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Abstract. We consider closed orientable surfaces S of genus g > 1 and homeomorphisms
f : S→ S isotopic to the identity. A set of hypotheses is presented, called a fully essential
system of curves C and it is shown that under these hypotheses, the natural lift of f
to the universal cover of S (the Poincaré disk D), denoted by f̃ , has complicated and rich
dynamics. In this context, we generalize results that hold for homeomorphisms of the torus
isotopic to the identity when their rotation sets contain zero in the interior. In particular,
for C1+ε diffeomorphisms, we show the existence of rotational horseshoes having non-
trivial displacements in every homotopical direction. As a consequence, we found that the
homological rotation set of such an f is a compact convex subset of R2g with maximal
dimension and all points in its interior are realized by compact f -invariant sets and by
periodic orbits in the rational case. Also, f has uniformly bounded displacement with
respect to rotation vectors in the boundary of the rotation set. This implies, in case where
f is area preserving, that the rotation vector of Lebesgue measure belongs to the interior
of the rotation set.
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1. Introduction
1.1. Preliminaries. The main motivation for this work is to generalize some results
that hold for homeomorphisms and diffeomorphisms of the torus isotopic to the identity to
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homeomorphisms and diffeomorphisms of closed surfaces of higher genus (for us, higher
genus means larger than one) which are also isotopic to the identity.

In the study of torus homeomorphisms, a useful concept inherited from Poincaré’s work
on circle homeomorphisms is that of rotation number, or, in the two-dimensional case,
rotation vectors. Actually, in the two-dimensional setting, one usually does not have a
single rotation vector, but a rotation set, which is most precisely defined as follows. Given
a homeomorphism f : T2

→ T2 isotopic to the identity and a lift of f to R2, f̃ : R2
→ R2,

the Misiurewicz–Ziemian rotation set ρ( f̃ ) is defined as (see [24])

ρ( f̃ )=
⋂
i≥1

⋃
n≥i

{
f̃ n( p̃ )− p̃

n
: p̃ ∈ R2

}
. (1)

This set is a compact convex subset of R2 (see [24]), and it was proved in [10, 25]
that all points in its interior are realized by compact f -invariant subsets of T2, which can
be chosen as periodic orbits in the rational case. By saying that some vector v ∈ ρ( f̃ ) is
realized by a compact f -invariant set, we mean that there exists a compact f -invariant
subset K ⊂ T2 such that, for all p ∈ K and any p̃ ∈ π−1(p), where π : R2

→ T2 is the
associated covering map,

lim
n→∞

f̃ n( p̃ )− p̃
n

= v. (2)

Moreover, the above limit, whenever it exists, is called the rotation vector of the point
p, denoted ρ(p).

Before presenting the results in the torus that we want to generalize to other surfaces,
we need a definition.

Definition. (Topologically transverse intersections) If M is a surface, f : M→ M is a C1

diffeomorphism and p, q ∈ M are f -periodic saddle points, then we say that W u(p) has
a topologically transverse intersection with W s(q) (and write W u(p) tW s(q)), whenever
there exists a point r ∈W s(q) ∩W u(p) (r , clearly, can be chosen arbitrarily close to q or
to p) and an open ball B centered at r such that B\α = B1 ∪ B2, where α is the connected
component of W s(q) ∩ B which contains r and has the following property. There exists
a closed connected arc β ⊂W u(p) such that β ⊂ B, r ∈ β and β\r has two connected
components, one contained in B1 ∪ α and the other contained in B2 ∪ α, such that β ∩
B1 6= ∅ and β ∩ B2 6= ∅. Clearly, a C1-transverse intersection is topologically transverse.
Note that as β ∩ α may contain a connected arc containing r , the ball B may not be chosen
arbitrarily small.

Remark. The consequence of a topologically transverse intersection which is more
relevant to us is a C0 λ-lemma: if W u(p) has a topologically transverse intersection with
W s(q), then W u(p) C0-accumulates on W u(q).

In [1] it is proved that if (0, 0) ∈ int(ρ( f̃ )) and f is a C1+ε-diffeomorphism for some
ε > 0, then f̃ has a hyperbolic periodic saddle point p̃ ∈ R2 such that

W u( p̃ ) tW s( p̃ )+ (a, b), (3)

for all (a, b) ∈ Z2 (W u( p̃ ) is the unstable manifold of p̃ and W s( p̃ ) is its stable manifold).
Note that, as p̃ is a periodic point for f̃ , the same holds for all integer translations of p̃
and, moreover, for any integer vector (a, b), W u,s( p̃ + (a, b))=W u,s( p̃ )+ (a, b).
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In the area-preserving case, this result implies the following.
• W u( p̃ )=W s( p̃ ) is a f̃ -invariant equivariant closed connected subset of R2 and there

exists M = M( f ) > 0 such that any connected component D̃ of (W u( p̃ ))c is an open

topological disk whose diameter is less than M and D def.
= π(D̃) is a f -periodic disk.

