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Abstract. We consider closed orientable surfaces S of genus g > 1 and homeomorphisms
f S — S isotopic to the identity. A set of hypotheses is presented, called a fully essential
system of curves 4 and it is shown that under these hypotheses, the natural lift of f
to the universal cover of S (the Poincaré disk D), denoted by f, has complicated and rich
dynamics. In this context, we generalize results that hold for homeomorphisms of the torus
isotopic to the identity when their rotation sets contain zero in the interior. In particular,
for C!*€ diffeomorphisms, we show the existence of rotational horseshoes having non-
trivial displacements in every homotopical direction. As a consequence, we found that the
homological rotation set of such an f is a compact convex subset of R?¢ with maximal
dimension and all points in its interior are realized by compact f-invariant sets and by
periodic orbits in the rational case. Also, f has uniformly bounded displacement with
respect to rotation vectors in the boundary of the rotation set. This implies, in case where
f is area preserving, that the rotation vector of Lebesgue measure belongs to the interior
of the rotation set.
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1. Introduction
1.1.  Preliminaries. The main motivation for this work is to generalize some results
that hold for homeomorphisms and diffeomorphisms of the torus isotopic to the identity to
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homeomorphisms and diffeomorphisms of closed surfaces of higher genus (for us, higher
genus means larger than one) which are also isotopic to the identity.

In the study of torus homeomorphisms, a useful concept inherited from Poincaré’s work
on circle homeomorphisms is that of rotation number, or, in the two-dimensional case,
rotation vectors. Actually, in the two-dimensional setting, one usually does not have a
single rotation vector, but a rotation set, which is most precisely defined as follows. Given
a homeomorphism f : T? — T2 isotopic to the identity and a lift of f to R?, f: R? — R?,
the Misiurewicz—Ziemian rotation set o ( f ) is defined as (see [24])

p(f)zﬂU{W:ﬁeR@}. (1)

i>1l n>i

This set is a compact convex subset of R? (see [24]), and it was proved in [10, 25]
that all points in its interior are realized by compact f-invariant subsets of T2, which can
be chosen as periodic orbits in the rational case. By saying that some vector v € p(f) is
realized by a compact f-invariant set, we mean that there exists a compact f-invariant
subset K C T? such that, for all p € K and any p € 7~ !(p), where 7 : R — T? is the
associated covering map, ~

fim P =P _ )
n— 00 n

Moreover, the above limit, whenever it exists, is called the rotation vector of the point
p, denoted p(p).

Before presenting the results in the torus that we want to generalize to other surfaces,

we need a definition.

Definition. (Topologically transverse intersections) If M is a surface, f : M — M isa C!
diffeomorphism and p, g € M are f-periodic saddle points, then we say that W*(p) has
a topologically transverse intersection with W*(g¢) (and write W*(p) th W9(q)), whenever
there exists a point r € W¥(g) N W*(p) (r, clearly, can be chosen arbitrarily close to g or
to p) and an open ball B centered at r such that B\a = B U B>, where « is the connected
component of W¥(g) N B which contains r and has the following property. There exists
a closed connected arc 8 C W¥(p) such that 8 C B, r € 8 and B\r has two connected
components, one contained in By U« and the other contained in B> U ¢, such that 8 N
B # ¢ and B N By # @. Clearly, a C'-transverse intersection is topologically transverse.
Note that as 8 N o may contain a connected arc containing r, the ball B may not be chosen
arbitrarily small.

Remark. The consequence of a topologically transverse intersection which is more
relevant to us is a C? A-lemma: if W*(p) has a topologically transverse intersection with
W*(g), then W*(p) C%-accumulates on W¥(q).

In [1] it is proved that if (0, 0) € int(p( f )) and £ is a C!*¢-diffeomorphism for some

€ > 0, then f has a hyperbolic periodic saddle point € R? such that
W (p) h W (p) + (a, b), (3)
forall (a, b) € Z* (W*(p) is the unstable manifold of 5 and W* () is its stable manifold).

Note that, as p is a periodic point for f the same holds for all integer translations of p
and, moreover, for any integer vector (a, b), W*S(p + (a, b)) = W*S(p) + (a, b).
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In the area-preserving case, this result implies the following.
e Wu(p)=W5(p)isa f-invariant equivariant closed connected subset of R? and there
exists M = M(f) > 0 such that any connected component D of (W*(p))¢ is an open

topological disk whose diameter is less than M and D def- (D) isa f-periodic disk.
Moreover, for any f-periodic disk D T2, 7~ (D) c (W“(p))°.

e Foranyp=(s/q,r/q) € int(,o(f)) N Qz, if we consider the map fq (e) — (s, r), then
there exists a point p, that is a hyperbolic periodic saddle point for fq (o) — (s, 1)
whose stable and unstable manifolds have similar intersections to those in (3) and

W"(ﬁp) = WS(IP;/)) = W“(ﬁ) = W‘Y(ﬁ)-

So, the above set is the same for all rational vectors in the interior of the rotation

set. We denote it by R.1.( f ) (region of instability of f ) and a similar definition can

be considered in the torus: R.I.(f) def. 7 (Wu(p)) = W4(p), where p=m(p) is f-

periodic. Every f-periodic open disk in T? is contained in a connected component of
the complement of R.I.(f) and every such connected component is a f-periodic open
disk, whose diameter when lifted to the plane is smaller than M.

e Every open ball centered at a point of R./.(f) has points with all rational rotation
vectors contained in the interior of p( f ).

e If f is transitive, then f is topologically mixing in the plane. This follows easily from
the fact that if f is transitive, then R.1.(f) =T? and R.I.(f) = W“(p) = W*(p) =
R2.

As we have already said, the above results were obtained in [1] under a C I+¢ condition.
In [13, 20], some analogous results were proved for homeomorphisms, by completely
different methods, but the conclusions of some are weaker.

What about surfaces of higher genus?

In this setting, starting with the definition of rotation set, things are more involved. If
S is a closed orientable surface of genus g > 1, the definition of rotation set needs to take
into account the fact that 71 (S), the fundamental group of S and H; (S, Z), the first integer
homology group of S, are different: the first is almost a free group with 2g generators.
There is only one relation satisfied by the generators. While the second is Z28.

Possibly the most immediate consequence of this is the fact that in order to define a
rotation set for surfaces of higher genus, if one does not want it to be too complicated
but wants it to have some properties similar to what happens in the torus, a homological
definition must be considered. In the following, we present the definition of a homological
rotation set and a homological rotation vector as they appeared in [21]. The idea of using
homology in order to define rotation vectors goes back to the work of Schwartzman [28].

1.2.  Rotation vectors and rotation sets. Let S be a closed orientable surface of genus
g>landlet]:[0, 1] x S — S be an isotopy from the identity map to a homeomorphism
f:S—>S.

For o a loop in S (a closed curve), [«a] € H((S, Z) C H((S, R) is its homology
class. Recall that H; (S, Z) ~ Z*8 and H,(S, R) ~ R?¢. We will also consider H;(S, R)
endowed with the stable norm as in [12], which has the property that ||[y]]| <I(y) for any
rectifiable loop y, where /(y) is the length of the loop.
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For any fixed base point b € S, A, = {y, : p € S} is a family of rectifiable paths such
that y,, joins b to p and the length of y,, is bounded by a uniform constant C 4, .
For any point p € S, we want to construct a path in S from p to f”(p) and then form
a loop by adding y,, and yn(p). Consider the path I, joining p to f(p) given by ¢ >
1(z, p). Also, for each n € N, define the path /7] joining p to f"(p) by
I;’ =IpxIppy*-*xImogy,

where B * § is the concatenation of the path 8 with the path §.
For each p € S, let az be the closed loop based at b formed by the concatenation of v,
the path /), in S from p to f"(p) and yn(p) traversed backwards, that is

—1
oz; =yp * I;f ®Y (-
We can now define the homological displacement function of p as
Vi(p)=lapl

For the function W¢ : § — H{ (S, R), we abbreviate its Birkhoff sums as

n—1

Wi(p) =YW (fr(p)).

k=0

Note that, since a), is homotopic to ap * a f(p) * -+ = * & pn-1(,),

n—1 n—1
[p] =Y Tyl =D Wr(ff(p) =wi(p).
k=0 k=0

Also, the path 1 ;’ can be replaced by any path joining p to f”(p) and homotopic with
fixed endpoints to / ;. This implies that W s depends only on f, on the choice of A;, and on
the homotopy class of the isotopy /. In particular, ¥ s is bounded. Indeed, as S is compact,
sup{dn (@, £(@)):G € D} = Crax_ ¢ < 00, and if we replace the path I, by the projection
of the geodesic segment in I joining 5 € 7~ (p) to f (p), as the length of this path is
smaller than Ciax_r, then [[W || <2C 4, + Crax_f-

As we just said, Wy depends on the choice of the basepoint b and the family A,.
However, given another basepoint b’ € S and a family A;], = {yp: p € §} of rectifiable
paths whose lengths are uniformly bounded by C A, such that yl’, joins b’ to p, defining

m

%p

analogously, one has
[y 1=y 5 Iy % Vfu( ) = [ 851 = [83]+ Wi (p), )

where 87 = ypn(p) * y}:(lp) XY, xY, !, Indeed, the loop oy is freely homotopic to 1) *
&7 In particular, if \Il}- (p) = [a;], then

W5 (p) — WP <2C4, +2Ca,. ®)
Finally, if the limit
.1
p(f, p)= lim —Wi(p) € Hi(S,R) (6)
n—oo n

exists, we say that p has a well-defined (homological) rotation vector.
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After all this, we are ready to present the definition of the (homological) rotation set
of f, which is analogous to the definition for the torus [24]. The Misiurewicz—Ziemian
rotation set of f over S is defined as the set p,,; (f) consisting of all limits of the form

1
v=lim —W(p) € Hi(S, R),
k—o00 ng

where py € S and ny — 00. By (5), the rotation set depends only on f, but not on the
choice of the isotopy, the basepoint b or the arcs y,. This definition coincides with

Pz (f) = ﬂU{ AN s}.

m>0nz=zm

In particular, since W is bounded, the rotation set is compact.
Note that, using a computation similar to (4), if one chooses a rectifiable arc 8 joining
f"(p) to p,

[y« Bl=1y, ' x5y * B1=WHp) + [ypp x By, 1. (7

Thus, || 1 Tx B — W ( DI <2C 4, + 1(B). As aconsequence, an alternate but equivalent
definition of rotation Vectors and rotation sets is obtained by considering all limits of the
form

1
v= lim — I"" * Br],
k—o00 ng

where py € S, ny — oo and i are rectifiable arcs joining f"*(px) to pr such that
[(Br) < o0.

Moreover, it is possible to choose the arcs y), in the definition of W so that the map
p + Wy is not only bounded, but also Borel measurable [11].

This is important if one wants to define rotation vectors of invariant measures. Let
M(f) be the set of all f-invariant Borel probability measures. The rotation vector of the
measure u € M(f) is defined as

om (fs 14) =/ Wydp e Hi(S, R).

By the Birkhoff ergodic theorem, for p-almost every point p € S the limit p(f, p) =
limy, s oo (l/n)\IJ (p) exists and o, (f, n) = f o(f, p) du. Moreover, if u is an ergodic
measure, then p( f, p) = pm(f, n) for p-almost every point p.

Due to these facts and (5), the rotation vector of a measure is also independent of any
choices made in the definitions. Denote by p,, (f) the rotation set of invariant measures,

that is, o, () =U peM(f) Pm(f, 1) and denote by perg(f) the corresponding set for
ergodic measures. Then [24, proof of Theorem 2.4], without modifications, implies that

Pm (f) = Conv(perg (1)) = Conv(pomz(f))-

In particular, every extremal point of the convex hull of p,,,(f) is the rotation vector of
some ergodic measure and, therefore, it is the rotation vector of some recurrent point.

The main problems with this definition of rotation set are the following.
e Although it is compact, it does not need to be convex.
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e It is not true that vectors in the interior of the rotation set are always realized by
invariant sets; in certain cases they are not. An example was communicated to us by
Passeggi [27].

e It is also not known whether, when zero is in the interior of the rotation set, a result
analogous to (3) holds, not even in the Abelian cover of S (see definition below).

Definition. (Abelian cover) Let S be a closed orientable surface of genus g > 1. The
Abelian cover of S is a covering space for S, for which the group of deck transformations
is the integer homology group of S.

1.3. A more precise motivation and statements of the main results. ~The main objective
of this work is to give conditions which imply complicated and rich dynamics in the
universal cover of S, analogous to what happens for a homeomorphism of the torus isotopic
to the identity when its rotation set contains (0, 0) in its interior.

This type of problem has already been studied for surfaces of higher genus by Boyland
in [4]. But, in that paper, he considered the Abelian cover of S instead of the universal
cover. As far as we know, this is the only published result on this kind of problem. Boyland
considered homeomorphisms f : S — S of a special type, which are very important for
our work: f is isotopic to the identity as a homeomorphism of §, but it is pseudo-Anosov
relative to a finite f-invariantset K C S (see [9]). He presented some conditions equivalent
to f having a transitive lift to the Abelian cover of S.

The hypotheses of our main results will imply, in particular, that if a C!*€
diffeomorphism f:S— S isotopic to the identity satisfies these hypotheses, then
analogous results to those in [1] hold.

As a by-product of these results, we obtain that in the < setting, the homological
rotation set is a compact convex subset of R%¢ which is 2g-dimensional: it is equal to
the rotation set of the f-invariant Borel probability measures and all rational points in its
interior are realized by periodic orbits. Non-rational points in the interior of the rotation
set are also realized by compact f-invariant sets.

We are indebted to Alejandro Passeggi, who pointed out this consequence of Theorem 2
to us.

Moreover, as a corollary of the ideas used in this last result, we can extend the main
theorems from [2] to our setting. This is done in Theorems 4 and 5.

In what follows, we precisely present the main results of this paper. Assume that S is
a closed orientable surface of genus g > 1 and 7 : S — S is its universal covering map.
We may identify the universal cover S with the Poincaré disk D and denote by Deck(rm)
the groups of deck transformations of S. Consider f : § — S, which is a homeomorphism
isotopic to the identity, and let f: D — D be the endpoint of the lift of the isotopy from Id
to f which starts at Id : D — ID. We call fthe natural lift of f.

