑ)

n
: ẑ ∈ S1 × IR

}
(1)

This set is a closed interval (maybe a single point, but never empty) and

it was proved in [1] and [3] (and much earlier in [6], although the first

author discovered this only recently) that all numbers in its interior are

realized by compact f -invariant subsets of T2, which are periodic orbits

in the rational case. From its definition, it is easy to see that

ρV (f̂m + (0, n)) = m.ρV (f̂) + n for any integers n,m.

5. Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), let µ be a f -invariant

Borel probability measure. We define the vertical rotation number of µ as

follows:

ρV (µ) =

∫
T2

φ(x, y)dµ,

where the vertical displacement function φ : T2 → IR is given by φ(x, y) =

p2 ◦ f̂(x̂, ŷ)− ŷ, for any (x̂, ŷ) ∈ S1 × IR such that π−1(x̂, ŷ) ⊂ p−1(x, y).

So, given f ∈ DT (T2) and f̂ ∈ DT (S1× IR), as we said above, one wants to

know, under which conditions can f be minimal? It is not difficult to see that

in this case the vertical rotation interval must be a single point, otherwise there

would be infinitely many periodic orbits. But more can be said.
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Theorem 1 : Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), suppose that f

is minimal. Then, ρV (f̂) = {α} for some irrational number α.

So, if f is a Cr diffeomorphism, for some r ≥ 2, is there a natural perturba-

tion that destroys minimality? As the extreme points of ρV (f̂) vary continuously

with f̂ ∈ DT (S1× IR) (see [7]), a way to attack this problem is by showing that

irrational extremes are not stable under perturbations. This was done in [2] for

twist mappings on the torus.

The main problem addressed in this paper is in a way, complementary to

the above. Suppose for instance that ρV (f̂) contains a single rational number

p/q. What can we say about the dynamics of f? And if f preserves area and the

center of gravity, that is Lebesgue measure has zero vertical rotation number,

what can we say about its vertical rotation interval? When it is not reduced to

zero, is zero always an interior point? This is the so called Boyland’s Conjecture.

Below we state our main results:

Theorem 2 : Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1×IR), if ρV (f̂) = {p/q},

for some rational p/q, then there exists a compact connected set K ⊂ S1 × IR,

invariant under f̂q − (0, p), which separates the ends of the cylinder. So, all

points have uniformly bounded orbits under the action of f̂q − (0, p).

Note that no area preservation hypothesis appear in our theorem. The fol-

lowing corollary is almost immediate:

Corollary 1 : Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), suppose that

ρV (f̂) = [a, p/q], for some rational p/q and some real a smaller than p/q. Then

there exists M > 0 such that for all ẑ ∈ S1× IR, p2 ◦ f̂n(ẑ)− p2(ẑ)−np/q < M,

for all integers n > 0.

The next result gives an explicit criteria which implies non-degenerate ver-

tical rotation sets and thus by a result analogous to the one in [11], implies

positive topological entropy (see for instance [6] and [1]).

Theorem 3 : Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), there exists

M > 0 (which can be explicitly computed) such that if for some points ẑ1, ẑ2 ∈
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S1 × IR, we have p2 ◦ f̂n1(ẑ1) − p2(ẑ1) < −M and p2 ◦ f̂n2(ẑ2) − p2(ẑ2) > M,

for certain positive integers n1 and n2, then 0 is an interior point of ρV (f̂).

The next result gives a positive answer for Boyland’s conjecture in this set-

ting:

Corollary 2 : Given an area-preserving f ∈ DT (T2) and a lift f̂ ∈ DT (S1 ×

IR) with zero Lebesgue measure vertical rotation number, then either ρV (f̂) is

reduced to 0, or 0 is an interior point of ρV (f̂).

This paper is organized as follows. In the second section we present some

background results we use, with references and a few proofs and in the third

section we prove our main results. From now on we assume, without loss of

generality, that any f ∈ DT (T2) we consider, is homotopic to a Dehn twist

(x, y) −→ (x+ kDehny mod 1, y mod 1) with kDehn > 0.

2 Basic Tools

2.1 Brick Decompositions of the plane

We define a brick decomposition of the plane as follows:

IR2 =
∞
∪
i=0

Di,

where each Di ∈ Brick Decomposition is the closure of a connected simply

connected open set, such that ∂Di is a polygonal simple curve and interior(Di)∩

interior(Dj) = ∅, for i 6= j. Moreover, the decomposition is locally finite, that

is,
∞
∪
i=0

∂Di is a graph whose vertices have three edges adjacent to them and the

number of elements of the decomposition contained in any compact subset of

the plane is finite.

Given an orientation preserving homeomorphism of the plane h̃, we say that

the brick decomposition is free, if all its bricks are free, that is, h̃(Di)∩Di = ∅,

for all i ∈ IN. Given two bricks, D and E,we say that there is a chain connecting

them, if there are bricks

D = D0, D1, D2, ..., Dn−1, Dn = E
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such that h̃(Di)∩Di+1 6= ∅, for i = 0, 1, ..., n− 1. If D = E, the chain is said to

be closed.