Moreover, for any f -periodic disk D ⊂ T2, π−1(D)⊂ (W u( p̃ ))c.
• For any ρ = (s/q, r/q) ∈ int(ρ( f̃ )) ∩Q2, if we consider the map f̃ q(•)− (s, r), then

there exists a point p̃ρ that is a hyperbolic periodic saddle point for f̃ q(•)− (s, r)
whose stable and unstable manifolds have similar intersections to those in (3) and

W u( p̃ρ)=W s( p̃ρ)=W u( p̃ )=W s( p̃ ).

So, the above set is the same for all rational vectors in the interior of the rotation
set. We denote it by R.I.( f̃ ) (region of instability of f̃ ) and a similar definition can

be considered in the torus: R.I.( f ) def.
= π(W u( p̃ ))=W u(p), where p = π( p̃ ) is f -

periodic. Every f -periodic open disk in T2 is contained in a connected component of
the complement of R.I.( f ) and every such connected component is a f -periodic open
disk, whose diameter when lifted to the plane is smaller than M .

• Every open ball centered at a point of R.I.( f ) has points with all rational rotation
vectors contained in the interior of ρ( f̃ ).

• If f is transitive, then f̃ is topologically mixing in the plane. This follows easily from
the fact that if f is transitive, then R.I.( f )= T2 and R.I.( f̃ )=W u( p̃ )=W s( p̃ )=
R2.

As we have already said, the above results were obtained in [1] under a C1+ε condition.
In [13, 20], some analogous results were proved for homeomorphisms, by completely
different methods, but the conclusions of some are weaker.

What about surfaces of higher genus?
In this setting, starting with the definition of rotation set, things are more involved. If

S is a closed orientable surface of genus g > 1, the definition of rotation set needs to take
into account the fact that π1(S), the fundamental group of S and H1(S, Z), the first integer
homology group of S, are different: the first is almost a free group with 2g generators.
There is only one relation satisfied by the generators. While the second is Z2g .

Possibly the most immediate consequence of this is the fact that in order to define a
rotation set for surfaces of higher genus, if one does not want it to be too complicated
but wants it to have some properties similar to what happens in the torus, a homological
definition must be considered. In the following, we present the definition of a homological
rotation set and a homological rotation vector as they appeared in [21]. The idea of using
homology in order to define rotation vectors goes back to the work of Schwartzman [28].

1.2. Rotation vectors and rotation sets. Let S be a closed orientable surface of genus
g > 1 and let I : [0, 1] × S→ S be an isotopy from the identity map to a homeomorphism
f : S→ S.

For α a loop in S (a closed curve), [α] ∈ H1(S, Z)⊂ H1(S, R) is its homology
class. Recall that H1(S, Z)' Z2g and H1(S, R)' R2g. We will also consider H1(S, R)
endowed with the stable norm as in [12], which has the property that ‖[γ ]‖ ≤ l(γ ) for any
rectifiable loop γ , where l(γ ) is the length of the loop.
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For any fixed base point b ∈ S, Ab = {γp : p ∈ S} is a family of rectifiable paths such
that γp joins b to p and the length of γp is bounded by a uniform constant CAb .

For any point p ∈ S, we want to construct a path in S from p to f n(p) and then form
a loop by adding γp and γ f n(p). Consider the path Ip joining p to f (p) given by t 7→
I (t, p). Also, for each n ∈ N, define the path I n

p joining p to f n(p) by

I n
p = Ip ∗ I f (p) ∗ · · · ∗ I f n−1(p),

where β ∗ δ is the concatenation of the path β with the path δ.
For each p ∈ S, let αn

p be the closed loop based at b formed by the concatenation of γp,
the path I n

p in S from p to f n(p) and γ f n(p) traversed backwards, that is

αn
p = γp ∗ I n

p ∗ γ
−1
f n(p).

We can now define the homological displacement function of p as

9 f (p)= [αp].

For the function 9 f : S→ H1(S, R), we abbreviate its Birkhoff sums as

9n
f (p)=

n−1∑
k=0

9 f ( f k(p)).

Note that, since αn
p is homotopic to αp ∗ α f (p) ∗ · · · ∗ α f n−1(p),

[αn
p] =

n−1∑
k=0

[α f k (p)] =

n−1∑
k=0

9 f ( f k(p))=9n
f (p).