Definition 1.3. (Fully essential system of curves %) We say that f:S— S is a

homeomorphism with a fully essential system of curves € = Ule y; if the following

conditions are satisfied:

(1) there exist different oriented closed geodesics yp, ..., yx in S, k> 1, such that
(Uf;1 ;)¢ only has non-essential connected components;
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FIGURE 1. An example where not all geodesics appear twice.

foreachi € {1, ..., k}, there is a f-periodic point p; such that its trajectory under
the isotopy is a closed curve freely homotopic to y; with the correct orientation;

for every open intervals I, F C 91D, there exists an oriented simple arc & C 7~ (%)
formed by the concatenation of a finite number of oriented subarcs of extended lifts
of geodesics in ¢ and such that the initial point of & is contained in I and the final
point belongs to F.

Remarks.

Th

No matter how large g (the genus) is, it is possible to construct examples having a
fully essential system of curves with k = 2. Although the fundamental group has 2g
generators, the number of geodesics may be much smaller.

The third condition above is a little tricky to check. A much easier one, which implies
it, is the following: for each i € {1, ..., k}, there are f-periodic points p;,  and
pi+ such that their trajectories under the isotopy are closed curves freely homotopic
to y;, or concatenations of y;, with both possible orientations. In order to see that
this implies the third condition, use Propositions 6 and 7. Nevertheless, we present
this more general condition because what we really need about the fully essential
system of curves is the property that, when considered as a connected subset of S,
its complement only has disks as connected components and ¢ contains oriented
closed curves (the orientations are inherited by the orientations of the y;/;) whose
homotopy classes generate 71 (S) as a semi-group. This is achieved, for instance, when
% contains a generator for 1(S), with each curve appearing twice, and with both
possible orientations (as explained above), or, more generally, with any set of curves.
This more general situation is the one we describe in the third condition above. See
the example in Figure 1, which shows a situation in which we can find generators for
m1(S) as a semi-group in a fully essential system of curves but some curves do not
appear twice with different orientations.

Now we present the main theorems in the order in which we prove them in the paper.
e exception is the first one, which we only sketch here, because its precise statement is

more technical. The formal statement can be found in §3.

THEOREM 1. (Informal statement) Let f : S — S be a homeomorphism isotopic to the
identity with a fully essential system of curves € and let f be its natural lift. Then there

exi

sts a real number ¢ = c(f) > 0 such that the f-iterates of an open c-neighborhood of

any fundamental domain é C D of S accumulate on all translates of the c-neighborhood

of

Q under deck transformations and thus on the whole boundary of D.



8 S. Addas-Zanata and B. de Paula Jacoia

THEOREM 2. For some € >0 let f:S— S be a C'¢ diffeomorphism isotopic to the
identity with a fully essential system of curves € and let f be its natural lift. Then
there exists a contractible hyperbolic f-periodic saddle point p € S such that, for any
7 € =Y (p) and for every g € Deck(),

W (p) th W*(g(p)).
Remark. A point p € S being contractible means that all 5 € 7~ (p) are f-periodic.

To prove this result we have to work with a pseudo-Anosov map ¢ isotopic to f relative
to the finite invariant set of periodic points associated with the fully essential system of
curves . Using several properties of the stable and unstable foliations of this map, it
is possible to prove a result similar to Theorem 2 for ¢, and then, using a theorem of
Boyland [3] (see also [14]) and other technical results on Pesin theory [7, 18], we can
finally prove the theorem for the original map f. This procedure is similar to what was
done in [1].

The main part of this paper is proving Theorem 2 for relative pseudo-Anosov maps and
this is done in Lemma 13.

We would like to point out that the conclusion of Theorem 1 clearly implies the
existence of a fully essential system of curves. In other words, Theorems 1 and 2 are
both ‘if and only if” statements.

The next results are consequences of Theorem 2, exactly as in [1]. They all share the
same hypotheses: suppose that, for some € >0, f:S — S is a C!*¢ area-preserving
diffeomorphism isotopic to the identity with a fully essential system of curves €.

COROLLARY 1. If f is transitive, then f cannot have a periodic open disk. In the general
case, there exists M = M (f) > O such that if D C S is a f-periodic open disk, then for
any connected component D OfJT_l(D), diam(ﬁ) < M in the metric dp, the lift of the
hyperbolic metric d in S.

In [21], it is proved that in the case where f is just an area-preserving homeomorphism
of S and the fixed point set is inessential, then all f-invariant open disks have diameter
bounded by some constant M > 0. If, moreover, for all n > 0, the set of n-periodic points
is inessential, then, for each n > 0, the set of n-periodic open disks has bounded diameter.
But the bound may not be uniform with the period. In our situation, with much stronger
hypotheses, Corollary 1 gives a uniform bound.

COROLLARY 2. There exists a contractible hyperbolic f-periodic saddle point p € S (the

one from Theorem 2) such that R.1.(f) def. Wi (p) = Ws(p), is compact, f-invariant and

all connected components of the complement of R.1.(f) are f-periodic disks. Moreover,

forall 5 e w1 (p), RI.(F) def. 7 Y(R.1.(f)) = W5(p) = WH(D) is a connected, closed,

f-invariant, equivariant subset of 1.

COROLLARY 3. [If f is transitive, then there exists a contractible hyperbolic f-periodic
saddle point p € S (the one from Theorem 2) such that W4 (p) = W*(p) = S and, for any
pen N (p), Wi(p) = WS(p) =D, something that implies that f is topologically mixing.
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Finally, in the third theorem, we study the homological rotation set p,,; (f).

THEOREM 3. Let f: S — S be a C'*€ diffeomorphism isotopic to the identity with a
fully essential system of curves €. Then the (homological) rotation set pp,(f) is a 2g-
dimensional compact convex subset of H\(S, R) ~R?¢. Moreover, if v € int(pm:(f)),
then there exists a compact set K C S such that, for all g € K, p(f, q) =v. In the case
where v is a rational point, K can be chosen as a periodic orbit.

The last two results generalize the main theorems of [2] to the context of this paper.

THEOREM 4. Let f : S — S be a C'*€ diffeomorphism isotopic to the identity with a fully
essential system of curves €. Then there exists M(f) > 0 such that, for any ® € 3py,(f),
any hyperplane w € H C R?® that does not intersect intetior(p,.(f)) (H is called a
supporting hyperplane), any p € S andn > 0,

(ep] —n-) - v < M(f),

where vy is the unitary normal to H, which points towards the connected component of
HF¢ that does not intersect py;(f).

THEOREM 5. Let f:S — S be a C'*€ area-preserving diffeomorphism isotopic to the
identity with a fully essential system of curves €. Then the rotation vector of Lebesgue
measure belongs to interior(pp,; (f)).

2. Some background, auxiliary results and their proofs

In this section, we present some important results that we will use, along with some
definitions and a short digression on hyperbolic surfaces, Thurston classification of
homeomorphisms of surfaces and a little of Pesin theory. We also prove some auxiliary
results, which we will use in the following sections to prove Theorems 1-5.

2.1.  Properties of hyperbolic surfaces. Let S be a closed orientable surface of genus
g>1landletm: S — S be its universal covering map. As we said before, the universal
cover S is identified with the Poincaré disk D endowed with the hyperbolic metric dp.
Hence, we assume that S = ID/I", where I" is a cocompact freely acting group of Moebius
transformations. Any non-trivial deck transformation g € Deck(;r) =T is a hyperbolic
isometry and extends to the ‘boundary at infinity’ 91D as a homeomorphism which has
exactly two fixed points: one attractor and one repeller. These fixed points are the endpoints
of some g-invariant geodesic 8, of D, called the axis of g. For any point p € D, the
sequence g"(p) converges to one endpoint of 8, as n — —oo and to the other one as
n — 0o. Any subarc of 8, joining a point p to g(p), when projected to S, becomes an
essential loop y,, which is the unique geodesic in its free homotopy class.

Given an essential loop y : [0, 1] — S, an extended lift of y is an arc Yy :R—> D
obtained by the concatenation of arcs that are the translation of a lift of y by all iterates of
some deck transformation. Two extended lifts of an essential loop coincide if and only if
they share the same endpoints in 9.
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If 4 is a deck transformation that commutes with g, then the axis of g is equal to the
axis of £, and the group of all deck transformations that commute with g is cyclic and
generated by g if y, is in the free homotopy class of a simple loop.

Let f: S — S be a homeomorphism isotopic to the identity and let / : [0, 1] x S — §
be an isotopy from the identity map to f. The isotopy 7:10, 1] x D — D obtained by
lifting / with basepoint Id : D — D is called the natural lift of /. As we have already
defined in §1.3, the map f: D — D, given by f(ﬁ) = 7(1, D), is called the natural lift of
f associated with the isotopy /. Natural lifts of a homeomorphism are characterized by the
property of commuting with all deck transformations, and, moreover, f can be extended
to a homeomorphism of I as the identity on the ‘boundary at infinity’ 9ID (see [8]).

2.2. On the fully essential system of curves ¢. In this subsection, we prove some
properties for 7 =1 (%), where € is a fully essential system of curves.

PROPOSITION 6. The lift w1~ (%) is a closed connected subset of D that accumulates all
over 0D with the Euclidean metric.

Proof. First, observe that € is the union of a finite number of closed geodesics in S;
therefore % is closed. Since 7 : D — S is continuous, 7 ' (%) is closed. To see that
7~ 1(€) is connected, we just observe that S\ is a union of open topological disks, and
therefore all connected components of D\ ~! (¢) are bounded topological open disks.

In order to prove that 7~ !(%) accumulates everywhere in 9D, we first note that,
since, for all 7 €D and g € Deck(), 7(Z) = 7(g()), 7~ (%) is invariant under deck
transformations. This and the fact that the subset {Z € DD : 7 is fixed by some g € Deck ()}
is dense in 0D with the Euclidean metric (see [8]) imply that 7~ 1(%) accumulates all
over 9. O

In the next proposition, we consider the geodesics in € without their orientations.

PROPOSITION 7. For every p, T € w1~ (€), there exists a path y in 7w~ (€) joining these
two points, which is contained in the union of a finite number of subarcs of extended lifts
of geodesics in 6.

Proof. Fix a point p € 7~ 1(%) and let Py be the set of all points § € 7 (%) such that
there exists a path joining p to ¢ formed by subarcs of a finite number of extended lifts of
geodesics in €. We will show that Py is an open and closed subset of 7 1%).

Let g be a point in Py. As the set ¢ is equal to the union of a finite number of closed
geodesics, there exists € > 0 small enough so that B.(g) N P (%) satisfies one of the
possibilities in Figure 2.

In the first case, g belongs to just one extended lift of a geodesic in €. If y is the path
joining p to g and it is formed by k > 0 subarcs of extended lifts of geodesics, it is clear
that, for all points in B¢(7) N 7~ (%), there is a path y’ joining 7 to this point formed by
the same number of subarcs of extended lifts of geodesics. In the second case, ¢ belongs
to the intersection of a finite number of extended lifts of geodesics and, again, if the path
y is formed by k > 0 subarcs, then, for all points in B.(7) N 7~ (%), there is a path y’
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FIGURE 2. Possibilities for a neighborhood of g.

joining p to this point formed by at most k + 1 subarcs of extended lifts of geodesics. So
P5 is open.

We will now prove that ’PI% =g (€¢)\ Py is open. Again, if g is a point in 731%, there
exists € > 0 small enough such that B.(§) N ~!(%) satisfies one of the possibilities in
Figure 2. In both cases, if §’ € B.(§) N7~ (¥) N Py, then, by the same argument as
above, there is a path y’ joining p to g with a finite number of subarcs of extended lifts of
geodesics. But this is a contradiction because g € P%, so all points in B¢ (g) N 7~ 1(%) are
points of 73%. Hence P% is open. Since Py is an open and closed subset of the connected

setn_l(%),szn_l(%). O

2.3. Nielsen—Thurston classification of homeomorphisms of surfaces. In this
subsection, we present a brief overview of Thurston’s classification of homeomorphisms
of surfaces and prove a result analogous to [23, Theorem 1(i)].

2.3.1. Some definitions and the classification theorem. ~ Let M be a compact, connected,
orientable surface, possibly with boundary, and let f : M — M be a homeomorphism.
There are two basic types of homeomorphisms which appear in the Nielsen—Thurston
classification: the finite order homeomorphisms and the pseudo-Anosov ones.

A homeomorphism f is said to be of finite order if f” =1Id for some n € N. The
least such n is called the order of f. Finite order homeomorphisms have zero topological
entropy.

A homeomorphism f is said to be pseudo-Anosov if there is a real number A > 1
and a pair of transverse measured foliations .#* and .#* such that f(%*)=A"1.%*
and f(F") = AZ". Pseudo-Anosov homeomorphisms are topologically transitive, have
positive topological entropy and Markov partitions [9].

A homeomorphism f is said to be reducible by a system

n
c=Ja
i=1

of disjoint simple closed curves Cy, . . ., Cp, called reducing curves, if:
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FIGURE 3. Examples of a 1-prong and a 3-prong singularity, respectively.

e forall i, C; is not homotopic to a point, nor to a component of 9 M;
e foralli # j, C; is not homotopic to C;; and
e ( isinvariant under f.

THEOREM 8. (Nielsen—Thurston) If the Euler characteristic x(M) <0, then every

homeomorphism f : M — M is isotopic to a homeomorphism ¢ : M — M such that:

(1) ¢ is of finite order;

(2) ¢ is pseudo-Anosov, or

(3) ¢ is reducible by a system of curves C, and there exist disjoint open annular
neighborhoods U; of C; such that

U=UU,-
i

is ¢-invariant. Each component S; of M\U is mapped to itself by some least positive
iterate n; of ¢, and each ¢™ s, satisfies (1) or (2). Each U; is mapped to itself by
some least positive iterate m; of ¢ fixing the boundary components, and each ¢ |y,
is a generalized twist.

Homeomorphisms ¢ as in Theorem 8 are called Thurston canonical forms for f.