In the following we will present a version of a theorem of J. Franks [8] due

to Le Roux and Guillou, see [9], page 39:

Lemma 1 : The existence of a closed chain of free closed bricks implies that

there exists a simple closed curve γ ⊂ IR2, such that

index(γ, h̃) = degree(γ,
h̃(z)− z∥∥∥h̃(z)− z

∥∥∥ ) = 1.

This result is a clever application of Brouwer’s lemma on translation arcs.

2.2 On the sets B−
S and B+

N

Here we present a theory developed in [4] and extend some constructions to

our new setting. For this, consider a homeomorphism f ∈ DT (T2), a lift f̂ ∈

DT (S1 × IR) and a lift of f̂ to the plane, denoted f̃ ∈ DT (IR2). Given a real

number a, let

Ha = S1 × {a},

H−a = S1×]−∞, a] and H+
a = S1 × [a,+∞[.

We will also denote the sets H0, H−0 and H+
0 simply by H, H− and H+

respectively. If we consider the closed sets,

B− =
⋂
n≤0

f̂n(H−)

and

B+ =
⋂
n≤0

f̂n(H+),

we get that they are both closed and positively f̂ -invariant. For each of these

sets, consider the following subsets: B−S ⊂ B− and B+
N ⊂ B+, each of which

consisting of exactly all unbounded connected components of respectively, B−

and B+. The sets B−S and B+
N are always closed, but in some cases may be

empty. The next lemma tells us that under certain conditions, they really exist.
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Lemma 2 : Suppose 0 ∈ ρV (f̂). Then B+
N and B−S are not empty.

Proof:

The proof of this result goes back to Le Calvez [10] and even Birkhoff [5].

First, suppose that ∪
n≥0

f̂n(H) is unbounded both from above and from

below. In this case, considering the set B−S , the only thing we have to prove is

that, for all a ≤ −1, there exists a first positive integer n = n(a), such that

f̂−n(Ha) ∩H 6= ∅ and n(a)→∞ as a→ −∞. (2)

Our assumption on ∪
n≥0

f̂n(H) implies that f̂N (H) ∩H−a 6= ∅ for some integer

N > 0. If expression (2) does not hold forN, then f̂−N (Ha) ⊂ H+ ⊂ H+
a +(0, 1),

which would imply that 0 /∈ ρV (f̂), a contradiction. So expression (2) is true

and the proof continues, for instance as in lemma 6 of [4]. A similar argument

holds for B+
N (in this case a ≥ 1).

If for some integer M0 > 0, f̂n(S1 × {0}) ⊂ S1 × [−M0,+∞[ for all integers

n ≥ 0, then clearly f̂n(S1× [M0,+∞[) ⊂ S1× [0,+∞[ for all integers n ≥ 0, so

B+
N ⊃ S1 × [M0,+∞[ and thus, it is not empty.

To prove that B−S is also not empty, we have to work a little more.

Let O∗ = ∪
n≥0

f̂n(S1×]0,+∞[) and let O be the complement of the connected

component of (O∗)c which contains the lower end of the cylinder. We claim that

Oc is connected and the same holds for ∂O
def.
= K. This follows if we consider

the North − South compactification of the cylinder and remember that it is

a classical result, in the plane or sphere, that the frontier of any connected

component of the complement of a compact connected subset is also connected.

Clearly, O∗ ⊂ O (we just fill the holes), O contains the upper end of the cylinder

and f̂(O) ⊂ O.

If ∩
n≤0

f̂n(Oc) = ∅, then 0 /∈ ρV (f̂). So ∩
n≤0

f̂n(Oc) 6= ∅ and as each connected

component of this closed f̂ -invariant set is bounded from above and unbounded,

we get that for a sufficiently large integer j ≥ 0, ∩
n≤0

f̂n(Oc)− (0, j) ⊂ B−S 6= ∅.

The remaining possibility can be treated in an analogous way. 2
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2.3 The ω-limit sets of B−
S and B+

N

In this subsection we examine some properties of the set

ω(B−S )
def.
=

∞⋂
n=0

∞⋃
i=n

f̂ i(B−S ). (3)

Due to the fact that f̂(B−S ) ⊂ B−S = B−S , we get that

ω(B−S ) =

∞⋂
n=0

f̂n(B−S ) =

∞⋂
n=−∞

f̂n(B−S ). (4)

Lemma 3 : ω(B−S ) is a closed, f̂ -invariant set, whose connected components

are all unbounded.

Proof:

See lemma 7 of [4]. 2

So from (4), ω(B−S ) ⊂ B−S and it is still possible that ω(B−S ) = ∅. The next

lemma tells us that in this case, things are easier.

Lemma 4 : Suppose 0 ∈ ρV (f̂), which implies that B−S is not empty. If

ω(B−S ) = ∅, then ρV (f̂) ⊃ [−ε, 0], for some ε > 0.