Also, the path I n
p can be replaced by any path joining p to f n(p) and homotopic with

fixed endpoints to I n
p . This implies that9 f depends only on f, on the choice of Ab and on

the homotopy class of the isotopy I. In particular, 9 f is bounded. Indeed, as S is compact,
sup{dD(̃q, f̃ (̃q )) : q̃ ∈ D} = Cmax f <∞, and if we replace the path Ip by the projection
of the geodesic segment in D joining p̃ ∈ π−1(p) to f̃ ( p̃ ), as the length of this path is
smaller than Cmax f , then ‖9 f ‖ ≤ 2CAb + Cmax f .

As we just said, 9 f depends on the choice of the basepoint b and the family Ab.
However, given another basepoint b′ ∈ S and a family A′b′ = {γp : p ∈ S} of rectifiable
paths whose lengths are uniformly bounded by CA′b′

such that γ ′p joins b′ to p, defining
α′np analogously, one has

[α′np ] = [γ
′
p ∗ I n

p ∗ γ
′−1
f n(p)] = [α

n
p ∗ δ

n
p] = [δ

n
p] +9

n
f (p), (4)

where δn
p = γ f n(p) ∗ γ

′−1
f n(p) ∗ γ

′
p ∗ γ

−1
p . Indeed, the loop α′np is freely homotopic to I n

p ∗

δn
p. In particular, if 9 ′f (p)= [α

′
p], then

‖9n
f (p)−9

′n
f (p)‖ ≤ 2CAb + 2CA′b′ . (5)

Finally, if the limit

ρ( f, p)= lim
n→∞

1
n
9n

f (p) ∈ H1(S, R) (6)

exists, we say that p has a well-defined (homological) rotation vector.
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After all this, we are ready to present the definition of the (homological) rotation set
of f, which is analogous to the definition for the torus [24]. The Misiurewicz–Ziemian
rotation set of f over S is defined as the set ρmz( f ) consisting of all limits of the form

v = lim
k→∞

1
nk
9

nk
f (pk) ∈ H1(S, R),

where pk ∈ S and nk→∞. By (5), the rotation set depends only on f, but not on the
choice of the isotopy, the basepoint b or the arcs γp. This definition coincides with

ρmz( f )=
⋂
m≥0

⋃
n≥m

{
9n

f (p)

n
: p ∈ S

}
.

In particular, since 9 f is bounded, the rotation set is compact.
Note that, using a computation similar to (4), if one chooses a rectifiable arc β joining

f n(p) to p,

[I n
p ∗ β] = [γ

−1
p ∗ α

n
p ∗ γ f n(p) ∗ β] =9

n
f (p)+ [γ f n(p) ∗ β ∗ γ

−1
p ]. (7)

Thus, ‖I n
p ∗ β −9

n
f (p)‖ ≤ 2CAb + l(β).As a consequence, an alternate but equivalent

definition of rotation vectors and rotation sets is obtained by considering all limits of the
form

v = lim
k→∞

1
nk
[I nk

pk
∗ βk],

where pk ∈ S, nk→∞ and βk are rectifiable arcs joining f nk (pk) to pk such that
l(βk) <∞.

Moreover, it is possible to choose the arcs γp in the definition of 9 f so that the map
p 7→9 f is not only bounded, but also Borel measurable [11].

This is important if one wants to define rotation vectors of invariant measures. Let
M( f ) be the set of all f -invariant Borel probability measures. The rotation vector of the
measure µ ∈M( f ) is defined as

ρm( f, µ)=
∫
9 f dµ ∈ H1(S, R).

By the Birkhoff ergodic theorem, for µ-almost every point p ∈ S the limit ρ( f, p)=
limn→∞ (1/n)9n

f (p) exists and ρm( f, µ)=
∫
ρ( f, p) dµ. Moreover, if µ is an ergodic

measure, then ρ( f, p)= ρm( f, µ) for µ-almost every point p.
Due to these facts and (5), the rotation vector of a measure is also independent of any

choices made in the definitions. Denote by ρm( f ) the rotation set of invariant measures,
that is, ρm( f )=

⋃
µ∈M( f ) ρm( f, µ) and denote by ρerg( f ) the corresponding set for

ergodic measures. Then [24, proof of Theorem 2.4], without modifications, implies that

ρm( f )= Conv(ρerg( f ))= Conv(ρmz( f )).

In particular, every extremal point of the convex hull of ρmz( f ) is the rotation vector of
some ergodic measure and, therefore, it is the rotation vector of some recurrent point.

The main problems with this definition of rotation set are the following.
• Although it is compact, it does not need to be convex.
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• It is not true that vectors in the interior of the rotation set are always realized by
invariant sets; in certain cases they are not. An example was communicated to us by
Passeggi [27].

• It is also not known whether, when zero is in the interior of the rotation set, a result
analogous to (3) holds, not even in the Abelian cover of S (see definition below).

Definition. (Abelian cover) Let S be a closed orientable surface of genus g > 1. The
Abelian cover of S is a covering space for S, for which the group of deck transformations
is the integer homology group of S.