We say that ¢ : M — M is pseudo-Anosov relative to a finite invariant set K if
it satisfies all of the properties of a pseudo-Anosov homeomorphism except that the
associated stable and unstable foliations may have 1-pronged singularities at points in
K [15], see Figure 3. Equivalently, let N be the compact surface obtained from M\ K by
compactifying each puncture with a boundary circle and let p : N — M be the map that
collapses these boundary circles to points. Then ¢ is pseudo-Anosov relative to K if and
only if there is a pseudo-Anosov homeomorphism ® : N — N such that¢ o p = p o .

2.3.2. The beginning of the work.  The following result is the first step towards the proof
of the main theorems.

LEMMA 9. Let f:S — S be a homeomorphism isotopic to the identity with a fully
essential system of curves € and let P be the set of periodic points associated with the
geodesics in €. Then there exists an integer mqg > 0 such that ™0 is isotopic relative to P
to a homeomorphism ¢ : S — S, which is pseudo-Anosov relative to P.
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Proof. Let f be a homeomorphism with a fully essential system of curves € and
let P be the set of all periodic points associated with the geodesics in 4. We write
P ={p1, p2,..., pr}. For each 1 <i <k, there exists an integer n; > 0 such that
f"(pi) = pi. Take mo > 0 to be an integer such that all points in P are fixed points
for f™o.

We will follow the same ideas used by Llibre and MacKay in [23]. Let ¢ : § — S be the
Thurston canonical form associated to f"*0. Of course, we are considering ™0 : S\P —
S\ P and so ¢ is also a homeomorphism from S\ P into itself. But it can be extended in
a standard way to the set P (fixing everybody), giving a homeomorphism of S into itself
that is also isotopic to the identity as a homeomorphism of S, which we still call ¢.

Let us show that ¢ is pseudo-Anosov relative to P. First, note that ¢ can not be of finite
order, since points in 7 ~'(P) move in non-trivial homotopical directions. To be more
precise, if ¢ had finite order, then, for some N > 0, ¢N = Id . This implies that the natural
lift of @™ is also the identity. But there is at least one fixed point for ¢, p; € P, such that,
forany p; € w1 (py), its trajectory under the natural lift 51\’ : D — D follows a non-trivial
deck transformation.

Now, suppose ¢ is reducible by a system of curves C. As in [23], we say that a
simple closed curve y on a surface of genus g with punctures is non-rotational if, after
closing the punctures, y is homotopically trivial. If y is a non-rotational reducing curve,
then it must surround at least two punctures. So, suppose y surrounds p; and p;, i # j.
Since y is a reducing curve, ¢"(y) =y, for some n > 0. This means that there exists
g € Deck(rr) such that ¢" () = g(7), where 7 is a lift of y (¥ is a simple closed curve
in D) surrounding p; and p;, which are lifts of p; and p;, respectively. By induction, it
follows that ¢"" (¥) = g™ (7) encloses both ¢""(p;) and ¢™" (p;) for all m € Z. But this
is a contradiction because asi # j, limj— oo 51 (pi) and lim;_, o 5’ (p) are different points
of dlD.

In the case where y is a rotational reducing curve, let  C ID be an extended lift of
y. The curve ¥ has two distinct endpoints at the ‘boundary at infinity’ 9D, and D\y has
exactly two connected components. Since 5 lop = Id, 5 (¥) has the same endpoints on 9D
as ¥. Since S\% is a union of topological disks, there exists g € Deck(rr) associated with
some geodesic y; in & such that the fixed points of g in 3D separate the endpoints of ¥.

Finally, choose p; € 7! (p;) such that it belongs to one connected component of D\
and lim,_, o 5” (pi) is in the ‘boundary at infinity’ of the other connected component.
Since ¢(7) and ¥ have the same endpoints in 9D and ¢" (y) = y, we have ¢ (¥) = ¥, for
all m > 0. As 5 preserves orientation, this clearly implies a contradiction (see Figure 4).
This shows that ¢ cannot be of finite order or reducible by a system of curves. So ¢ is
pseudo-Anosov relative to P. O

2.4. On Handel’s fixed point theorem.

2.4.1. Preliminaries and a statement of Handel’s theorem. In [16], Michael Handel
proved the existence of a fixed point for an orientation-preserving homeomorphism of the
open unit disk that can be extended to the closed disk as the identity on the boundary,
provided that, for certain points in the open disk, their o and w-limit sets are single points
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lim &" (P

FIGURE 4. The final contradiction.

in the boundary of the disk, distributed with a certain cyclic order. Later, in [22], Patrice
Le Calvez gave a different proof of this theorem based only on Brouwer theory and plane
topology arguments. In Le Calvez’s proof, the existence of the fixed point follows from
the existence a simple closed curve contained in the open disk, whose topological index
can be calculated and is equal to one.

THEOREM 10. (Handel’s fixed point theorem, [22]) Consider a homeomorphism h:D—

D of the closed unit disk satisfying the following hypotheses.

(1)  There exists r >3 points pi, ..., pr in D and 2r pairwise distinct points
a1, W1, - . ., 0, @p on the boundary 0D such that, for every 1 <i <r,

lim 7 "(p) =, lim 2" (B;) = .
n— oo n— oo
(2)  The cyclic order on 3D is, as represented on Figure 5,
al» C()r, 062, wl’ a37 6()2, L) ar’ wr—l, (Xl.
Then there exists a fixed point free simple closed curve y C ID such that ind(ﬁ, y)=1.
Remember that, if p is an isolated fixed point of Z, the Poincaré—Lefschetz index of /1

at p is defined as
ind(h, p) =ind(h, y),

where y is a (small) simple closed curve surrounding p and no other fixed point. The index
of h at p'does not depend of the choice of y.

In the case where & has only isolated fixed points, if int(y) is the bounded connected
component of y¢ and Fix(int(y)) = {p € int(y) : h(p) = p} then, by properties of the
Poincaré—Lefschetz index,

ind(h, y)= Y ind(h. P).
peFix(int(y))
So,if i:D—>Disa homeomorphism with only isolated fixed points satisfying the

hypothesis of Handel’s theorem, as ind(i~z, y) =1, there exists a fixed point p’ € int(y)
with ind(k, p’) > 0.
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a2 W1

FIGURE 5. Cyclic order for Handel’s fixed point theorem when r =3 and r = 5.

2.4.2. Existence of a hyperbolic a-periodic point. Remember that ¢: S — § is a
homeomorphism which is pseudo-Anosov relative to P (see Lemma 9). As a map from
S to itself, ¢ is a homeomorphism isotopic to the identity. The map 5 :D— D is the
natural lift of ¢, the one which commutes with all deck transformations and extends as a
homeomorphism of D, which is the identity on the ‘boundary at infinity’.

In the next proposition, we prove that g has a hyperbolic periodic saddle point. When
we say hyperbolic saddle in this context, we mean that the local dynamics at the point is
obtained by gluing exactly four hyperbolic sectors, or, equivalently, the point is a regular
point of the foliations .#* and .%*.

PROPOSITION 11. The natural lift ¢~>:D—> D of the map ¢ from Lemma 9 has a
hyperbolic periodic (saddle) point p.

Proof. In the first part of this proof, we want to find a well-oriented Jordan curve E
contained in 7 ~1(%). After finding such a curve, we consider interior(,g) Nz~ Y (®)°. We
will show that there is a connected component U of the previous open set, whose boundary
is also a well-oriented Jordan curve. Finally, taking appropriate lifts of the periodic points
associated with the geodesics in 4" which have extended lifts containing arcs in AU, we
get that the hypotheses of Handel’s theorem are satisfied for them.

First, choose some unoriented geodesics «1, a2, . . ., o, for some r < k, such that, as
aset, [ Jj_; oi = Ule i, where ¢ = Ule y; is the fully essential system of curves.

If, forevery 1 <i <r, there are two periodic points whose trajectories under the isotopy
are closed curves freely homotopic to ¢;, or concatenations of «;, with both possible
orientations, then any Jordan curve which is the boundary of a connected component of
771 ()¢ can be well oriented according to the orientations of the geodesics in €. This is
what we need.

So, assume that the above does not hold and choose some oriented extended lift ¥, of
a geodesic y, in ¢, for which there is no periodic point following it with the opposite
orientation.
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FIGURE 6. How to find the well-oriented Jordan curve E .

Let g, be a deck transformation which has ¥, as axis and translates points according to
the orientation of y,. Denote the two connected components of ¢ as O+ and O~. Itis
clearly possible to choose two oriented geodesics in %, such that, for some extended lifts
of them, one starts in 9O~ \7, and ends in 3O +\, and the other one goes in the opposite
direction. Denote these lifts by ¥, and Y. Iterating them under g,, if necessary, we can
suppose that they are disjoint and their relative position is as in Figure 6.

Still considering Figure 6, let & be an oriented simple arc contained in 7~ (%) which
starts at some point in the open interval I C 9D and ends at some point in the other open
interval F C ). Remember that, as ¥ is a fully essential system of curves, it is possible
to choose such an arc @ formed by the concatenation of finitely many oriented subarcs of
extended lifts of geodesics in 7 1(E).

If & N ¥, has two or more points, then, clearly, @ U ¥, contains a well-oriented Jordan
curve . This follows from the choice of y, : there is no periodic point in S with a lift that
follows 7, in the opposite orientation.

If not, then it is still easy to find a well-oriented Jordan curve E contained in & U y, U
Vb U Ve

Now, let us look at interior(,g). If 771(%) intersects interior(E), pick any extended
lift 7 C 7~ (%) that intersects interior(,g). The oriented arc 7 divides interior(ﬁ) into
finitely many disks, at least one of them with a well-oriented boundary, still contained in
771(%). Denote this boundary by El, which, as we just said, is a well-oriented Jordan
curve contained in 7~ 1(%). If 7~ 1(%) intersects interior(,gl), repeat the process and
find a well-oriented Jordan curve ,52 c n~ (%), and so on. As there are only finitely
many extended lifts of geodesics in 7! (%) that intersect interior(g ), after finitely many
steps, we arrive at a well-oriented Jordan curve E* C 7~ 1(%) such that 7~ 1(%) does not
intersect U = interior(E*).

Fix an oriented side p of a0 = E* which is given by the intersection of a certain
extended lift of a geodesic y;, in % with B,. Denote this extended lift by ;,. Associated
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FIGURE 7. U and how some points move with respect to its boundary.

with ¥;,, we can find an appropriate lift p;, of p;, following ¥;, with the correct orientation
under iterates of ¢~S

If 5 and ' are two consecutive oriented sides of dU, then the endpoints of the extended
lift of the geodesic associated to p separate the endpoints of the extended lift of the
geodesic associated to p’. Putting all these observations together, we see that é satisfies
the hypotheses of Handel’s theorem (see Figure 7).

Since ¢ is pseudo-Anosov relative to a finite set P, for each period, it has only isolated
periodic points, and the same holds for 5 This means, by Handel’s theorem, that there
exists a fixed point P} of ¢ such that

ind(¢, p1) = ind(¢, 7(F1)) > 0.

Observe that the same conclusion holds for ¢™, for any m > 0.
But, for some appropriate large m; > 0, the local dynamics at points in Fix(¢) imply
that
ind(¢™', p) <0 forall p € Fix(¢).

This happens because all points in Fix(¢) with non-positive indexes are saddle-like
(maybe with more than four sectors) with ¢-invariant separatrices, and points with
positive indexes are rotating saddles. So, for some m| > 0O sufficiently large, ¢™! fixes
the separatrices of all points in Fix(¢), and thus they all have non-positive indexes with
respect to ¢™1. In particular, ind(¢™!, 7 (p1)) <O.

Now let us look at ¢™!. Again, as a consequence of Handel’s theorem, there is a fixed
point p of ™ with ind(¢™! p2) =ind(¢™1, 7 (p2)) > 0. In the same way as above for
some sufficiently large m; > 0, the local dynamics at points in Fix(¢™!) imply that

ind(¢™"™2, p) <0 forall p € Fix(¢™"),

and, in particular, ind(¢™1"2, (p3)) < 0.
If we continue this process, we get a sequence of pairwise different points
D1s D2, P3, - ... In S, the points 7w (P1), 7w (p2), w(P3), . . . are also pairwise different.
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So, at some j, the cardinality of {171 P2, ..., pj} is larger than the number of
singularities of the foliations .#“, . This implies that, for some 4) periodic point
D, w(p) does not coincide with a smgularlty of the foliations .#", .#%. Hence p is a
hyperbolic periodic saddle point for . O

2.5. A first result towards the proof of Theorem 2 in the relative pseudo—Anosov case.
The stable and unstable foliations for ¢ lift to stable and unstable foliations for ¢ If Fy s
is the stable leaf of .#° that contains a point p € S, we will denote by F 5 the lift of F) 5

that contains a point 5 € 7 ~!(p). We do the same for unstable leaves of .Z*. Now we w111
state some definitions and properties of pseudo-Anosov maps relative to finite invariant
sets, which will be useful in the proof of the next lemma.

Let p € § be a fixed point of ¢. As we already said, the dynamics of a sufficiently
large iterate of ¢ in a neighborhood of p can be obtained by gluing finitely many invariant
hyperbolic sectors together. In each sector, the dynamics are locally like the dynamics in
the first quadrant of the map (x, y) — (A1x, A2y), for some real numbers 0 < A, < 1 < Aj.

We define the stable set of p as the set W*(p) of points z in S such that ¢" (z) — p when
n — 00, and we define the unstable set of p as the set W*(p) of points z in S such that
¢~ "(z) - p when n — oo. If p is a regular point of the foliations .7*, . 7", then W"(p)
is the union of two branches; the same is true for W*(p). This is the situation in which we
called the point a hyperbolic saddle point in the previous proposition. In the case where p
is a singular point of the foliations, p is a k-prong singularity (for k =1 or some k > 3),
which implies that W*(p) is the union of k branches; the same is true for W*(p). In this
singular case, each branch is actually a leaf of the proper foliation, which emanates from
the singularity, while, in the regular case, each leaf gives two branches. In both the regular
and the singular cases, the branches are either invariant or rotated around p under iterates
of ¢ (and are thus ¢"-invariant for some n > 0).