Proof:

See the proof of lemma 10 of [4] and the paragraph below it. 2

Now, if we consider the set B−S for f̂−1, denoted B−S (inv), we get the fol-

lowing:

Lemma 5 : The sets ω(B−S ) and ω(B−S (inv)) are equal.

Proof:

Let Γ be a connected component of ω(B−S ). From the definition, f̂n(Γ) ⊂ H−

for all integers n. So Γ ⊂ B−S (inv) and moreover, for each positive integer n, as

f̂n(Γ) is contained in H−, we get that Γ ⊂ f̂−n(B−S (inv)), which means that

Γ ⊂ ω(B−S (inv)). Thus ω(B−S ) ⊂ ω(B−S (inv)). The other inclusion is proved in

an analogous way. 2

The following are important results on the structure of these sets.
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Lemma 6 : Any connected component Γ̃ of π−1(ω(B−S )) is unbounded, not

necessarily in the ỹ-direction.

Proof:

Let d be the metric on S1× IR and let d̃ be the lifted metric on the plane.

Consider a point P̃ ∈ Γ̃ and let P = π(P̃ ). As P ∈ ω(B−S ), there exists a

connected component Γ of ω(B−S ) that contains P. Since by lemma 3 Γ is un-

bounded, for every sufficiently large integer n there exists a simple continuous

arc γn ⊂ S1× IR such that:

• P is one endpoint of γn;

• γn is contained in S1× [−n, 0] and it intersects S1×{−n} only at its other

endpoint;

• γn is contained in a (1/n, d)-neighborhood of Γ;

Now let γ̃n be the connected component of π−1(γn) that contains P̃ . This

arc γ̃n is contained in a (1/n, d̃)-neighborhood of π−1(Γ) ⊂ π−1(ω(B−S )) because

the covering map is locally an isometry.

Now, embed the plane in the sphere S2 = IR2 t {∞} equipped with a met-

ric D topologically equivalent to the metric d̃ on the plane. Then there exists

a subsequence γ̃ni

i→∞→ Θ in the Hausdorff topology, for some compact con-

nected set Θ ⊂ S2. Clearly, both ∞ and P̃ belong to Θ. Furthermore, since

π−1(ω(B−S )) ∪ {∞} is a closed set and

lim
n→∞

(
sup
z̃∈γ̃n

d̃(z̃, π−1(ω(B−S )))

)
= 0,

we get that π−1(ω(B−S )) ∪ {∞} contains Θ and the proof is over. 2

Lemma 7 : For any connected component Γ̃ of π−1(ω(B−S )), Γ̃c is connected.

Proof:

Take a connected component Γ̃ of π−1(ω(B−S )). First note that Γ̃c has one

connected component, denoted O+, which contains IR×]0,+∞[. So, if there is
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another one, denoted O1, it must be contained in IR×]−∞, 0]. In the following

we will prove that f̃n(O1) ⊂ IR×]−∞, 0] for all integers n.

By contradiction, suppose that

there is an integer n0 such that f̃n0(O1) is not contained in IR×]−∞, 0]. (5)

There exists a number m0 > 0 such that if ỹ > m0, then the point f̃−n0(x̃, ỹ)

has positive ỹ-coordinate, for all x̃ ∈ IR (see (6)). So our hypothesis in (5)

implies that f̃−n0(IR×]0,∞[)∩ ∂O1 6= ∅, which means that f̃n0(∂O1) intersects

IR×]0,∞[, a contradiction with the fact that

f̃n0(∂O1) ⊂ f̃n0(Γ̃) ⊂ π−1(ω(B−S )) ⊂ IR×]−∞, 0].

So (5) does not hold. To conclude, let Γ be the connected component of ω(B−S )

that contains π(Γ̃), which as we know by lemma 3 is unbounded. The set

O1 ∪ Γ̃ is connected as well as π(O1 ∪ Γ̃) ∪ Γ = π(O1) ∪ Γ and the later is

contained in ω(B−S ) because f̂n(π(O1)) ⊂ H− for all integers n. It follows that

π(O1) ∪ Γ = Γ ⊂ ω(B−S ) and therefore O1 ∪ Γ̃ is contained in π−1(ω(B−S )),a

contradiction with the choice of Γ̃. 2

Clearly, similar results hold for B+
N .

3 Proofs

3.1 Proof of theorem 1

Assume f ∈ DT (T2) and its lift f̂ ∈ DT (S1 × IR) are such that f is minimal

and ρV (f̂) is rational. Without loss of generality we can assume that ρV (f̂) = 0,

because if f is minimal, the same happens for all its iterates. This follows from

the fact that, if for some integer q > 0, fq is not minimal, then it has a compact

invariant minimal set K ⊂ T2, which by minimality, has empty interior. But

then,

K ∪ f(K) ∪ ... ∪ fq−1(K)

is invariant under f and as Kc is open and dense, Baire ’s property also implies

that K ∪ f(K) ∪ ... ∪ fq−1(K) has empty interior, a contradiction with the

minimality of f.
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As f̂ has no fixed points, lemma 2 of [3] implies that there exists a homo-

topically non trivial simple closed curve γ in the cylinder such that γ∩ f̂(γ) = ∅.