1.3. A more precise motivation and statements of the main results. The main objective
of this work is to give conditions which imply complicated and rich dynamics in the
universal cover of S, analogous to what happens for a homeomorphism of the torus isotopic
to the identity when its rotation set contains (0, 0) in its interior.

This type of problem has already been studied for surfaces of higher genus by Boyland
in [4]. But, in that paper, he considered the Abelian cover of S instead of the universal
cover. As far as we know, this is the only published result on this kind of problem. Boyland
considered homeomorphisms f : S→ S of a special type, which are very important for
our work: f is isotopic to the identity as a homeomorphism of S, but it is pseudo-Anosov
relative to a finite f -invariant set K ⊂ S (see [9]). He presented some conditions equivalent
to f having a transitive lift to the Abelian cover of S.

The hypotheses of our main results will imply, in particular, that if a C1+ε

diffeomorphism f : S→ S isotopic to the identity satisfies these hypotheses, then
analogous results to those in [1] hold.

As a by-product of these results, we obtain that in the C1+ε setting, the homological
rotation set is a compact convex subset of R2g which is 2g-dimensional: it is equal to
the rotation set of the f -invariant Borel probability measures and all rational points in its
interior are realized by periodic orbits. Non-rational points in the interior of the rotation
set are also realized by compact f -invariant sets.

We are indebted to Alejandro Passeggi, who pointed out this consequence of Theorem 2
to us.

Moreover, as a corollary of the ideas used in this last result, we can extend the main
theorems from [2] to our setting. This is done in Theorems 4 and 5.

In what follows, we precisely present the main results of this paper. Assume that S is
a closed orientable surface of genus g > 1 and π : S̃→ S is its universal covering map.
We may identify the universal cover S̃ with the Poincaré disk D and denote by Deck(π)
the groups of deck transformations of S. Consider f : S→ S, which is a homeomorphism
isotopic to the identity, and let f̃ : D→ D be the endpoint of the lift of the isotopy from Id
to f which starts at Id : D→ D. We call f̃ the natural lift of f .

Definition 1.3. (Fully essential system of curves C ) We say that f : S→ S is a
homeomorphism with a fully essential system of curves C =

⋃k
i=1 γi if the following

conditions are satisfied:
(1) there exist different oriented closed geodesics γ1, . . . , γk in S, k ≥ 1, such that

(
⋃k

i=1 γi )
c only has non-essential connected components;
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FIGURE 1. An example where not all geodesics appear twice.

(2) for each i ∈ {1, . . . , k}, there is a f -periodic point pi such that its trajectory under
the isotopy is a closed curve freely homotopic to γi with the correct orientation;

(3) for every open intervals I, F ⊂ ∂D, there exists an oriented simple arc α̃ ⊂ π−1(C )

formed by the concatenation of a finite number of oriented subarcs of extended lifts
of geodesics in C and such that the initial point of α̃ is contained in I and the final
point belongs to F .

Remarks.
• No matter how large g (the genus) is, it is possible to construct examples having a

fully essential system of curves with k = 2. Although the fundamental group has 2g
generators, the number of geodesics may be much smaller.

• The third condition above is a little tricky to check. A much easier one, which implies
it, is the following: for each i ∈ {1, . . . , k}, there are f -periodic points p−i and
p+i such that their trajectories under the isotopy are closed curves freely homotopic
to γi , or concatenations of γi , with both possible orientations. In order to see that
this implies the third condition, use Propositions 6 and 7. Nevertheless, we present
this more general condition because what we really need about the fully essential
system of curves is the property that, when considered as a connected subset of S,
its complement only has disks as connected components and C contains oriented
closed curves (the orientations are inherited by the orientations of the γi ′s) whose
homotopy classes generate π1(S) as a semi-group. This is achieved, for instance, when
C contains a generator for π1(S), with each curve appearing twice, and with both
possible orientations (as explained above), or, more generally, with any set of curves.
This more general situation is the one we describe in the third condition above. See
the example in Figure 1, which shows a situation in which we can find generators for
π1(S) as a semi-group in a fully essential system of curves but some curves do not
appear twice with different orientations.

Now we present the main theorems in the order in which we prove them in the paper.
The exception is the first one, which we only sketch here, because its precise statement is
more technical. The formal statement can be found in §3.

THEOREM 1. (Informal statement) Let f : S→ S be a homeomorphism isotopic to the
identity with a fully essential system of curves C and let f̃ be its natural lift. Then there
exists a real number c = c( f )≥ 0 such that the f̃ -iterates of an open c-neighborhood of
any fundamental domain Q̃ ⊂ D of S accumulate on all translates of the c-neighborhood
of Q̃ under deck transformations and thus on the whole boundary of D.
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THEOREM 2. For some ε > 0 let f : S→ S be a C1+ε diffeomorphism isotopic to the
identity with a fully essential system of curves C and let f̃ be its natural lift. Then
there exists a contractible hyperbolic f -periodic saddle point p ∈ S such that, for any
p̃ ∈ π−1(p) and for every g ∈ Deck(π),

W u( p̃ ) tW s(g( p̃ )).