In the case where p’ € S is a ¢-periodic point, if n, is the least period of p, then it is a
fixed point of ¢"#', so we define the stable and unstable sets of p’ accordingly, using ¢"?'
instead of ¢.

LEMMA 12. Let 5 be the natural lift of ¢. Then there exists p € D a a-hyperbolic periodic
saddle point and deck transformations g1, g» such that g1 o g2 # g» o g1 and

F”+ M F;ﬂ(“p), iefl,2},

where W”(ﬁ):Fg"_UFg_, W‘Y(p)z UFi_ and F s F~_ F F%_ are the
four branches at p.

Proof. Let p €D be the g-periodic point given in Proposition 11. So, p=m(p) is a
hyperbolic ¢-periodic saddle point. Without loss of generality, considering an iterate of
¢, if necessary, we will assume that each point in K = {p} U P is fixed and, moreover,
that each stable or unstable branch at a point in K is also invariant under ¢.

The map ¢ is pseudo-Anosov relative to P. In particular, any stable leaf F* e %#°
intersects all unstable leaves F“ € .Z#“ C'-transversely and vice-versa. Let F » be the
unstable leaf at the point p (as p is regular, F' ;,‘ = W"(p)) and let F ;p, be a stable leaf
at some point p’ € P ={pj, ..., px}. The point p’ may be singular or regular. From what
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we said above, F ;,‘ M F :p,. So, there exists an unstable branch at p, denoted by F ;,‘*,
and an unstable branch at p’, denoted by F :[;,, such that F ;,‘Jr accumulates on F ;‘;, and
F :};, h W?(p). Let F3* be a stable branch at p such that Ffl;,  F,*. Lifting everything

to the universal cover, having fixed some p € n_l( p), there exist deck transformations
g’ #1d and h such that

Tu+ s+
F5™ M Flgnc» ®)

for all sufficiently large n > 0. This follows from the fact that, having fixed some p €
771 (p), there exist a 17 € 7r_1(p) and deck transformations g’ #1Id and 4 such that
d(P) =5, Fff+ M FSN, and F”N, 0 F,jjp)
Let g1 = (g’ )”h for some n > 0 such that (8) holds. Now consider 6 to be a path in D

constructed as follows: § =6’ x 6", where 6 is a compact subarc of F4* starting at 5 and
ending at a point in F“+ thp), and 0" is a compact subarc of ngI () Starting at the
endpoint of 6’ and endlng at g1 (p).

Let w; be the fixed point in 3D of g1 such that lim, . g7(g) = w; forall g € D, and
let o1 be the other fixed point.

Define

=gl ®).
i€Z

By construction, ® is a path connected subset of I, joining «; to wi. Since S\¥ is
a union of open topological disks, there exists an oriented geodesic y* in € and m €
Deck(rr) such that the projection of the oriented axis of m in S is y* and the fixed points
of m in 0D separate the endpoints w; and «; of ®. This follows from Propositions 6 and 7.

Now consider the fixed points w,, and «;; of m in 9D such that lim,_ o m"(g) =
W and limy,—, _oo m"(§) = ay, for all g € D. We know that the axis of m is an oriented
extended lift of y*, so w,, and «,, are coherent with the orientation of y*. Let ng > 0
be a sufficiently large integer such that m"%(w;) and m™0 (c«t;) are close to wy, and ® N
m"0(®) = (. This is possible because ® accumulates on w;, under positive iterates of m.

Then

O =|Jgl@ =mm@©) =m"gi®).
i€Z i€Z

As ¢ commutes with all deck transformations, 8’ C F3 F* and ¢(F = F Fit,
get that, for all n > 0 and ¢ € Deck(r), 10 C ¢ (1(8)). Slmllarly, since 8" C F;:p)’
@"(t(0")) Ct(8"), forall n > 0 and ¢t € Deck(r).

The hypotheses on % imply that there is a point p;, € 7! (P) such that a(ﬁm) =
m(py) and py, is in the connected component of D\ ® that contains o, in its boundary.
As m"0(®) is in the other connected component of D\®, lim,_, 5” (Pm) = wp, and
5 lsap = 1d, we get that, for a sufficiently large n’ > 0, there must exists two integers i’,
i” such that

" (g @) hm"g) <5”)
In particular, Fqu h FST . and so, F M Ft (see Figure 8).
(p) m"0gy (p) (g m”Ogl N#)

Finally, let g» = g|"' ”Og’i”. We will show that g; and g do not commute. If g 0 gp =

g2 o g1, then there exists [ € Deck(;r) and integers k1, k> such that g; = 1kt and g = Ik2,
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m"(e)

o (g7 (6]

FIGURE 8. How to obtain g;.

Thus
gl—i/mn()gti” — lkz = l—i/k] mn()li”kl — lk2 = m'o — lkz-‘rk](i/—i”).

Since m"0 and g are iterates of the same deck transformation, the geodesics associated
to the axes of m and g are equal. But this is in contradiction with our choice of m. So, g1
and g»> do not commute. O

2.6. Proof of Theorem 2 in a special case. In this subsection, we prove Theorem 2 in
case of relative pseudo-Anosov maps.

Remark 2.6. As ¢ : S — S is pseudo-Anosov relative to a finite invariant set, if, for some
leaves F* of " and F* of .%*, there are connected components F" of 7 Y(F") and
FS of 7~'(F®) which have non-empty intersection (not at a lift of a singularity of the
foliations), then they intersect in a C!-transverse way. In the proof of the next lemma, we
will not make use of this fact because, when proving Theorem 2, at some point we say
that the proof continues as the proof of the next lemma. So, in the proof of Lemma 13,
although intersections between stable and unstable leaves, either in S or in D, are always
C!-transverse, we will not use this fact.

Moreover, as we said in the introduction, the main feature of topologically transverse
intersections is the fact that a C%-version of the so called A-lemma (see [26]) holds: if
M is a surface, f: M — M is a C' diffeomorphism, p, g € M are f-periodic saddle
points and W*(p) has a topologically transverse intersection with W*(q), then W*(p)
CO-accumulates on W*(g), and, in particular, W¥(p) D W¥(q). Soif p1, p2, p3 € M are
hyperbolic f-periodic saddle points, W*(p1) has a topologically transverse intersection
with W*¥(p2) and W¥(p;) has a topologically transverse intersection with W*(p3), then
W¥(p1) has a topologically transverse intersection with W*(p3).

LEMMA 13. (Theorem 2 in case of relative pseudo-Anosov maps) Let 5 be the natural
lift of the map ¢. Then there exists a contractible hyperbolic ¢-periodic point p € S, such
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that, for any p € w~'(p) and any given g € Deck(r),
W (p) h W (g(p)).

Proof. Let p be the hyperbolic a-periodic point from Lemma 12 and let p = 7(p). This
lemma implies the existence of g and g in Deck(r) and also the existence of an unstable
branch A, of W¥(p) and a stable branch S5 of WS( p) such that, if k is the connected
component of 7y, ) contained in W (p) and ﬂs is the connected component of -1 (Bs)
contained in W*(p), then

T thgi(By), iefl,2).

Without loss of generality, as we did in Lemma 12, considering an iterate of a if,
necessary, we will assume that ¢(5) = p, #(Au) = Ay and ¢(B;) = Bs.

Since ¢~S is the natural lift of ¢, every point of the form 4 (p) with & € Deck(r) is fixed
under 5 . Moreover, if we consider the stable set of the point 4(p) with respect to 65 , then

W (h(p)) = h(W*(p)),

and the same is true for the unstable set of p.

Consider the point p € S. Choose € > 0 small enough so that B.(p) Nz~ !(p) =
where B.(p) ={q € D|dp(p, ) < €}. Observe that, since every point on the fiber of p
is of the form i (p) for some i € Deck(xr), and A is an isometry, B (h(p)) N P (p) =
h(p). m

PROPOSITION 14. There exists a path connected set 0 in D, containing p, that
geometrically is the concatenation of two curves in D, one joining p to wg, and the other
joining p to wg,, where wg, and wg, are the (different) attractive fixed points at infinity
of g1 and g», respectively. Moreover, if 6 avoids some curve ¢ and, for some n > 0, if
f" (0) has a topologically transverse intersection with ¢, then WY (p) has a topologically
transverse intersection with ¢.

Proof. From the fact that o 21 (ES), we can construct a path 1 in ID joining p'to g1(p)
exactly as in the previous lemma: n; starts at p, consists of a compact connected piece
of X, until it reaches g1 (B;) and then it continues as a compact connected piece of g; (B;)
until it reaches g1 (p). It is clear that we can choose the piece that belongs to gl(B;) to
be totally contained in B.(g1(p)). Analogously, we construct a path n, in D joining p to
g2(P). Let & C D be the path connected set obtained as (see Figure 9)

0= (U gi(m)) U (U 2 (nz))- ©)

i>0 Jj=0

Clearly, 6 is the the concatenation of two curves in I, one joining 5 to wg, and the other
joining p to w,,. The fact that g1 and g» do not commute implies that the fixed points at
infinity of these deck transformations are all different, so, in particular, w,, # w,,. The
last part of the proposition follows from the C°-version of the A-lemma that holds for
topologically transverse intersections. O
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) 93 (p)
1(p)

FIGURE 9. The construction of the path connected set 6.

In order to prove the Lemma 13, we show that, for every g € Deck(r),

o h g(Bs) = W) th WS (g(p)). (10)

Fix g € Deck(wr) with g # Id. The case where g = Id will be considered at the end.
As &, h g1(By), we get that

gy (k) h By and so gg! () th g(By)
can be rewritten as

ggr g g g (By).

Notice that an analogous statement holds for g;. Using this, let us construct a path
connected set 6’ containing g(p) in a similar way to 6.

PROPOSITION 15. There exists a path connected set 6" in D, containing g(p), such that,
geometrically, 8’ is the concatenation of two curves in D, one joining g(p) to glag,) and
the other joining g(p) to g(cg,), where ag, and ag, are the different repulsive fixed points
at infinity of g1 and g, respectively. Moreover, if 8’ avoids some curve ¢ and if, for some
n >0, f_" (8" has a topologically transverse intersection with ¢, then W*(g(p)) has a
topologically transverse intersection with ¢.

Proof. An important simple observation here is the fact that, for a fixed point of 5,
its stable set with respect to 5 coincides with its unstable set with respect to 5_1.
This duality allows us to construct the set 9’ in the same way as 6, but using the
point g(p), the deck transformations ggl_ g, 8% 1g_1 and the map $_1 Hence we
construct a path 771 joining g(p) to gg, g(g(p)) such that 771 starts at g(p), consists of a
compact connected piece of g(,B ) until it reaches gg|” -1 _1 (g()»u)) and then it continues
as a compact connected piece of gg,” -1 _l(g()» )) N B, (gg_1 _l(g(p))) until it reaches

gg1 g~ '(g(p)). Constructing 17, analogously, we define
0 = (U gg' g () ) (U 8%, ¢ 1(772))
i>0 j=>0

Similarly to 6, the curve @’ is given by the concatenation of two curves in ID, one joining
g(P) to g(ag,) and the other joining g(p) to g(xg,), where o, and o, are the repulsive
fixed points at infinity of g and g», respectively. As in the previous proposition, the last
part follows from the C°-version of the A-lemma. O

The sets # and 6’ share similar properties.



Full homotopical complexity of orbits for surface homeomorphisms 23

Properties 2.6 of 0 and 9.

e Forice {l 2} and for all m >0, all points of the form gI"(p) belong to 6 and
A M g (,8 ). Remember that A is a branch of W“(p) and 8" (,Bs) is a branch of
W (g"(P)).

e For i e{l,2} and for all m > 0, all points of the form gg; ™ g (g(p)) belong to
0’ and gg_mg’l(g(k )M g(,BS) And in this case, gg; " ¢ 1(g(%,)) is a branch of
W (gg; "¢ " (g(§))) and g(B;) is a branch of W* (g()).

If 6 and 6’ have a topologically transverse intersection, then the lemma is proved.
Indeed, if there is such an intersection, then at least one of the following four
possibilities holds.
e There exists j' € {1, 2} and m’ > 0 such that g;fq,,(j)v) =g(p).

e There exists j' € {1, 2} and m’ > 0 such that gg_,’”/ le@pN=p

e There exists j/, j” € {1, 2} and m’, m” > 0 such that gm (p) = gg_m g L g()).
In the three possibilities above, using Properties 2.6, we get that (10) holds. The last
possibility is the following.
e There exists j', j” € {1, 2} and m’, m" > 0 such that some compact piece of 6§ N
wH (g;.'f/(fi)) has a topologically transverse intersection with some compact piece of

o'n Ws(gg;,m”g_l(g(ﬁ))). This happens because, for i € {1, 2} and all n > 0,

0N W (g"(P)) C Be(g'(p)) and
0’ N W (gg;"g ' (g(P))) C Be(gg; "¢~ (g(P)))

and all of these balls are disjoint. So, by the CYA-lemma mentioned in Remark 2.6, the
proof is complete.

Hence let us suppose that 8 and 6" do not have topologically transverse intersections.
Our goal is to show that, in this case, using the fully essential system of curves ¥ and
the periodic points associated with the geodesics, we can force a topologically transverse
intersection between 6’ and a path connected set 6y € D that has the same properties and
is obtained from 6.

PROPOSITION 16. W¥(p) has a topologically transverse intersection with 0’.

Proof. As we said above, we are assuming that & and 6’ do not have topologically
transverse intersections, otherwise the proposition is proved. The set D\# has two
unbounded connected components U, and U}; the closure of one of them contains 6'. We
will assume that 6" C closure(Uy). The boundary at infinity of U, is equal to a segment of
0D delimited by wg, and w,, that will be denoted A . Similarly, the boundary at infinity of
Uy is equal to a segment of 3D delimited by wg, and wy, that will be denoted byA. In the
same way, D\6’ has two unbounded connected components U, and Uy,. We will assume
that 6 C closure(Uy,) and call A;,, Ay, the segments of 3D delimited by g(rg,) and g(erg,)
that are equal to the boundary at infinity of Uy, and U, respectively. Then A, C A, and
Ly S Ay (see Figure 10).