Without loss of generality, we can suppose that f̂(γ) ⊂ γ−, the connected com-

ponent of γc which is below γ. Let k > 0 be an integer such that γ−(0, k) ⊂ γ−.

If for some n > 0, f̂n(γ) ⊂ (γ − (0, k))
−
, then 0 would not belong to ρV (f̂). So,

for all n > 0, there exists a point ẑn, above f̂(γ) and below γ, such that

{ẑn, f̂(ẑn), f̂2(ẑn), ..., f̂n(ẑn)} is above γ − (0, k).

Taking a subsequence if necessary, we can assume that ẑni

i→∞→ ẑ∗, a point in

the closure of the region between f̂(γ) and γ. Clearly, the positive orbit of ẑ∗

is bounded in the cylinder and so its ω-limit set ω(ẑ∗) is a compact f̂ -invariant

subset of the cylinder. Moreover, as any integer vertical translate of ω(ẑ∗) is

also f̂ -invariant, if we pick a minimal f̂ -invariant compact set K contained in

ω(ẑ∗), clearly, by minimality it satisfies K ∩K + (0, n) = ∅ for all n 6= 0.

As f is minimal, when K is projected to the torus is must be the whole

torus, a contradiction. 2

3.2 Proof of theorem 2

Given f ∈ DT (T2) and a lift f̂ ∈ DT (S1 × IR), without any loss of generality

we can assume that ρV (f̂) = 0.

Lemma 2 implies that B+
N 6= ∅ and B−S 6= ∅, and lemma 4 implies that the

same holds for their ω-limits, ω(B+
N ) 6= ∅ and ω(B−S ) 6= ∅.

In the following we will present two technical results. For each x̂ ∈ S1,

consider the following functions, which as the next lemma shows, are well defined

at all x̂ ∈ S1 :
µ(x̂) = max{ŷ ∈ IR : (x̂, ŷ) ∈ ω(B−S )}
ν(x̂) = min{ŷ ∈ IR : (x̂, ŷ) ∈ ω(B+

N )}

Lemma 8 : There exists a constant Mf > 0 such that

sup
x̂,ŷ∈S1

|µ(x̂)− µ(ŷ)| ≤Mf and sup
x̂,ŷ∈S1

|ν(x̂)− ν(ŷ)| ≤Mf .

Proof:
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The proof is analogous for both cases, so let us only consider the function

µ. As ω(B−S ) is closed and bounded from above, choose some x̂0 ∈ S1 such that

{x̂0}×]−∞, 0]∩ω(B−S ) 6= ∅ and for some ŷ0 ≤ 0, (x̂0, ŷ0) belongs to ω(B−S ) and

has maximal ŷ-coordinate. Then µ(x̂0) = ŷ0 is well defined.

Note that as f is homotopic to a Dehn twist, for all (x̃, ỹ) ∈IR2 there are

constants Af > 0 and Bf > 0 such that∣∣∣p2 ◦ f̃(x̃, ỹ)− ỹ
∣∣∣ < Af and

∣∣∣p1 ◦ f̃(x̃, ỹ)− x̃− kDehnỹ
∣∣∣ < Bf . (6)

So for any compact set G ⊂ IR2 with

|p2(G)| def.= max(p2(G))−min(p2(G)) ≥ Vf
def.
=

(3 + 2Bf )

kDehn

and

|p1(G)| def.= max(p1(G))−min(p1(G)) < 1,

we have:

∣∣∣p1(f̃(G))
∣∣∣ > 2 and p2 |f̃(G)

> min(p2(G))−Af .

Consider the intersection π−1(ω(B−S ))∩IR×[µ(x̂0)−Vf , µ(x̂0)]. If all vertical

segments Seg
x̃

= {x̃} × [µ(x̂0) − Vf , µ(x̂0)] intersect π−1(ω(B−S )), then for all

x̂ ∈ S1, µ(x̂0) − Vf ≤ µ(x̂) ≤ 0 and the proof is over. So, suppose that there

exists a real number x̃∗ such that Seg
x̃∗ do not intersect π−1(ω(B−S )). This

implies that for any integer n, Seg
x̃∗ + (n, 0) do not intersect π−1(ω(B−S )). Let

θ be the connected component of ω(B−S ) containing (x̂0, ŷ0) and let Θ be a

component of π−1(θ). The set Θ is also a connected component of π−1(ω(B−S )),

so by lemma 6 it is unbounded. It is now clear that Θ intersects the two

horizontal boundaries of [x̃∗ + nΘ, x̃
∗ + nΘ + 1] × [µ(x̂0) − Vf , µ(x̂0)] for some

integer nΘ, because it can not meet the open half plane {ỹ > µ(x̂0)}.