Remark. A point p ∈ S being contractible means that all p̃ ∈ π−1(p) are f̃ -periodic.

To prove this result we have to work with a pseudo-Anosov map φ isotopic to f relative
to the finite invariant set of periodic points associated with the fully essential system of
curves C . Using several properties of the stable and unstable foliations of this map, it
is possible to prove a result similar to Theorem 2 for φ, and then, using a theorem of
Boyland [3] (see also [14]) and other technical results on Pesin theory [7, 18], we can
finally prove the theorem for the original map f. This procedure is similar to what was
done in [1].

The main part of this paper is proving Theorem 2 for relative pseudo-Anosov maps and
this is done in Lemma 13.

We would like to point out that the conclusion of Theorem 1 clearly implies the
existence of a fully essential system of curves. In other words, Theorems 1 and 2 are
both ‘if and only if’ statements.

The next results are consequences of Theorem 2, exactly as in [1]. They all share the
same hypotheses: suppose that, for some ε > 0, f : S→ S is a C1+ε area-preserving
diffeomorphism isotopic to the identity with a fully essential system of curves C .

COROLLARY 1. If f is transitive, then f cannot have a periodic open disk. In the general
case, there exists M = M( f ) > 0 such that if D ⊂ S is a f -periodic open disk, then for
any connected component D̃ of π−1(D), diam(D̃) < M in the metric dD, the lift of the
hyperbolic metric d in S.

In [21], it is proved that in the case where f is just an area-preserving homeomorphism
of S and the fixed point set is inessential, then all f -invariant open disks have diameter
bounded by some constant M > 0. If, moreover, for all n > 0, the set of n-periodic points
is inessential, then, for each n > 0, the set of n-periodic open disks has bounded diameter.
But the bound may not be uniform with the period. In our situation, with much stronger
hypotheses, Corollary 1 gives a uniform bound.

COROLLARY 2. There exists a contractible hyperbolic f -periodic saddle point p ∈ S (the

one from Theorem 2) such that R.I.( f ) def.
= W u(p)=W s(p), is compact, f -invariant and

all connected components of the complement of R.I.( f ) are f -periodic disks. Moreover,

for all p̃ ∈ π−1(p), R.I.( f̃ ) def.
= π−1(R.I.( f ))=W s( p̃)=W u( p̃ ) is a connected, closed,

f̃ -invariant, equivariant subset of D.

COROLLARY 3. If f is transitive, then there exists a contractible hyperbolic f -periodic
saddle point p ∈ S (the one from Theorem 2) such that W u(p)=W s(p)= S and, for any
p̃ ∈ π−1(p), W u( p̃)=W s( p̃ )= D, something that implies that f̃ is topologically mixing.
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Finally, in the third theorem, we study the homological rotation set ρmz( f ).

THEOREM 3. Let f : S→ S be a C1+ε diffeomorphism isotopic to the identity with a
fully essential system of curves C . Then the (homological) rotation set ρmz( f ) is a 2g-
dimensional compact convex subset of H1(S, R)' R2g . Moreover, if v ∈ int(ρmz( f )),
then there exists a compact set K ⊂ S such that, for all q ∈ K , ρ( f, q)= v. In the case
where v is a rational point, K can be chosen as a periodic orbit.

The last two results generalize the main theorems of [2] to the context of this paper.

THEOREM 4. Let f : S→ S be a C1+ε diffeomorphism isotopic to the identity with a fully
essential system of curves C . Then there exists M( f ) > 0 such that, for any ω ∈ ∂ρmz( f ),
any hyperplane ω ∈ H ⊂ R2g that does not intersect interior(ρmz( f )) (H is called a
supporting hyperplane), any p ∈ S and n > 0,

([αn
p] − n · ω) · −→vH < M( f ),

where −→vH is the unitary normal to H, which points towards the connected component of
H c that does not intersect ρmz( f ).

THEOREM 5. Let f : S→ S be a C1+ε area-preserving diffeomorphism isotopic to the
identity with a fully essential system of curves C . Then the rotation vector of Lebesgue
measure belongs to interior(ρmz( f )).

2. Some background, auxiliary results and their proofs
In this section, we present some important results that we will use, along with some
definitions and a short digression on hyperbolic surfaces, Thurston classification of
homeomorphisms of surfaces and a little of Pesin theory. We also prove some auxiliary
results, which we will use in the following sections to prove Theorems 1–5.