Let C(Ay, Ay,) be the set of oriented simple arcs in 7~ Y(%) joining a point in the interior
of Ay to a point in the interior Ay, and formed by finitely many oriented subarcs of extended
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FIGURE 10. The case when 6 and 8’ do not have topologically transverse intersections.

lifts of geodesics in €. The definition of a fully essential system of curves € implies that
C(ry, Ay) # 0. For every B in C (A, Ay,), we can write

B=PB1*xPox---xp,

where each §;, i € {1, 2, ..., 1} is an oriented subarc of an extended lift of one geodesic
in ¥. We will prove that W*(p) m 6’ and so W"(p) m W3(g(p)) by induction on k =
min{l/ e N|g € C()\}, Ag,), B=PB1*xBrx---x .

The existence of a fully essential system of curves % (see Definition 1.3) implies that,
for any geodesic y; € ¢ and any ; extended lift of that geodesic, there exists a point p;
in D and h; € Deck(x) such that y; is an oriented curve from ay,; to wy,, respectively, the
repulsive and the attractive fixed points of ; on D, h; (3;) = i, 5(}5}) = h;(p;) and

lim ¢"(pi)=w; and lim ¢~"(5) = .
n— 00 n—oo
First step. k= 1. In this case, there exist 81 € C(Ay, Ay) and ¥| an extended lift of a
geodesic in ¥ with B; = J|. It is clear that the orientation on ;| is from )Jg to A’g’,.
Associated to the extended lift 7, there is a point p| such that, for some /| € Deck(r)
with (Y1) = Y1, N
¢(p1) = hi(p1),

where
lim ¢~"(p1) = lim h{"(P)) =ay, and lim ¢"(F1) = lim h}(p1) = wp,.
n—o00 n—oo n—0o0 n—oo

Note that e, is the point at infinity of 7] in interior(A;) and wy, is the point at infinity
of y1 in interior(Ay,). The point pj can be chosen as close as we want (in Lhe Euclidean
distance) to the point oy, , something that forces p; to belong to Ué. Since ¢|yp = 1d, for
alln > 0, $"(0) is a path connected set in I joining the points wg,, Wg, € ID. As p1 € U,
and $ preserves orientation, we get that, for sufficiently large n > 0,

" (U N UL, #9,
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FIGURE 11. Intersection between a” (9) and 6.

which implies that
¢"(O)he'.

(see Figure 11). So, by Propositions 14 and 15,

W (p) h W (g(p)).

Second step. k=2 (main idea behind the general case). If k=2, there exist 8 €
C(rp, Ay), B=P1* B2 and 1, 2 extended lifts of geodesics in ¢ such that g C y;
and B, C . Moreover, in the same way as in the previous case, for i € {1, 2} there exists
a point p; € D and h; € Deck(sr) that leave ¥; invariant such that

$(P) = hi(F7).

The points ay,,, wp, separate the points oy, , wp, at I, ay, is in the interior of )J@ and
wy, is in the interior of Ag, (see Figure 12). Let us consider a sufficiently large m > Oina
way that hrln1 (0) is close (in the Euclidean distance) to the point wy, and 6 N hrln1 @) =40.
In particular, the points h'ln1 (wg,) and hrl"1 (wg,) are very close to wy, .

Exactly as when k=1, p; can be chosen sufficiently close to oy, in the Euclidean
distance, in a way that p; € U,, and then for a sufficiently large n > 0, 5” (p1) is very
close to wy,,, so that it implies that (Z" @) m hrln1 ).

But then, as in the previous case, there exists i/, i” € {1, 2} and j’, j” > 0 such that

W (g, (P)) h WH (" gl (),
which implies, again by the C%A-lemma, that an
WP h WY gl (P)).

Note that, since k =2, oy, is not in the interior of )JQ, otherwise there would be a
path in C (A}, Ag,) with size one, which contradicts the fact that k = 2. So, we can always
choose ip € {1, 2} and construct a new path connected set ;, using n;, of expression (9)
and an analogous construction obtained from expression (11). Before going into details,
we emphasize that the choice of i( is very important because oy, is not in the interior of
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hy{wg, ) W,

FIGURE 12. Intersection between 5" () and h'ln1 ).

Aé, but it could be one of its endpoints. So, if oy, is one of the endpoints of Ag, 8i, must
be chosen to be associated with the other endpoint of Aj,.

In order to construct 6,, first consider the set n;, of expression (9) associated to
giy» chosen as before. Since expression (11) holds, there exists a path 7 joining p to
ny! gl.J// Ry (R (D)) as follows: 7 starts at P, consists of a compact connected piece of
%y until it reaches Ry gl ™ (R (Bs)) and then it continues as a compact connected
piece of h’lnlg{/,hl_'"l(h'lr"(;i)) until it reaches h|'' g/, h{™" (h" (P)). As before, we
choose the arc in 1 contained in A" g/, k™" (h}"' (B;)) to be very small; it is contained
in B, (thgl.j,:/h;m‘(hT‘(ﬁ))). Note that i” € {1, 2} was defined before expression (11).
Finally, pick the n;» as in expression (9).

Then, define

On, = (U gfo(mo)> Unu ( U thg{},hlm'(hﬁ"'(m//)Q. (12)
i>0 Jj=j"

The new path connected set 8, has similar properties to 6, and, as was explained for
0 and @', it can be understood as the concatenation of two curves in I, one joining p to
and the other joining p to th (wg,,). If O, 6, then W*(p) th W¥(g(p)). And in
the case where there is no such topologically transverse intersection, as when oy, is in the

Wg;

o
interior of Aéhl and wy, is in the interior of Ag,, we are reduced to the previous case.
Hence, arguing exactly as when k = 1, we conclude that W*(p) h W*(g(p)).

Third step. (The induction). Suppose the result is true when
min{l e N|[B € C(hp, Ap), B=Bi*Pox--- B} =1,2,..., k—1

and let us prove that it holds for k. We can assume that k > 3. Fix 8 € C(A}, Ag,) with
B=PB1%Bo*PBsx---x P Let ¥, 0 <i <k, be the extended lifts of the geodesics in €
such that 8; C ¥;. For each i € {1, ..., k}, as the B;s are oriented, there exists a point
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S N SN

FIGURE 13. Position of the first two extended lifts when k > 3.

pi €D and h; € Deck(rr) that leaves J; invariant and moves points according to the
orientation of ; such that

(pi) = hi(P7).

We claim that the following facts are true: since k > 3 and there exists no path in
C(\,, Ag,) using less than k extended lifts of geodesics, if the first two extended lifts
y1 and > associated to 81 and B, are considered, then their relative positions with respect
to 6 can only be as in one of the three possibilities of Figure 13.

The reason for this is the following: 73 does not start inside 0, otherwise there would
be a shorter path. So, it may start and end outside 6 (this is the first case in Figure 13).
Or it starts at one endpoint of 6 and ends outside 6. It cannot end inside 6 because, in this
case, some ¥; for i > 2 would have to start inside the region bounded by 7, and inside
and its endpoint would have to be outside 6. And this also gives a shorter path, which is a
contradiction. The third possibility is when 7, starts outside 6 and ends inside it or at one
of its endpoints. These are the three cases in the figure.

In this way, choose an integer m; > 0 sufficiently large so that in the segment
(A" (wg,), A" (wg,)] of 0D delimited by h'' (w,,) and i (wg,), and containing the point
oy, , there are no other &’ and «’. Since there is a finite number of o and /', this is always
possible.

Now proceed as when k = 2 and construct the path connected set 6, in the same way
as in (12). Some care must be taken with the choice of the endpoints at infinity of .

e If 7| and y; are as in the first case of Figure 13, we can choose any of the endpoints of
0 as one endpoint of Oy, .

e If ¥} and 7; are as in the second case of Figure 13, we choose as one of the endpoints of
Op, the endpoint of 6 that is contained in the segment [o,,, wp,, | of dD which contains
Wh,.

e If ] and 7 are as in the third case of Figure 13, we choose as one of the endpoints of
Or, the endpoint of # that is contained in the segment [c,,, wy, ] of 9D which contains
Ay .

Constructing 6y, in this way, it follows that Aghl C Ay and @y, is in the interior of kghl.
If 6, h 6, then W*(p) h W*(g(p)). In case where there is no such intersection, let 8}
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be the subarc of > joining oy, to the intersection point of ¥, and y3. Create Bmoq = B *
B3 * - - - x By, which is an oriented arc joining a point in the interior of )‘/ﬂh, to a point in the
interior of Ay, formed by k — 1 subarcs of extended lifts of geodesics in €. This implies
that min{/ € N|8 € C(kghl, Ap)s B=PB1*B2x---x B} <k — 1. So using the induction
hypothesis we conclude that W*(p) th W*(g(p)). This concludes the induction.

So, for all g e Deck(xw), g#Id, W"(p) M W%(g(p)). In order to deal with
g=1d, consider some h, h~! € Deck(), h#Id. Then W*(p)th W*(h(p)) and
WH(p) h W (h~1(p)). As é commutes with all deck transformations, W* (h=Y(p)) th
W*(p) and so, by the C° A-lemma, W*(p) h W*(p).

Actually, as we said at the beginning, we proved something a little bit stronger: for all
g € Deck(rr), 2y th g(By). 0

2.7. The global shadowing. The next result says that as the map ¢ is pseudo-Anosov
relative to some finite invariant set, its complicated dynamics being, in some sense,
inherited by f. It is related to Handel’s global shadowing [14]; more precisely it appeared
as Theorem 3.2 of Boyland’s paper [3].

THEOREM 17. (Global shadowing) If f:S — S is a homeomorphism of a closed
orientable surface S isotopic to the identity, P is a finite f-invariant set and f is isotopic
relative to P to some map ¢ : S — S which is pseudo-Anosov relative to P, then there
exists a compact f-invariant set W C S and a continuous surjection s : W — S that is
homotopic to the inclusion map i : W — S such that s semi-conjugates f|w to ¢ : that is,

Sof|W :¢OS.

Observe that, as s : W — § is homotopic to the inclusion map i : W — §, s has a lift
571 (W) — D such that
’E’O f|7T_1(W) = ¢ OF,
where ¢ and fare the natural lifts of ¢ and £, and sup{dp(G(q), 7)|§ € 7' (W)} < Cy,
for some constant Cy > 0.

2.8. Special horseshoes for the pseudo-Anosov map ¢. In this subsection, we state a
simple lemma used in the proofs of Theorems 1 and 2. The setting is the following: let
f S — S be a homeomorphism isotopic to the identity with a fully essential system of
curves ¢ and let P be the set of periodic points associated with the geodesics in €.
From Lemma 9, we know that there exists an integer mqo > 0O such that /™0 is isotopic
relative to P to ¢ : S — S, a homeomorphism which is pseudo-Anosov relative to P
and isotopic to the identity as a homeomorphism of S. From Lemma 13, there exists a
contractible hyperbolic ¢-periodic point p € S such that, for any 5 € 7~!(p) and any
given g € Deck(w), W*(p) h W*(g(p)). In D, we are considering the natural lift of ¢,
denoted by 5 . As we did previously, without loss of generality, we assume that p is fixed
under ¢ and also that all four branches at p are ¢-invariant.

LEMMA 18. For any g € Deck(m) and any fundamental domain Q C D of S such that
p=n"l(p)n Q is in the interior of Q there exists arbitrarily small rectangles RcC Q
such that:
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Q) interior(ﬁ) contains p, and two sides of R are very close to an arc E pE EC
W*(p) N R and the two other sides of R have very small length; and

(2) for some N >0, $"(R)N R > Ry and ¢V (R) N g(R) D Ry, where Ry = n(Ry),
R = n(ﬁl) are rectangles contained in R = n(ﬁ) that have two sides contained
in the sides of R which are very close to f = JT(E) and two sides contained in the
interior of R.

Proof. This is a standard result in hyperbolic dynamics, so we omit the proof and just
present a figure. O

2.9. The C'*€ case: some background in Pesin theory. In this subsection, assume that
f:S— Sisa C!*€ diffeomorphism, for some € > 0. Recall that an f-invariant Borel
probability measure p is hyperbolic if all the Lyapunov exponents of f are non-zero at
p-almost every point (for instance, see the supplement of [19]). The following paragraphs
were taken from [7]. They consist of an informal description of the theory of non-uniformly
hyperbolic systems, together with some definitions and lemmas from [7].

Let u be a non-atomic hyperbolic ergodic f-invariant Borel probability measure.
Given 0 < § < 1, there exists a compact Pesin set As, with w(As) > 1 — §, having the
following properties: for every p € As, there exists an open neighborhood U),, a compact
neighborhood V), C U, and a diffeomorphism F : (-1, 1)2 — U, with F(0, 0) = p and
F([—1/10, 1/101%) = V), such that the local unstable manifolds W}! (g) of all points ¢ in
A5 NV, are the images under F of graphs of the form {(x, F>(x))|x € (—1, 1)}, where I,
a function with small Lipschitz constant. Any two such local unstable manifolds are either
disjoint or equal and they depend continuously on the point ¢ € As N V,,. Similarly, the
local stable manifolds W;} (¢) of points ¢ € As N V), are the images under F of graphs of
the form {(F1(y), y)|y € (—1, 1)}, where F a function with small Lipschitz constant. Any
two such local stable manifolds are either disjoint or equal and they depend continuously
on the point g € As N V).

It follows that there exists a continuous product structure in As NV, : given any r, r’ €
As NV, the intersection Wy (r) N Wfoc(r’ ) is transversal and consists of exactly one
point, which will be denoted by [r, r]. This intersection varies continuously with the two
points and may not be in As. Hence we can define maps P; tAsNV, — Wi (p) and
Py AsNV, — Wi (p)as Py(q) =g, pland P;(q) =[p, q].

Let RT denote the set of all points in S which are both forward and backward recurrent.
By the Poincaré recurrence theorem, w(RT) =1.

Definition 2.9. (Accessible and inaccessible points) A point p € AsN VpﬁRi is
inaccessible if it is accumulated on both sides of Wlf)c( p) by points in P;(Aa nv,N
R*) and also accumulated on both sides of Wil .(p) by points in PI’;(A,; nv,N RY).
Otherwise, p is accessible.