Thus,
∣∣∣p1(f̃(Θ))

∣∣∣ > 2 and p2 |f̃(Θ)
> µ(x̂0)−Vf −Af . As ω(B−S ) is invariant,

π
(
f̃(Θ)

)
⊂ ω(B−S ) and so for any x̂ ∈ S1, µ(x̂0)− Vf −Af < µ(x̂) ≤ 0.

The above argument implies that if we choose Mf = Vf + Af , then we are

done. 2
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Now, let us define the number

MDehn =
2 +Bf
kDehn

> 0. (7)

A simple computation shows that for all (x̃, ỹ) ∈ IR2 with ỹ > MDehn, we have

p1 ◦ f̃(x̃, ỹ) > x̃+ 2 and p1 ◦ f̃(x̃,−ỹ) < x̃− 2.

The construction performed below is analogous for both ω(B+
N ) and ω(B−S ).

The details will be presented for ω(B−S ). First, note that for every x̂ ∈ S1,

µ(x̂)+

(
− max
ẑ∈S1

µ(ẑ) +Mf

)
+MDehn ≥MDehn. This means that if we define the

following positive integer number ntrans
def.
=

⌊
− max
ẑ∈S1

µ(ẑ) +Mf +MDehn

⌋
+ 1

(bac is the integer part of a), then the set

ω(B−S )trans
def.
= ω(B−S ) + (0, ntrans) (8)

has, for every x̂ ∈ S1, a point of the form (x̂, ŷ), with ŷ > MDehn. In other

words, the function µtrans associated with ω(B−S )trans satisfies µtrans(x̂)
def.
=

µ(x̂) + ntrans > MDehn, for all x̂ ∈ S1.

Now, for a fixed x̃ ∈ IR, consider the semi-line {x̃} × [MDehn,+∞[. When

we intersect it with

˜ω(B−S )trans
def.
= π−1

(
ω(B−S )trans

)
we get that {x̃}×]µtrans(π(x̃)),+∞[∩ ˜ω(B−S )trans = ∅ (note that ˜ω(B−S )trans is

also a f̃ -invariant set).

Let v = {x̃}×]µtrans(π(x̃)),+∞[ and let Θ be the connected component of˜ω(B−S )trans that contains (x̃, µtrans(π(x̃))).

Lemma 9 : The following holds: Θ ∪ v is a closed connected set, (Θ ∪ v)
c

has two open connected components, one of which is positively invariant and

f̃n(v) ∩ v = ∅ for all integers n 6= 0.

Proof:

12



The fact that Θ∪ v is closed and connected is obvious. As Θ is a connected

component of ˜ω(B−S )trans, it is unbounded and limited from above in the ỹ-

direction.

By the Jordan separation theorem, we get that (Θ ∪ v)
c

has at least two

connected components, OL and OR, defined as follows: For any point P̃ ∈ v,

there exists δ> 0 such that Bδ(P̃ ) ∩ Θ = ∅. Moreover, Bδ(P̃ )\v has exactly 2

connected components, one to the left of v, contained in OL and the other one

to the right of v, contained in OR. So their closures, OL and OR both contain v.

Now, suppose (Θ ∪ v)
c

has another connected component, denoted O∗. Clearly

∂O∗ do not intersect v because all points sufficiently close to a point in v and,

not in v, are contained in OL ∪ OR. So, ∂O∗ ⊂ Θ and O∗ is then a connected

component of Θc bounded from above in the ỹ-direction. And this contradicts

lemma 7. So, (Θ ∪ v)
c

= OL ∪OR.

Note that f̃(v)∩v = f̃(v)∩Θ = f̃−1(v)∩Θ = ∅. The paragraph after defini-

tion (7) implies that f̃(v) ⊂ OR. In the following we will show that f̃(OR) ⊂ OR.

There are 2 possibilities:

1. f̃(Θ) 6= Θ ⇒ f̃(Θ) ∩ Θ = ∅, because Θ is a connected component of an

invariant set;

2. f̃(Θ) = Θ;

Assume first that f̃(Θ) ∩Θ = ∅. Then

f̃(Θ ∪ v) ∩ (Θ ∪ v) = ∅.

Since f̃(v) ⊂ OR and f̃(Θ ∪ v) is connected, we get that f̃(Θ ∪ v) ⊂ OR, so

OL ∪ Θ ∪ v is contained either in f̃(OL) or f̃(OR). It can not be contained

in f̃(OR) because a point of the form (−a, a) for a sufficiently large a > 0

is contained in OL and f̃−1(−a, a) is also contained in OL, see (6). Thus,

OL ∪Θ ∪ v ⊂ f̃(OL), which implies that, f̃(OR) ⊂ OR.