2.1. Properties of hyperbolic surfaces. Let S be a closed orientable surface of genus
g > 1 and let π : S̃→ S be its universal covering map. As we said before, the universal
cover S̃ is identified with the Poincaré disk D endowed with the hyperbolic metric dD.
Hence, we assume that S = D/0, where 0 is a cocompact freely acting group of Moebius
transformations. Any non-trivial deck transformation g ∈ Deck(π)= 0 is a hyperbolic
isometry and extends to the ‘boundary at infinity’ ∂D as a homeomorphism which has
exactly two fixed points: one attractor and one repeller. These fixed points are the endpoints
of some g-invariant geodesic δg of D, called the axis of g. For any point p̃ ∈ D, the
sequence gn( p̃ ) converges to one endpoint of δg as n→−∞ and to the other one as
n→∞. Any subarc of δg joining a point p̃ to g( p̃ ), when projected to S, becomes an
essential loop γg, which is the unique geodesic in its free homotopy class.

Given an essential loop γ : [0, 1] → S, an extended lift of γ is an arc γ̃ : R→ D
obtained by the concatenation of arcs that are the translation of a lift of γ by all iterates of
some deck transformation. Two extended lifts of an essential loop coincide if and only if
they share the same endpoints in ∂D.
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If h is a deck transformation that commutes with g, then the axis of g is equal to the
axis of h, and the group of all deck transformations that commute with g is cyclic and
generated by g if γg is in the free homotopy class of a simple loop.

Let f : S→ S be a homeomorphism isotopic to the identity and let I : [0, 1] × S→ S
be an isotopy from the identity map to f . The isotopy Ĩ : [0, 1] × D→ D obtained by
lifting I with basepoint Id : D→ D is called the natural lift of I . As we have already
defined in §1.3, the map f̃ : D→ D, given by f̃ ( p̃ )= Ĩ (1, p̃ ), is called the natural lift of
f associated with the isotopy I . Natural lifts of a homeomorphism are characterized by the
property of commuting with all deck transformations, and, moreover, f̃ can be extended
to a homeomorphism of D as the identity on the ‘boundary at infinity’ ∂D (see [8]).

2.2. On the fully essential system of curves C . In this subsection, we prove some
properties for π−1(C ), where C is a fully essential system of curves.

PROPOSITION 6. The lift π−1(C ) is a closed connected subset of D that accumulates all
over ∂D with the Euclidean metric.

Proof. First, observe that C is the union of a finite number of closed geodesics in S;
therefore C is closed. Since π : D→ S is continuous, π−1(C ) is closed. To see that
π−1(C ) is connected, we just observe that S\C is a union of open topological disks, and
therefore all connected components of D\π−1(C ) are bounded topological open disks.

In order to prove that π−1(C ) accumulates everywhere in ∂D, we first note that,
since, for all z̃ ∈ D and g ∈ Deck(π), π(̃z)= π(g(̃z)), π−1(C ) is invariant under deck
transformations. This and the fact that the subset {̃z ∈ ∂D : z̃ is fixed by some g ∈ Deck(π)}
is dense in ∂D with the Euclidean metric (see [8]) imply that π−1(C ) accumulates all
over ∂D. �

In the next proposition, we consider the geodesics in C without their orientations.

PROPOSITION 7. For every p̃, r̃ ∈ π−1(C ), there exists a path γ in π−1(C ) joining these
two points, which is contained in the union of a finite number of subarcs of extended lifts
of geodesics in C .

Proof. Fix a point p̃ ∈ π−1(C ) and let P p̃ be the set of all points q̃ ∈ π−1(C ) such that
there exists a path joining p̃ to q̃ formed by subarcs of a finite number of extended lifts of
geodesics in C . We will show that P p̃ is an open and closed subset of π−1(C ).

Let q̃ be a point in P p̃. As the set C is equal to the union of a finite number of closed
geodesics, there exists ε > 0 small enough so that Bε (̃q ) ∩ π−1(C ) satisfies one of the
possibilities in Figure 2.

In the first case, q̃ belongs to just one extended lift of a geodesic in C . If γ is the path
joining p̃ to q̃ and it is formed by k > 0 subarcs of extended lifts of geodesics, it is clear
that, for all points in Bε(q̃ ) ∩ π−1(C ), there is a path γ ′ joining p̃ to this point formed by
the same number of subarcs of extended lifts of geodesics. In the second case, q̃ belongs
to the intersection of a finite number of extended lifts of geodesics and, again, if the path
γ is formed by k > 0 subarcs, then, for all points in Bε (̃q ) ∩ π−1(C ), there is a path γ ′
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FIGURE 2. Possibilities for a neighborhood of q̃.

joining p̃ to this point formed by at most k + 1 subarcs of extended lifts of geodesics. So
P p̃ is open.