After this definition, we can state two lemmas from [7] about accessible and
inaccessible points and the relation between these points and hyperbolic periodic points
close to them.
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LEMMA 19. Letg € AsNV, N R be an inaccessible point. Then there exist rectangles
enclosing q that have sides along the invariant manifolds of hyperbolic periodic saddles
in V), and that have arbitrarily small diameter.

A rectangle is a Jordan curve made up of alternating segments of stable and unstable
manifolds, having two of each. The segments forming the boundary are its sides and the
intersection points of the sides are the corners. A rectangle is said to enclose p if it is the
boundary of an open topological disk containing p.

LEMMA 20. The subset of accessible points in As NV, N R has zero . measure.

Another concept that will be a crucial hypothesis for us is positive topological entropy.
In the following we describe why.

When the topological entropy h(f |x) is positive, for some compact f-invariant set
K, by the variational principle, there exists a f-invariant Borel probability measure (g
with supp(uo) C K and hy,(f) > 0. Using the ergodic decomposition of po, we find an
extremal point p of the set of Borel probability f-invariant measures, such that supp(u)
is also contained in K and &, (f) > 0. Since the extremal points of this set are ergodic
measures, u is ergodic. The ergodicity and the positiveness of the entropy imply that u has
no atoms and applying the Ruelle inequality to f we see that u has a positive Lyapunov
exponent (see [19]). Working with f~! and using the fact that hy (fH= hu(f) >0, we
see that £~ ! must also have a positive Lyapunov exponent with respect to «, which is the
negative of the negative Lyapunov exponent for f.

Hence, when K is a compact f-invariant set and the topological entropy of f |g is
positive, there always exists an ergodic, non-atomic, invariant measure supported on K
with non-zero Lyapunov exponents, one positive and one negative, with the measure
having positive entropy: a hyperbolic measure.

The existence of this kind of measure will be important for us because of the following
theorem, which can be proved by combining the main lemma and [18, Theorem 4.2].

THEOREM 21. Let f be a C'*¢ (for some € > 0) diffeomorphism of a surface M and
suppose that p is an ergodic hyperbolic Borel probability f-invariant measure with
hy,(f) > 0 and compact support. Then, for any o > 0 and any p € supp(u), there exists a
hyperbolic periodic point q € By (p) which has a transversal homoclinic intersection, and
the whole orbit of q is contained in the a-neighborhood of supp(1).

3. Statement and proof of a C° result
In this section, we fully state and prove Theorem 1.

THEOREM 1. (Precise statement) Let f :S — S be a homeomorphism isotopic to the
identity with a fully essential system of curves € and let f be its natural lift. Then there
exists a constant Cy > 0 such that, for all g € Deck(rr) and any fundamental domain
é C D of S, there exist arbitrarily large natural numbers N > 0, a point 7 =F(N) € D
and a compact set K = K(N) C ch(é) (the open C ¢-neighborhood of é in the metric
dp of D) such that

N®=¢@) and FNK)=g(K).
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Remark. Note that if, for some p €D, f” (p) = g(p) for some g € Deck(sr), then, for
every h € Deck(r), f"(h(P)) = hgh™' (h(P)).

So, if f: S — S is a homeomorphism isotopic to the identity that has a fully essential
system of curves, then |, f "(ch (Q)) accumulates in the whole boundary of D, and,
given any compact set M C D, if

Dy def- {g(ch(Q)) g is some deck transformation for which g(VCf(Q)) NM # 0},
then there exists Ny > 0 such that, for all n > Ny, f ”(VC ; (Q)) intersects all expanded
fundamental domains contained in Dj;. By expanded fundamental domains, we mean
translates of V¢, (é) by deck transformations.

In the case of a torus, if (0, 0) belongs to the interior of the rotation set, an analogous
property holds (with Cy = 0). Therefore, in the situation when the fundamental group is
not Abelian (surfaces of genus larger than one), our hypotheses, the fully essential system
of curves % (see Definition 1.3), are an analog for (0, 0) being in the interior of the rotation
set when the surface is the torus.

Proof of Theorem I. Let f:S— S be a homeomorphism satisfying the theorem
hypotheses. If we remember §2.8 and Lemma 18, for any fixed g € Deck(r) and any
fundamental domain Q C D of S, there exist arbitrarily small rectangles R C S such that a
connected component Rofr! (R) is contained in interior(é) (we may have to perturb é
alittle bit) and, for some N > 0, ¢V (R) N R D Ry U R;. Remember that " (R) N R 2 Ry
and $N(§) N g(I?) ) ﬁl, where ﬁo and ﬁl are connected components of 71 (Ro) and
7~ 1(R}). Associated with this horseshoe, if we consider the ¢N -fixed point g € R, then,
forg=n"'(¢)NR,

oV (@) =g@) = forall j >0, ¢N@G) =g/ @).

Lets : W — S be the semi-conjugacy given by Theorem 17 and let5 : 7 ~1 (W) — DD be
its lift which relates the natural lifts f and ¢. FixZ € 5~1(§). Since 50 f(Z) = ¢ o 5(3),

SFN@) =N CR) =N @) =4/ @).

As we explained in §2.7, the fact that s is isotopic to the inclusion implies the existence
of Cy > 0 such that dp(5(w), w) < Cy, forall w € 7~ (W). In particular,

dp(f7N (), 5(FIN (@) = dp(FN @), 87 @)) < C; forall j > 0.
As g_l € Deck(sr) is an isometry of dp,
dp(f7N(2), ¢/ @) =dp(g™ (fI¥ (@), §) < Cy.

This means that, for any 7 € 5 ~1(@) and for all j >0, (g~ 1fN)/(z) € Bcf(q) So the
positive orbit of 7 with respect to g -lf 7N is bounded. Thus, defining K as the w-limit set
of the point 7 under g~ f FN K is a compact g~! f N _invariant set contained in V¢ f(Q)
and hence f FN (K )= g(K ¢)- By Brouwer’s lemma on translation arcs [5], g -7 N has a
fixed point, that is, there exists 7 € D with g’1 fN(“) =7, and so

NE=g®. D
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FIGURE 14. Horseshoe associated to W"(p) h WS (g(p)).

4. Proof of Theorem 2

Let f:S— S be a C'*€ diffeomorphism isotopic to the identity with a fully essential
system of curves €. As in Theorem 1, let ¢ : S — S be the pseudo-Anosov map relative
to P that is isotopic to f0 relative to P (for some mq > 0, which, as before, to simplify
the notation, we assume to be one). The finite set P is the set of periodic points associated
with the geodesws in ¥. By Lemma 13, for any given g € Deck(,r) and any fundamental
domain Q of S, if ¢ D — D is the natural lift of ¢, there exists a hyperbolic ¢ periodic
point p € Q C D such that
W (p) h W (g(p)).

Again, as we did in previous results, without loss of generality, and considering an
iterate of 5, if necessary, we assume that p is fixed under 5 and that each branch at p'is
also qz-invariant.

Using Lemma 18, if the transversal intersection W"(p) M W*(g(p)) at some 7 € D is
projected to the surface S, it corresponds to a transversal homoclinic point z =7 (Z) €
W4 (p) N W¥(p). Associated with this intersection, a horseshoe in S can be obtained,
i.e., on the surface there exists a small rectangle R, containing the arc 8 in W¥(p)
from p to z (as always R is very close to ) and a positive integer N > 0 such that
¢N(R) N R 2 Ry U Ry, where Ry is a rectangle inside R containing p and R; is another
rectangle inside R containing z (see Figure 14).

AsZ e W(p) N W*(g(p)) can be chosen as close as we want to g(p), the rectangle
R C S can be chosen small enough so that all the singular points of the stable and
unstable foliations of ¢ do not belong to R. Moreover, considering the compact set
Q= ﬂkez ¢kN(R0 U Ryp), we know that if R is sufficiently close to 8, then for every
bi-infinite sequence in {0, 1}%, denoted by (an)nez, there is a single point z, €  which
realizes it: that is, ¢*V (z,) belongs to R, for all integers k.

LEMMA 22. There exists a point g C ﬁ, the connected component of m~'(R) that
contains P, such that 3N (§>) = g(G2) and W"(§>) h W* ().
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Proof. Let g1 = p, q» and g3 be the ¢" -periodic points in € satisfying

sequence(gp) = - - - 000000000000 - - - ,
sequence(gz) = - - - 001001001001 - - -,
sequence(gz) =---011011011011 - - - .

Since there are no singular points of the stable and unstable foliations inside R, the
points g2, ¢3 are regular points of the stable and unstable foliations and are ¢>" -periodic.
Moreover, there is a local product structure inside R : given i, j € {1, 2, 3}, i # j, the
mtersectlon Wl‘gc(q,) N 1Oc(q j) is transversal and consists of exactly one point. By

1 o "(g;), we mean the connected components of WS"(¢;) N R contammg qi.

Letp=gq € R and fix § =7 1(qz) N R and g3=m 1(qg) NR. By construction,
NGy =7,
&N @) =@,
*N (@3) = 82(33).
If we set 1; = g_153N, then
V@) =g @,
V(@) =4,
V(q3) = 8(q3).
In particular, g; is a hyperbolic fixed saddle point for J As W (q2) h W (q1), we
get that W" (g2) m W9 (q1) (note that, for all m > 0, W*“(g="™(q})) is the lift of W**(q1)

to g_'"(R)) Since W(ql) =g~ 1(q1), using that W*(g) is invariant under 1,0 and the fact
that g~ commutes with w we conclude that, for all m > 0,

W (@) h W (g™ (q1)). 13)

Note that, as W" (q;) intersects W,

loc (q2) transversely, there exists m’ > 0 such that

loc
W (G2 th W (g™ (@) (14)

The same argument considering the point ¢3 instead of g1, gives an integer m” > 0 such
that

W (@) h W (g™ (@) (15)
So, by the A-lemma,

W (Ga) MW (g™ (G2)) and W@ th W (™™™ (§2)),

which finally imply that
W' (q2) h Wi (qa). O

Associated with the transversal intersection W“(gy) h W*(gq2), there is a compact
1//N/-invariant set Qg, for some N’ >0, such that h(le/mg) > (0. Defining QZ =

U,N:/a] Ji(Qg), itis a IZ—invariant compact set with h(%g;) > 0. We are looking for a

similar statement for the map g~ ! ng .
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LEMMA 23. There exists a set K, C S which is analogous to f of the set QZ with respect

to ¢.

Proof. Theorem 14 implies that there exists a compact f-invariant set W and a continuous
surjective map s : W — S, homotopic to the inclusion, such that s o f|w = ¢ o 5. Instead
of W, we will consider a compact f-invariant subset W” C W constructed in the following
way: since ¢ is pseudo-Anosov relative to a finite set, there exists a point zg in S such
that Orb(; (z0) = {¢" (z0)|n > 0} is dense in S. Choose some point wg € s~ '(zo) and let
W = Orbj?(wo). Clearly, f(W’) C W', and defining W" = (), f"(W'), we get that
FW”y=W”", itis compact and s(W") = S. In particular, Orb}'(wo) is dense in W”.

-1 73N

Liftings : W/ — Sto5: 7~ (W”) — D, we obtain a compact g -invariant set

K, C U(g—lﬁN)"(s“—l(szg)) cr'WcD with (g™ F*N k) > 0. O

n>0

As we explained in §2.9, the fact that h(g’1 FN |k g) > 0 implies the existence of a non-
atomic, hyperbolic, ergodic g~ f3N
entropy, whose support is contained in K.

As ;Lg(RjE N supp(ug)) =1, for 0 < § < 1, choosing any point 7 € As N supp(ug) N
R*, we get that mg(VrNAs 0 R*) > 0. So Lemmas 19 and 20 and Theorem 21 assure
that, given n > 0, there exists an inaccessible point Z, € supp(ug) C K, (see definition
(2.9)) such that arbitrarily small rectangles enclosing Z, can be obtained, where the sides
of these rectangles are contained in the invariant manifolds of two hyperbolic g~! FIN
periodic saddle points, 77, 'rvé,’, whose orbits are contained in the n-neighborhood of
supp(ug). Moreover, W* ('Fg,) th W (7§’ ) and WY (?g,’ ) W* (?é) in a C'-transverse way.
So wH ('Fg,) h WS (7;;) and W (Fg) h w* (7;,/), also in a C!-transverse way. An important
observation that will be used later is that each of these rectangles contains infinitely
many points belonging to supp(ug) C 7~ 1 (W) because g is non-atomic. For these two
periodic points, there exists k', k" > 0 such that

PYWE =8y and PYE) =61 G).

Going back to the surface S, we define z, = 7 (Zy), r;, :7{(7;) and réf:n(?é’).
Then r;, and rg are hyperbolic f-periodic saddles for which W* (rg,) h w* (rg ) and
W“(rg) | Ws(ré) in a C'-transverse way and so Wi(ry) = Wi(r)) and Wi (ry) =
WH(rg). Associated with these points there are small rectangles in § whose sides are
contained in their invariant manifolds and enclose the point z,; they are the projection
under 7 of the rectangles in D.

-invariant Borel probability measure 1, with positive

LEMMA 24. There exists a contractible periodic hyperbolic saddle point 7o € D and
n 1 n 1"

deck transformations g| and g/ such that g{g) # g, g\ and W" (7o) th W*(g{(r0)) and
W (ro) h W* (g5 (70))-

Proof. First, choose g1, g2 € Deck(sr) such that they correspond to different geodesics
in S. In this way, g1g2 # g281, and their powers are never conjugated: i.e., for all / €
Deck(r) and n, m integers, hg’fh_1 #gy.
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— I - e
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FIGURE 15. The rectangles Ry, Ry and R».

For the maps 1d, g1, g2, we consider the compact sets Kiq, Ky, and K, contained
in D and inaccessible points Ziq € Kid, Zg, € K, and Z,, € K,,. From what we just did,
there are hyperbolic f-periodic saddles ry, rg, rg,, o, and rg in S, with Ro being a
small rectangle in S whose sides are contained in the invariant manifolds of r{, and r{; and
enclose the point 7 (Z1q) = z1a € W”. Similarly, for i € {1, 2}, R; is a small rectangle in S
whose sides are contained in the invariant manifolds of ré[ and ré’i and enclose the point
7 (Zg;) =zg, € W”, see Figure 15.