Now suppose f̃(Θ) = Θ. This implies that OL ∪ v ⊂ (f̃(v ∪ Θ))c because

f̃(v) ⊂ OR and f̃(Θ) = Θ. So, by connectedness, OL ∪ v is contained either in

13



f̃(OR) or in f̃(OL). As in the case f̃(Θ)∩Θ = ∅, one actually getsOL∪v ⊂ f̃(OL)

so

f̃(OR) ⊂ (f̃(OL))c ⊂ (OL ∪ v)c = OR ∪Θ

and since f̃(Θ) = Θ, we finally get that f̃(OR) ⊂ OR.

In order to finish the proof, note that, as f̃(v) ∩ v = ∅, for any n ≥ 2,

f̃n(v) ⊂ f̃(OR), which do not intersect v. So f̃n(v) ∩ v = ∅. This finishes the

proof of our lemma. 2

Remarks:

• as µtrans(π(x̃)) < Mf + MDehn + 2 for all x̃ ∈IR, we get that f̃n({x̃} ×

[Mf +MDehn+ 2,+∞[)∩{x̃}× [Mf +MDehn+ 2,+∞[= ∅ for all integers

n > 0.

• an analogous argument applied to ω(B+
N ) implies that for any x̃ ∈IR, if

w = {x̃}×]−∞, ν(π(x̃))−
⌊

inf
ẑ∈S1

ν(ẑ) +Mf +MDehn

⌋
− 1[, then f̃n(w)∩

w = ∅ for all integers n > 0. So as in the above remark, νtrans(π(x̃)) >

−2−Mf −MDehn for all x̃ ∈IR, which implies that f̃n({x̃}×]−∞,−Mf −

MDehn − 2[) ∩ {x̃}×]−∞,−Mf −MDehn − 2[= ∅ for all integers n > 0.

Summarizing, there exists a real number M ′ > 0 such that for all x̃ ∈IR,

f̃n({x̃}× [M ′,+∞[)∩{x̃}× [M ′,+∞[= ∅ and f̃n({x̃}×]−∞,−M ′])∩{x̃}×]−

∞,−M ′] = ∅ for all integers n > 0 and

M ′
def.
= Mf +MDehn + 2 =

5 + 3Bf
kDehn

+Af + 2 (9)

Now let us suppose by contradiction that there exists a point ẑ in the cylinder

and an integer n0 > 0 such that∣∣∣p2(f̂n0(ẑ))− p2(ẑ)
∣∣∣ > 2M ′ + 8.

Without loss of generality, we can assume that p2(ẑ) < −M ′−3 and p2(f̂n0(ẑ)) >

M ′ + 3.

Let us also consider the fixed point free mapping of the plane

g̃(•) = f̃n0(•)− (0, 1).

14



To see that it is actually fixed point free, note that if g̃ has a fixed point, then

1/n0 ∈ ρV (f̂), a contradiction. Now, note that for all x̃ ∈IR, g̃({x̃} × [M ′ +

2,+∞[)∩{x̃}×[M ′+2,+∞[= ∅ and g̃({x̃}×]−∞,−M ′−2])∩{x̃}×]−∞,−M ′−

2] = ∅. Moreover, using the fact that g̃ is also the lift of a torus homeomorphism

homotopic to a Dehn twist and a compacity argument, one can prove that there

exists an integer N > 0, such that for all integers n, the sets

F−n = [n/N, (n+ 1)/N ]×]−∞,−M ′ − 2]
and

F+
n = [n/N, (n+ 1)/N ]× [M ′ + 2,∞[

(10)

are free under g̃, that is, g̃(F+or−
n ) ∩ F+or−

n = ∅, for all integers n. Moreover,

the fact that kDehn > 0 (see the end of section 1) implies that there exists an

integer Kcrit > 0, such that for all integers n

g̃(F+
n ) ∩ F+

m 6= ∅, for all m ≥ n+Kcrit

and
g̃(F−n ) ∩ F−m 6= ∅, for all m ≤ n−Kcrit.

These will be important bricks in a special brick decomposition of the plane

in g̃-free sets we will construct, which will be invariant under integer horizontal

translations (x̃, ỹ)→ (x̃+ 1, ỹ).

Clearly, such a construction is possible, because as g̃(x̃ + 1, ỹ) = g̃(x̃, ỹ) +

(1, 0), we just have to decompose S1 × [−M ′ − 2,M ′ + 2] into a union of bricks

with sufficiently small diameter, so that their pre-images under π are g̃-free.

To conclude our proof, we will show that this brick decomposition has a

closed brick chain, a contradiction with the fact that g̃ is fixed point free, see

lemma 1. This idea was already used in the proof of theorem 4 of [3].

Consider a point z̃ ∈ π−1(ẑ) and a brick F−i0 that contains z̃. From our

choices,

g̃(F−i0 ) ∩ F+
i1
6= ∅, for some integer i1.