We will now prove that Pc
p̃ = π

−1(C )\P p̃ is open. Again, if q̃ is a point in Pc
p̃, there

exists ε > 0 small enough such that Bε(q̃ ) ∩ π−1(C ) satisfies one of the possibilities in
Figure 2. In both cases, if q̃ ′ ∈ Bε (̃q ) ∩ π−1(C ) ∩ P p̃, then, by the same argument as
above, there is a path γ ′ joining p̃ to q̃ with a finite number of subarcs of extended lifts of
geodesics. But this is a contradiction because q̃ ∈ Pc

p̃, so all points in Bε (̃q ) ∩ π−1(C ) are
points of Pc

p̃. Hence Pc
p̃ is open. Since P p̃ is an open and closed subset of the connected

set π−1(C ), P p̃ = π
−1(C ). �

2.3. Nielsen–Thurston classification of homeomorphisms of surfaces. In this
subsection, we present a brief overview of Thurston’s classification of homeomorphisms
of surfaces and prove a result analogous to [23, Theorem 1(i)].

2.3.1. Some definitions and the classification theorem. Let M be a compact, connected,
orientable surface, possibly with boundary, and let f : M→ M be a homeomorphism.
There are two basic types of homeomorphisms which appear in the Nielsen–Thurston
classification: the finite order homeomorphisms and the pseudo-Anosov ones.

A homeomorphism f is said to be of finite order if f n
= Id for some n ∈ N. The

least such n is called the order of f . Finite order homeomorphisms have zero topological
entropy.

A homeomorphism f is said to be pseudo-Anosov if there is a real number λ > 1
and a pair of transverse measured foliations F u and F s such that f (F s)= λ−1F s

and f (F u)= λF u . Pseudo-Anosov homeomorphisms are topologically transitive, have
positive topological entropy and Markov partitions [9].

A homeomorphism f is said to be reducible by a system

C =
n⋃

i=1

Ci

of disjoint simple closed curves C1, . . . , Cn , called reducing curves, if:
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FIGURE 3. Examples of a 1-prong and a 3-prong singularity, respectively.

• for all i , Ci is not homotopic to a point, nor to a component of ∂M ;
• for all i 6= j , Ci is not homotopic to C j ; and
• C is invariant under f .

THEOREM 8. (Nielsen–Thurston) If the Euler characteristic χ(M) < 0, then every
homeomorphism f : M→ M is isotopic to a homeomorphism φ : M→ M such that:
(1) φ is of finite order;
(2) φ is pseudo-Anosov; or
(3) φ is reducible by a system of curves C, and there exist disjoint open annular

neighborhoods Ui of Ci such that

U =
⋃

i

Ui

is φ-invariant. Each component Si of M\U is mapped to itself by some least positive
iterate ni of φ, and each φni |Si satisfies (1) or (2). Each Ui is mapped to itself by
some least positive iterate mi of φ fixing the boundary components, and each φmi |Ui

is a generalized twist.

Homeomorphisms φ as in Theorem 8 are called Thurston canonical forms for f .
We say that φ : M→ M is pseudo-Anosov relative to a finite invariant set K if

it satisfies all of the properties of a pseudo-Anosov homeomorphism except that the
associated stable and unstable foliations may have 1-pronged singularities at points in
K [15], see Figure 3. Equivalently, let N be the compact surface obtained from M\K by
compactifying each puncture with a boundary circle and let p : N → M be the map that
collapses these boundary circles to points. Then φ is pseudo-Anosov relative to K if and
only if there is a pseudo-Anosov homeomorphism 8 : N → N such that φ ◦ p = p ◦8.

2.3.2. The beginning of the work. The following result is the first step towards the proof
of the main theorems.

LEMMA 9. Let f : S→ S be a homeomorphism isotopic to the identity with a fully
essential system of curves C and let P be the set of periodic points associated with the
geodesics in C . Then there exists an integer m0 > 0 such that f m0 is isotopic relative to P
to a homeomorphism φ : S→ S, which is pseudo-Anosov relative to P.
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Proof. Let f be a homeomorphism with a fully essential system of curves C and
let P be the set of all periodic points associated with the geodesics in C . We write
P = {p1, p2, . . . , pk}. For each 1≤ i ≤ k, there exists an integer ni > 0 such that
f ni (pi )= pi . Take m0 > 0 to be an integer such that all points in P are fixed points
for f m0 .

We will follow the same ideas used by Llibre and MacKay in [23]. Let φ : S→ S be the
Thurston canonical form associated to f m0 . Of course, we are considering f m0 : S\P→
S\P and so φ is also a homeomorphism from S\P into itself. But it can be extended in
a standard way to the set P (fixing everybody), giving a homeomorphism of S into itself
that is also isotopic to the identity as a homeomorphism of S, which we still call φ.