Let n°®™ > 0 be a natural number that is a common period of all the points r{;, r{},
ré > rg - rg,z and r’ ’2, which also leaves invariant all stable and unstable branches of these
points. Clearly, the orbits of all the previous points can be assumed to be disjoint.

As we said, Ry is the small rectangle enclosing the point zj4. For all 0 <i < p®™™ — 1
fi(Rp) is a rectangle in S. If we denote the arcs in the boundary of R as a(/) e ws (r[/d),

wi € Wh(rpy), g € W (r)) and wy € W (r{}), then, for large m > 0 and for all 0 <i <
comm
-1

"
Fepo I

)

n

A" (T (RoY) C " (fag) U W (),
and the sets f”comm’"(fi(aé)), fr m(fi(ag)) are as close as we want to the points
f! (ryg) and f i (ry), respectively. Using an analogous notation with the rectangles R
and R,, we can find a natural number mq > 0 such that, for 0 <i, j <n®™ — 1, k,t €
{0, 1, 2}, k # ¢t and m > my,

S @) N f(wp) =9,
) N (@f) =9,
S ) N f (@) =9,
@) N @) = 0.

As fi(z1q) and f i(zgl) are in the interior of f!(Ro) and f!(R;), respectively, they are

both accumulated by points in W”, and as there exists a point whose orbit is dense in W”,

comm comm

M) U WHE(rp U "

comm

(16)
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we get that, for all 0 <i < n®™" — 1, there exist integers lo(i), [1(i) > mon®™ such that
YOI RN Ro#D and  fOO(F1(Ro)) N Ry # 0.

So, for any 0 <i <n®™M — ], there exist integers mq(i), m(i) > mg and other
integers 0 < jo(i), j1 (i) <n®™ — 1 such that
FEmOFRY) A FOD(Ry) £B and OO (1R A FIOR, £ 0,

Since the boundary of rectangle Ry is contained in the invariant manifolds of r{; and
rig» and

comm

W (rfy) W (o),
W Grh) W (o),

with the same being true for Ry, ré , and rz:'/w we conclude by expression (16) that, for all

0<i<n®™ — 1, WCf rig) h W (f1 DGy ) and W (rg,)) h WS (50D ().
Then a combinatorial argument implies that there exist 0 <i, j <n®™ — 1 such that
WH(f (rg ) WS (f (rgy)) and WH(f7 (rig)) h WH(f' (g, )) (see [1]).
Doing the same for R, r,, and ry,, and using the fact that topologically transverse
intersections are mapped into themselves under f, we can find 0 <k <np®°™ —1
such that, for the same j as above, W*(f*(ry,)) h W*(f7(r{y)) and W*(f/(r{;) h
WS (f5(rg,)).

Set ro = f1(r{y), ri = fi(ry,) and rp = f*(r},). Then these are hyperbolic f-periodic
saddle points and, for i € {1, 2},

W¥(ro) h W¥(r;) and  W"(r;) h W¥(ro).

Fix any 7 in 7! (rp). By our construction, since there is a point 7y € 7~ Yrp) whose
orbit is forever close to K1, we get that £ (Fo) = 7o.

Recall that n°°™™ is a common period for ry, r; and r,. The fact that W* (rg) th W5 (ry)
implies that there exists a point 7| € 7~ (r;) for which W* 7o) h W*(7}). Moreover,
arguing as above, there exists an integer n1 > 0 such that f7*"" (7)) = g, (7)) for some
7| € (), cl~ose to K. As 71,7] € 7~ 1(F), there exists h; € Deck(r) with 7| =
hi (7). Hence, /"™ (71) = hig}'hy (F1).

Setg| = hlg'flhl_l. As before, since W (ry) h W*(r1) and f"
m>0

comm

(1) = g} (1), for all

W (o) h W* ((g))™ (1))

As W"(ry) intersects W*(rg) in a topologically transverse way, there is a compact
connected piece of a branch of W*(r1), denoted by A1, such that one of its endpoints
is 1 and it has a topologically transversal intersection with W¥(rg). If Xl is the lift of 1|
starting at the point 71, then there exists /| € Deck(xr) such that

*1 th WS (B, (o).

This implies that, if m; > 0 is sufficiently large, then a piece of W (7p) is sufficiently
close in the Hausdorff topology to (g/l)’”1 (A1), something that forces W*(ry) to have a
topological transverse intersection with W* ((gi)’"' h’1 (70)). Summarizing, for all m; > 0
sufficiently large,

W o) th W* ()™ ) (o).
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Arguing in an analogous way with respect to the point r, we find /2, i/, € Deck(rr)
and an integer n, > 0 such that, if gé =hy ggzh; 1, then, for all m; > O sufficiently large,

W (70) h W*((g5)"2 5 (o).

In order to conclude, let us show that m, my > 0 can be chosen in a way that (g; )’"lh’1
and (g5)""2h’, do not commute. We started with deck transformations g1 and g> for which
8182 # g2&1 and g is not conjugated to g5', for all integers n, m. As we already explained,
the above conditions follow from the fact that g; and g, correspond, in §, to different
geodesics.

In particular, this implies that the deck transformations g; and g5 do not commute and
the fixed points of g} and g} at the boundary at infinity 9D are all different, i.e., Fix(g}) N
Fix(g)) = 0.

Fix two large integers m1, ma > 0 and let us analyze (g})""' 1 and (g5)"2h). If they do
not commute, there is nothing to do.

So assume that (gj)"'h}| and (g5)"?h), commute. Since they commute,
Fix((g}))™h}) = Fix((g5)"*h}). Observe that either g; does not commute with (g})"!h]
or g5 does not commute with (g7)"2h}.

In fact, if they both commute, then

Fix(g)) = Fix((g))""h}) = Fix((5)"*13) = Fix(g3),

and this contradicts the fact that g/1 and gé do not commute. So, without loss of generality,
assume that g} and (g})""' i} do not commute. Hence Fix(g}) N Fix((g})"'h}) = 0.
We claim that (gi)’"'“h/1 = g1 (g™ h and (g5)™2h/, do not commute. Otherwise,

Fix((g)"" "' h}) =Fix((g5)"2hy) = Fix((g))"'h}).
So, for all 7 € Fix((g})™'h)),
7 =g ((g)" M\ (@) =81 @.
which means that Fix((gi)’"' h’l) = Fix(gi), which contradicts our previous assumption

that g7 and (g 1 do not commute. Hence (g and (g 0 not commute.
hat g} and (g})"'h; d Hence (g})™*'h/ and (g5)™2h), d

So, we can always find arbitrarily large integers m, ma > 0 such that if g{' = (g])" /]
" 1

and g7 = (g5)"2 I, then g g} # g7 g| and
W (7o) h Wi(g{ (7)) and  W" (o) h W* (g5 (o). o

Now, as in the proof of Lemma 13, we construct the path connected sets 6 and 6 using
the point 7y and the deck transformations g} and g. Since f has a fully essential system
of curves ¢ and the periodic points P associated to €, the exact same proof of Lemma 13
without any modifications shows that, for every g € Deck(r),

W"(ro) h W (g(ro)).

As 7y € w7 (ro) was arbitrary, after redefining p = ro, the proof is complete. O
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5. Proof of Theorem 3

Let p € D be a hyperbolic periodic saddle point for f given by Theorem 2 (as before,
assume, without loss of generality, that p'is fixed and all four branches at p are f -invariant;
otherwise, consider some iterate of f). For all g € Deck(x),

WH(p) h W (g(p)).

In fact, a stronger statement holds: the proof of Theorem 2 gives an unstable branch T
of W (p) and a stable branch S, of W*(p) such that, for all g € Deck(r),

T h g (By). (17)

Fix some 0 < € < 1/10 small enough so that, forany z € S, ifZ}, 2> € 771 (2), 21 # Z2,
then By (Z1) N By (Z2) = 0. Let Xbea compact subarc of Xu, small enough so that one
of its endpoints is p and % C Be (¢). In a similar way, let E be a compact subarc of ES,
so that p is one of its endpoints and ,5 C Be(p). The arc E satisfies another property: its
endpoint which is not 7 belongs to W*(p) and, actually, this endpoint is a C'-transversal
homoclinic point. It is possible to choose E in this way because the proof of Theorem 2
implies the existence of a Cl-transversal intersection between W* (Id(p)) and W (p).
When, instead of Id, we consider any other deck transformation, only topologically
transverse intersections are assured, but for the Id, C 1-transversality was obtained.

Now choose A1, ha, ..., hag € Deck(sr), where g > 0 is the genus of S, such that the
geodesics in S associated to {h1, 2, ..., hag} generate the first homotopy group, 71 (S).

Expression (17) implies the existence of a compact arc A such that %D AD%and

A contains both endpoints of E, A h,-(g), forall 1 <i <2g, the
endpoint of A which is not p is contained in the interior of 8 and (18)
it is a C'-transversal homoclinic point.

Clearly, the above choice implies that every connected component of the complement of
n(x U E) is an open disk in S.

Let R C By (p) be a closed rectangle which has p as a vertex and 8 = n(ﬁ) as one
side; R is very thin, close to § in the Hausdorff topology. d R is given by the union of four
arcs: o, ’, B and B’. The arcs o and &’ are contained in W¥(p) :a C 7 (%) and &' contains
the endpoint of 8 which is not p.

From the choice of K

T(A)Dd. (19)

Clearly, 8 and g’ are contained in W*(p) and 8’ is C'-close to 8. As was explained when
defining E , the existence of such a rectangle R follows from Theorem 2, which says that
W*(p) has C'-transverse intersections with W* (5).

At this point, we need to determine the size of « and &’ and a number N > 0, as follows:
we know (from (18)) that A hi(E), for all 1 <i <2g. Choose B’ sufficiently close to 8
(so « and o’ are very small) in such a way that if R is the connected component of 7~ YR)
that contains f (the sides of R are denoted by & C &, &', B and B'; &, &' C W*(p) and
B. B’ C W*(p)), then

Adhi(B) foralll<i<2g.
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Now, fix some N > 0 such that
fN(E’) C E, f~N(52) > A D& and f~N(&’) > A/, an arc
sufficiently C'-close to A, whose endpoints
are also in E, in a way that A hi(E) and
A M hi(B), forall 1 <i < 2g. Moreover, the arcs in 8
connecting the approprlate endpoints (the ones
which are closer) of A and A’ are disjoint from AURA.

(20)

Changing the subject a little, remember that §1.2 implies that
Pm(f) = Conv(perg (1)) = Conv(pomz(f)).

We also know that every extremal point of the convex hull of p,,,(f) is the rotation
vector of some recurrent point.

Let w be a extremal point of Conv(p,,;(f)), and let g,, € S be a recurrent point with
“IJ? (quw)

n—=+oo n

ey

w =

From the existence of a fully essential system of curves %, it is easy to see that 0 =
(0, ..., 0) belongs to the interior of the Conv(perg(f)). So, w # 0.

Since ¢, is a recurrent point, fix a fundamental domain é C D. If we pick gy €
n_l(qw) N Q then there exists a sequence n; — oo such that, for some g; € Deck(r),

- - ~ N 1
f"™(qw) € g(Q) and dm(f”k(qw),gk(qw))<E for all k > 0.

For all k > 0, let Bx be a path in § joining f"*(qy) to g, with [(Br) < 1/k. As ||[Iq
Brl — \I’;’c"(qw)ﬂ <2Cp+1and w = limg_ oo \I’f (qw)/nk, we get that

gk Bl
w= lim ————.
k— o0 ng

w

Let I* be the lift of anl]; with base point qw Then I”, is a path in D joining g, to
f"k (qw) and so the loop I”k * By lifts to a path I~ * ,Bk joining gy, to gk (Gu).

For any g € Deck(r), a path , joining any point g € D to g(g) projects into a
loop y, = m(¥,) whose free homotopy class (and, in particular, its homology class) is
determined only by g. We denote by [g] = [y, ] this homology class. Hence, we can write

w = lim @ 22)
k—oo ng
LEMMA 25. There exist deck transformations {m1, my, ..., my} for some J > 0 such

that, for all sufficiently large k > ONand Ior a fixed fundalﬁental domain Q C D, with ny >
2-N >0 (see (22) and (20)), if f"*(Q) intersects gr(Q) for some deck transformation
gk (see expressions (21) and (22)), then there exist ip, i1 € {1, ..., J}, which depend on
k, such that fN+”k (E) N (mi_olgkmi1 (I?)) D ﬁl, where N > 0 is given in (20) and El isa
‘vertical rectangle’ in ml._olgkm,-] (ﬁ).’ two of its sides are contained, one in ml._olgkm,-, (E)
and the other in m;)lgkmil(ﬁ’) and the two other sides are contained in the interior of
mi;lgkhil (I?), each one connecting a point from one of the previous sides to the other.

Clearly, fN+N§ (ﬁ) NR> Eo, a rectangle similar to ﬁl, but contained in R.
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FIGURE 16. How to obtain the sets 11717\, 1\717\, and Mmin.

Proof. Define
M7z =filled(BUA), My =filledBUA) and Mpin = Mz N M5, (23)
where, for any compact connected subset K of D,
ﬁlled(l? ) = KU {all bounded connected components of K ‘1.

It is well known that ﬁll(E )¢ is open, connected and unbounded.

From the choice of K A’ and ,g the sets MT\’ A~47\,and1\~4min are connected and
the complement of any of the three sets 71(1\77\), n(MK,), n(ﬂmin) is a union of open
disks, see Figure 16. So, given a fundamental domain é Cc DD of S, there exist deck
transformations {m, ma, ..., my}, for some J > 0, such that

J
U mi (M min)
i=1
is a (bounded) connected closed set and its complement has a bounded connected
component denoted & which contains é Moreover,

J
dp (U m; (Mimin), é) > 1.
i=1
In particular, this implies that Q C filled((_;_, m; (Mmin)).