As ρV (f̂) = {0}, let us choose a point ŵ ∈ S1×]M ′ + 2,+∞[ such that

p2(ĝn(ŵ))
n→∞→ −∞,

where ĝ(•) def.
= f̂n0(•) − (0, 1) (as ρV (ĝ) = {−1}, all points in S1 × IR satisfy
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the above condition). So, we can choose a point w̃ ∈ F+
i2
, for some integer i2,

such that:

• i2 > i1 +Kcrit, so g̃(F+
i1

) ∩ F+
i2
6= ∅;

• g̃n2(w̃) ∈ F−i3 , for some integers n2 > 0 and i3 > i0 +Kcrit;

As g̃(F−i3 ) ∩ F−i0 6= ∅, we get there exists a closed brick chain starting at

F−i0 . As we said, this is a contradiction because g̃ is fixed point free. Thus

f̂n(S1 × {0}) ⊂ S1 × [−8 − 2M ′, 2M ′ + 8] for all integers n > 0. In order to

conclude the proof, let K be the only connected component of the frontier of

∩
n≥0

f̂n(closure( ∪
m≥0

f̂m(S1×]0,+∞[)))

which does not bound a disc. Then K is a compact connected set that separates

the ends of the cylinder, f̂(K+(0, l)) = K+(0, l), for all integers l and |p2(K)| ≤

4M ′ + 20. 2

3.3 Proof of corollary 1

Without loss of generality, by considering f̂q − (0, p), we can suppose that

ρV (f̂) = [a, 0], for some a < 0. As in the proof of theorem 2, lemma 2 im-

plies that B+
N 6= ∅, B

−
S 6= ∅ and B+

N (inv) 6= ∅, B−S (inv) 6= ∅. If for instance

ω(B−S ) = ∅, then lemma 5 implies that ω(B−S (inv)) = ∅ and so lemma 4 implies

that there exists ε > 0 such that ρV (f̂−1) ⊃ [−ε, 0], which gives ρV (f̂) ⊃ [0, ε], a

contradiction. So, we can assume that ω(B+
N ) 6= ∅ and ω(B−S ) 6= ∅. If we suppose

that for every M > 0, there exists a point ẑ ∈ S1 × IR and an integer n > 0

such that

p2(f̂n(ẑ))− p2(ẑ) > M,

then following exactly the same ideas used in theorem 2, we arrive at a contra-

diction which proves the corollary. 2
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3.4 Proof of theorem 3

As in theorem 2, let us fix a f̃ ∈ DT (IR2), which is a lift of f̂ . First, we will

show that if

M ≥M0
def.
= (20 + 2Bf )/kDehn + 10 (see (6)),

then f̂ has a fixed point. In case f̂ is fixed point free, lemma 2 of [3] tells us

that there exists a homotopically non-trivial simple closed curve γ ⊂ S1 × IR

such that f̂(γ)∩ γ = ∅ and γ ⊂ S1× [−mD,mD], where mD > 0 is the smallest

real number that satisfies

f̃({x̃} × [mD,+∞[) ⊂ [x̃+ 10,+∞[×IR
and

f̃({x̃} × [−∞,−mD]) ⊂]−∞, x̃− 10]× IR,

(11)

for all x̃ ∈ IR. A simple computation shows that if we take mD equal (10 +

Bf )/kDehn, then (11) is satisfied.

So, as M ≥ 2mD+10, the theorem hypotheses imply that f̂ has a fixed point.

Thus 0 ∈ ρV (f̂) and lemma 2 implies that B+
N 6= ∅, B

−
S 6= ∅ and the same holds

for the inverse of f̂ , namely, B−S (inv) 6= ∅ and B+
N (inv) 6= ∅. If ω(B+

N ) = ∅, then

lemma 4 implies that there exists δ > 0 such that ρV (f̂) ⊃ [0, δ]. Also, from

lemma 5 we get that ω(B+
N (inv)) = ∅ and so again by lemma 4, there exists

ε > 0 such that ρV (f̂−1) ⊃ [0, ε], which gives ρV (f̂) ⊃ [−ε, δ] and the theorem

is proved. So, again we can suppose that ω(B−S ) 6= ∅ and ω(B+
N ) 6= ∅.

If ρV (f̂) = [a, 0] for some a ≤ 0, then if

M ≥M1
def.
= 2M ′ + 8 =

10 + 6Bf
kDehn

+ 2Af + 12,

by the same argument used to prove theorem 2, we arrive at a contradiction.

The same happens in the other possibility, that is, if ρV (f̂) = [0, b], for some

b > 0.

So, it is enough to choose

M = max{M0,M1} ≤
20 + 6Bf
kDehn

+ 2Af + 12 to finish the proof. 2
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3.5 Proof of Corollary 2

Let us start by showing that there are two possibilities:

1) ∪
n≥0

f̂n(H) is bounded and this means that ρV (f̂) = {0};

2) ∪
n≥0

f̂n(H) is unbounded from above and from below;

In order to understand that the above are the only possible cases, suppose

for instance that ∪
n≥0

f̂n(H) is unbounded and contained in H+
a for some real

number a < 0.

As in lemma 2, let O∗ = ∪
n≥0

f̂n(S1×]0,+∞[) and let O be the complement of

the connected component of (O∗)c which contains the lower end of the cylinder.

As in that lemma, ∂O
def.
= K is a compact connected set that separates the ends

of the cylinder. Clearly, O∗ ⊂ O (we just fill the holes), H+
1 ⊂ O ⊂ H+

a , O is

an open set homeomorphic to the cylinder and f̂(O) ⊂ O.

Let us state a simple result, but before we present a definition:

Definition : If γ is a homotopically non trivial simple closed curve in S1 × IR,

then γc
def.
= γ−o ∪ γ+o, where γ−o(+o) is the open connected component

of γc which contains the lower (upper) end of the cylinder. We define

γ−
def.
= closure(γ−o) = γ−o ∪ γ and the same for γ+.

Proposition 1 : Given an area-preserving f ∈ DT (T2) and a lift f̂ ∈ DT (S1×

IR) with zero Lebesgue measure vertical rotation number, for any b ∈ IR the

following equality holds (in this case f̂ is said to be exact):

Leb(H+
b ∩ (f̂(Hb))

−) = Leb(H−b ∩ (f̂(Hb))
+),

where for any measurable set D, Leb(D)
def.
= Lebesgue measure of D.

Proof:

If we remember (6), we get that there exists an integer N > 0 such that, for

any given b ∈ IR, f̂(Hb) ∩ (Hb+N ∪Hb−N ) = ∅. So, consider the finite annulus

Ω
def.
= S1× [b, b+N ]. As it is a finite union of fundamental domains of the torus,

we get that∫
Ω

[
p2 ◦ f̂(x̂, ŷ)− ŷ

]
dx̂dŷ = 0 (this follows from ρV (Leb) = 0). (12)
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Note that we can write

Ω =
(
f̂(Ω) ∩ Ω

)
∪
(
H+
b ∩ (f̂(Hb))

−o
)
∪
(
H−b ∩ (f̂(Hb))

+o + (0, N)
)

and

f̂(Ω) =
(
f̂(Ω) ∩ Ω

)
∪
(
H+o
b ∩ (f̂(Hb))

− + (0, N)
)
∪
(
H−ob ∩ (f̂(Hb))

+
)
,

where the unions are disjoint. Expression (12) together with the preservation

of area imply that the ŷ-coordinate of the geometric center of Ω and of f̂(Ω)

are equal. So, let us compute them (for a measurable set Π in the cylinder, we

denote the ŷ-coordinate of its geometric center by ŷG.C.(Π)):

ŷG.C.(Ω) =


ŷ
G.C.(f̂(Ω)∩Ω)

.Leb(f̂(Ω) ∩ Ω)+

+ŷ
G.C.(H+

b
∩(f̂(Hb))−)

.Leb(H+
b ∩ (f̂(Hb))

−)+

+
(
ŷ
G.C.(H−

b
∩(f̂(Hb))+)

+N
)
.Leb(H−b ∩ (f̂(Hb))

+)

 /Leb(Ω)

ŷ
G.C.(f̂(Ω))

=


ŷ
G.C.(f̂(Ω)∩Ω)

.Leb(f̂(Ω) ∩ Ω)+

+
(
ŷ
G.C.(H+

b
∩(f̂(Hb))−)

+N
)
.Leb(H+

b ∩ (f̂(Hb))
−)+

+ŷ
G.C.(H−

b
∩(f̂(Hb))+)

.Leb(H−b ∩ (f̂(Hb))
+)

 /Leb(f̂(Ω))

As Leb(f̂(Ω)) = Leb(Ω) and ŷ
G.C.(f̂(Ω))

= ŷG.C.(Ω), we get that

N.Leb(H+
b ∩ (f̂(Hb))

−) = N.Leb(H−b ∩ (f̂(Hb))
+),

which proves the proposition (note that we used the fact that Leb(Hb) = 0). 2

Now let us choose c ∈ IR such that {K ∪ f̂(K)} ⊂ interior(H−c ∩ (f̂(Hc))
−).

From the preservation of Lebesgue measure and the above proposition, we get

that

Leb(O ∩H−c ) = Leb(f̂(O) ∩ (f̂(Hc))
−) = Leb(f̂(O) ∩H−c ).

The choice of c, together with the fact that f̂(O) ⊂ O, implies that closure(O) =

closure(f̂(O)) = f̂(closure(O)). So ∂(closure(O)) separates the ends of the

cylinder and is f̂ -invariant. But this means that all orbits are uniformly bounded,
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a contradiction with our hypothesis that ∪
n≥0

f̂n(H) is unbounded. So, either

1) or 2) from the beginning of the proof of the corollary can happen.

And in possibility 2) we can apply theorem 3 to conclude the proof. 2
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[10] Le Calvez P. (1987) Propriétés dynamiques des régions d’instabilité. Ann.
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