The reason why the above is true is as follows: n_l(n(ﬁmin)) is a closed connected
equivariant subset of I and its complement has only open topological disks as connected
components, all with diameters uniformly bounded from above. Let I bea simple closed
curve which surrounds é and such that

dp(T, 0) > 1.
As T is compact and A mhi(E), K/rhhi(,g), for all 1 <i <2g, there exists deck
transformations {mi, my, ..., my}, for some J >0, such that Uijzl m; (Mpin) is

connected and its complement has a bounded connected component (the one we previously
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denoted by 5) which contains T'. Moreover, if v is a simple arc which avoids unstable
manifolds of periodic saddle points and v connects a point in the unbounded connected
component of (Neighborhood, /5(Ul L mi (Mmm))) to a point in Q then, for some
ie{l,2,...,J}, vmustcross m;(R) from m; (,B) to m; (,8 ) or vice-versa. This happens
because, as diameter(R) <2-e<1/5,

J J
Neighborhood, /5 (U mi(Mmin)) B) U mi(R).
i=1

i=1

Assume that k > 0 is sufficiently large, so that ny > 2 - N and

J J
ﬁlled(U m,~(1\717\ U M?{/)) N gk <ﬁlled<U m,~(1l717\ U A717\/ U ﬁ))) =

i=1 i=1

This implies the following remark.
Claim 5. f"k (ﬁlled(U _mi (M U MA/))) does not intersect gk(U M (A UK.

Proof of the claim. Otherwise, if some point

Ze gk<U mi(AUA )) n fi <ﬁlled<U mi(My U MA,)))

i=1

then [~ (2) € gr(U;_, mi (@) Nfilled(;_, m; (M U M5,)), which is contained in

J J
&% (ﬁlled(U mi(Mx U Mz, U E))) N ﬁlled(U mi (M5 U 1?4@) =0

i=1 i=1

But this is a contradiction. O

The previous claim, although simple will be very important
As gy, € Q - ﬁlled(U —1 mi (Mmm)) and f”k (qw) € gk(Q) we can argue as follows:
consider the connected components of

J J J c
interior{ ﬁlled[ Vi (U m,»(Mmm)) U (U mi(z\me))} N (ﬁlled(U m,-(M'min)» }
i=1 i=1 i=1
From the existence of g, as above, there is one such connected component, denoted by
Ek, which intersects gk(é) The boundary of Ek is a Jordan curve, made of two simple arcs
which only intersect at their endpomts one arc is contained in a(ﬁlled(U - m; (Mmm)))
and its endpoints are in Ut:l m; (,3) and the other arc is equal to f "k (5), where E is an arc
either contained in m,-o(1~\) or m,-O(T\’) (assume it is m;, (K)), for some ip € {1, ..., J}.
As both endpoints of f’”‘ (E) are contained in Uijzl mi(E) C ﬁlled(UiJ:1 m; (Min)),
there exists some i1 e{l,. J'} such that f”k (E) Crosses gi.m;, (E) from outside
gk(ﬁlled(Ul 1 mi (MA U MA, U R))) to inside gk(Q) that is, it crosses gi.m;, (R) from
8k-mj, (,3) to gx.m;, (,3 ), or vice-versa, in order to intersect gk(Q)
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From the definition of ]\7Imin (see (23)), and our assumption that ? is contained
in m;,(A), there exists an arc & C m;,(A’), whose endpoints are also contained in
Uijzl m;(B)), such that

J
£C interior(ﬁlled(U mi (Muin) U E’)) . (24)
i=1
This implies that

J J
Strip[g’g,] = closure (ﬁlled(U m; (Mmin) U E’) \ﬁlled(U m; (]\7Imin)>>

i=1 i=1

has two types of boundary points:
e an inner boundary, contained in B(ﬁlled(U —1 M (Mmm))) and containing é and
e an outer boundary, equal to E

The inclusion in (24), together with the facts that f Fik (E) is the part of the boundary of
Ck which crosses gi.m;, (R) from outside g (ﬁlled(Ul 1 m; (MA U MA, U R))) to inside
and that f"k (Strlp[s & D N 8k (U —1 M (A UA/ )) = @ (true by Claim 5), imply that f”k (S )
also has to cross g¢.m;, (R) from outside gi (ﬁlled(Ui:l m; (MA U MA, U R))) to inside.
This implies the existence of a ‘rectangle’, as in the statement of the lemma contained in

fhe (Stripgz 77) N gkmi, (R).
So f”k+N(mi0(§)) N gk.m;, (ﬁ) contains such a ‘rectangle’ and thus
FNRY Nmi gemiy (R) O Ry
Clearly, ]7’”<+N (ﬁ) N (ﬁ) D ﬁo, by our choice of A and A O

So we can finally build a ‘topological horseshoe’: arguing exactly as when all crossings
are C!-transversal, it can be proved that for every bi-infinite sequence in {0, l}Z, denoted
by (an)nez, there is a compact set which realizes it (not necessarily a point, as in the C'-
transverse case; see [6], and also [2], for a simpler application of the above construction).

If we denote by My C R the compact set associated with the sequence (1)z and
My =7~"(My) N R, then, by our construction, f™WN+m) () = (mi_olgkmi,)m(ﬁn/?k),
for all m > 0. In particular, if r € My and Fenx '(r)N My, then fmN+m) 7y e
(m gkm,l)m(Mk) for all m > 0.

By our choice of R, for all m > 0, we can find 8/, a path in R joining N+ (r) to
r with [(B),) < 2¢. Thus, if 2"V 4 g7 s the lift of 1"V ") « g/ with base point 7,

then I Nm(N'H”{) * ,8 is a path in ID joining 7 to (mi_olgkmi] )™ (7). In particular,

[y gy Tmy gkmi)™ mimg tgimi ] Imi '+ [gi] + [mi,]
m(N+ny)  mN+n)  mN+ny) N + ng '
As w = limg_, 0[gk]/nk, N > 01is fixed and there is just a finite number of possibilities
for m;, and m;,, if k > 0 is large enough, then
[m;, "+ [ge] + [miy]
N + nyg

is as close as we want to w.
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So given an error > 0, if k > 0 is sufficiently large, defining

gw = ml._olgkm,-1 and ny, =N +ng, (25)
we get that
[gwl
—— — w|| < error.
Ny

Using the above construction, we will show that p,,; (f) = Conv(p,,;(f)). For this we
need Steinitz’s theorem [17]. This theorem says that if a point is interior to the convex hull
of a set X in R", it is interior to the convex hull of some set of 2n or fewer points of X.

Since pn (f) is a compact set, Conv(p,;(f)) = Conv(Ext(0,;(f))), where
Ext(pmz(f)) is the set of all extremal points of Conv(p,,;(f)). Using Steinitz’s theorem,
any point in the interior of Conv(p,,;(f)) is a convex combination of at most 4g extremal
points.

Rational case. Let v be a point in int(Conv(p,,;(f))) N Q2. By the previous observation,
there exists at most 4g extremal points (here, without loss of generality, we will assume
that exactly 4g extremal points are used) wi, . . ., w4, such that

4g
v ZZ)\iwi,

i=1
where A; € [0, 1[, forall1 <i <4gandA; + - - - + A4, = 1. By the previous construction,
for some general w, choose deck transformations g, ..., Swag and natural numbers
Ry ooy My, (as in expression (25)) such that

v e int(Conv(M, e, M))
Ny, Ry,

This is always possible since [gy,]/nw,; can be chosen as close as desired to w;. As
[gw;1/nw; € ng for all 1 <i <4g, and v is a rational point in the interior of the convex
hull of these points, there exist A/, ..., Aﬁ‘g, with 1} € (0, DNQ, A} +-- -+ Mg =1,
such that

& (8w ]
w;
v= gl
; Ny,
i=1 !

Thus, multiplying both sides of the previous equation by an appropriate positive integer,

we get positive integers drotal, a1, - - - , A4g such that atol = ay + - - - + asg and

4g
[gw,-]
ATotalV = Z a; s
i wi

For each i € {1, 2, ..., 4g}, f"w,- (ﬁ) intersects gy, (I?) in a vertical rectangle, as in
Lemma 25. Since fcommutes with every deck transformation, fn Y (g (ﬁ)) intersects
8uw; 8w, (ﬁ) in a similar rectangle, see Figure 17.

Let Nproduct = Nw R, * My, and, for all 1 <i <4g, let u; = Nproduct/nw;- By the
previous definitions, Flaudnw; (Ry = faiNpowe(R) satisfies that f (%) i (R) N gu" (R)
contains a vertical rectangle, as in Lemma 25. So, considering all iterates of this type
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Gu: Guw, (R)

FIGURE 17. How to create intersections between iterates of R and its translates.

for 1 <i <4g and composing them, we obtain that f“T“‘alNP“’d“C‘(ﬁ) N hv(ﬁ) contains a
vertical rectang~le, as in Lerera 22, where hy, = gy 0 guh 200 g;‘lj’; u‘ti

Clearly, as f¢ToutNproduet (R) 0 R contains a vertical rectangle similar to Ry, just thinner,
we can consider the compact f¢TouNproduet_invariant subset K, C R of the topological
horseshoe we just produced associated with the sequence (1)z. If K, = RN 7~ HK,),
then

faTmal Npmduct (Ev) — hv (Ev ) .

So h;] f aTO‘alNPmduct(K v) = K, which implies, using Brouwer’s lemma on translation
arcs [5], that A 1 f aToral Nproduet hag a fixed point Z,. Since

faTolaleroducl (Zv) — hv('zv)

and
ajuj axuy Q4glisg 4g
[hv] _ [gw1 ° 8w, O-~~ng4g ] _ aiui[gwi]
atotalV, product atotal V; product iz atotal V product
4g
1 [gw,]
= ai = .
ATotal iz No;

we conclude that the f-periodic point z, = 7(Z,) has a rotation vector p(f, z,) = v. This
shows that v € pp; (f). Since pp,;(f) is compact, pp; (f) = Conv(po,.(f)).

Irrational case. For any v € (Q?%)¢ Nint(py.(f)), exactly as in the rational case, one can

find 4g rational points wy, . .., W4g in Py (f) for which
v € int(Conv({wy, ..., wag}))
and such that, for positive integers ny,, . . ., nu,,, f Mw; (E) N 8w, (E) contains a vertical

rectangle, as in Lemma 25, for some g,,, € Deck(r) such that [gy, /1., = w;.
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Ai above, let Nproduct = Nw, - - Mgy and u; = Nproduct/Mw;- Then, fNPmd“C*(ﬁ) N
g%"i (R) also contains a vertical rectangle R; as in Lemma 25.
Clearly,

lgw,]  wi-lgw]

= = w;

N product N product
So, going back to the surface S,

fNorodsct (RYNRD Ry U---U Ry, where R; = (R;).
We claim that there exists an infinite sequence in {1, . . ., 4g}N, denoted by
al az .« .. an “ .

such that, for some constant C* > 0,

<C* foralln>0.

n
Ug,

§ [gwa[i] — N Nproduct * V

i=1

The existence of this kind of sequence is what is behind, in the case of a torus, the
realization of irrational rotation vectors in the interior of the rotation set by compact
invariant sets with bounded mean motion in the universal cover. This was done for relative
pseudo-Anosov maps in [25, Lemma 3] and was extended to the original map using a
shadowing result, similar to Theorem 17 (see [25] for details).

Now let z € R be any point which corresponds to the sequence ajaz---a,--- ,
namely, f’”vpmduct (2) € Ry, forall n > 1. Clearly, for 7 € RN 77 1(z) and anyn > 1,

~.N u u Uay 55
fn pmdm(z) ngill gwflzz c o 8wy, (R),
so not only the rotation vector of z is v, but

||[C(é] —1- U|| <C* + Nproduct : ”v” + 2e
+ max{dD(fi('Z), 2):ZeDand0<i < Nproduct}-

This implies that the -limit set of z, denoted by K, has the property we are looking
for because, for any 7’ € Ky, ||[oz2’,] —n - vl is smaller than some constant which is
independent of n and 7’ € K. O

6. Proof of Theorem 4
Here we just make use of the machinery developed in the proof of Theorem 3.

Suppose, by contradiction, that, for every M > 0, there exists w € dpn, (f), a
supporting hyperplane w € H C R?¢, z € § and n > 0 such that

(a1 =n-w) -5 > M,

where vz is the unitary normal vector to H pointing towards the connected component of
H¢ which does not intersect o, (f).

We fix some fundamental domain of S, denoted by @ C D. Then there exists 7 =
7l z)N @ such that, for some g € Deck(),

'@ eg(Q) and (Igl—n-w) v >M—Cg,
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where Cg > 0 is a constant which depends only on the shape of @ From the proof of the
previous theorem, we know that there are deck transformations {m, my, ..., my}, for
some J > 0, which do not depend on the choices of:

M >0, ® € dp,;(f), thesupporting hyperplane w € H C R?¢, ze Sandn > 0,
such that, for some ip and i1 in {1, ..., J}, there exists a compact subset K wm for which
YRy =m3 gmi (Ku),
where N > 0 is given in expression (20). Thus for some point 7y € D, fN ThEm) =

m; ! gmiy Gi).
So, if M > 0 is large enough so that
(Im7y gmiy] = (n + N) - @) - v > 0,

we get a contradiction. O

7. Proof of Theorem 5

This proof is very similar to the proof of Theorem 2 of [2]. In particular, the following
lemma from that paper, which was proved for the torus, holds without any modifications
under the hypotheses of the present paper.

LEMMA 26. (Adapted [2, Lemma 6]) Suppose f:S — S is a C'*€ diffeomorphism
isotopic to the identity which has a fully essential system of curves €. Let u be a f-
invariant Borel probability measure such that its rotation vector pn,(f, i) belongs to
dom=(f). Let H be a supporting hyperplane at py(f, ) and let vy be the unitary
vector orthogonal to H, pointing towards the connected component of H¢ which does
not intersect pp;(f). Then, if x' € supp(u), for any integer n > 0,

|([e”] = n - pm (f, 1)) - VG| <24+ M(f), (26)

where M (f) > 0 comes from Theorem 4.

Now the proof continues exactly as the proof of Theorem 2 of [2].
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