Let us show that φ is pseudo-Anosov relative to P. First, note that φ can not be of finite
order, since points in π−1(P) move in non-trivial homotopical directions. To be more
precise, if φ had finite order, then, for some N > 0, φN

≡ Id . This implies that the natural
lift of φN is also the identity. But there is at least one fixed point for φ, p1 ∈ P, such that,
for any p̃1 ∈ π

−1(p1), its trajectory under the natural lift φ̃N
: D→ D follows a non-trivial

deck transformation.
Now, suppose φ is reducible by a system of curves C . As in [23], we say that a

simple closed curve γ on a surface of genus g with punctures is non-rotational if, after
closing the punctures, γ is homotopically trivial. If γ is a non-rotational reducing curve,
then it must surround at least two punctures. So, suppose γ surrounds pi and p j , i 6= j .
Since γ is a reducing curve, φn(γ )= γ , for some n > 0. This means that there exists
g ∈ Deck(π) such that φ̃n(γ̃ )= g(γ̃ ), where γ̃ is a lift of γ (γ̃ is a simple closed curve
in D) surrounding p̃i and p̃ j , which are lifts of pi and p j , respectively. By induction, it
follows that φ̃mn(γ̃ )= gm(γ̃ ) encloses both φ̃mn( p̃i ) and φ̃mn( p̃ j ) for all m ∈ Z. But this
is a contradiction because as i 6= j , liml→∞ φ̃

l( p̃i ) and liml→∞ φ̃
l( p̃ j ) are different points

of ∂D.
In the case where γ is a rotational reducing curve, let γ̃ ⊂ D be an extended lift of

γ . The curve γ̃ has two distinct endpoints at the ‘boundary at infinity’ ∂D, and D\γ̃ has
exactly two connected components. Since φ̃|∂D = Id, φ̃(γ̃ ) has the same endpoints on ∂D
as γ̃ . Since S\C is a union of topological disks, there exists g ∈ Deck(π) associated with
some geodesic γi in C such that the fixed points of g in ∂D separate the endpoints of γ̃ .

Finally, choose p̃i ∈ π
−1(pi ) such that it belongs to one connected component of D\γ̃

and limn→∞ φ̃
n( p̃i ) is in the ‘boundary at infinity’ of the other connected component.

Since φ̃(γ̃ ) and γ̃ have the same endpoints in ∂D and φn(γ )= γ,we have φ̃mn(γ̃ )= γ̃ , for
all m > 0. As φ̃ preserves orientation, this clearly implies a contradiction (see Figure 4).
This shows that φ cannot be of finite order or reducible by a system of curves. So φ is
pseudo-Anosov relative to P. �

2.4. On Handel’s fixed point theorem.

2.4.1. Preliminaries and a statement of Handel’s theorem. In [16], Michael Handel
proved the existence of a fixed point for an orientation-preserving homeomorphism of the
open unit disk that can be extended to the closed disk as the identity on the boundary,
provided that, for certain points in the open disk, their α and ω-limit sets are single points
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FIGURE 4. The final contradiction.

in the boundary of the disk, distributed with a certain cyclic order. Later, in [22], Patrice
Le Calvez gave a different proof of this theorem based only on Brouwer theory and plane
topology arguments. In Le Calvez’s proof, the existence of the fixed point follows from
the existence a simple closed curve contained in the open disk, whose topological index
can be calculated and is equal to one.

THEOREM 10. (Handel’s fixed point theorem, [22]) Consider a homeomorphism h̃ : D→
D of the closed unit disk satisfying the following hypotheses.
(1) There exists r ≥ 3 points p̃1, . . . , p̃r in D and 2r pairwise distinct points

α1, ω1, . . . , αr , ωr on the boundary ∂D such that, for every 1≤ i ≤ r ,

lim
n→∞

h̃−n( p̃i )= αi , lim
n→∞

h̃n( p̃i )= ωi .

(2) The cyclic order on ∂D is, as represented on Figure 5,

α1, ωr , α2, ω1, α3, ω2, . . . , αr , ωr−1, α1.

Then there exists a fixed point free simple closed curve γ ⊂ D such that ind(̃h, γ )= 1.

Remember that, if p̃ is an isolated fixed point of h̃, the Poincaré–Lefschetz index of h̃
at p̃ is defined as

ind(̃h, p̃)= ind(̃h, γ ),

where γ is a (small) simple closed curve surrounding p̃ and no other fixed point. The index
of h̃ at p̃ does not depend of the choice of γ .

In the case where h̃ has only isolated fixed points, if int(γ ) is the bounded connected
component of γ c and Fix(int(γ ))= { p̃ ∈ int(γ ) : h̃( p̃ )= p̃} then, by properties of the
Poincaré–Lefschetz index,

ind(̃h, γ )=
∑

p̃∈Fix(int(γ ))

ind(̃h, p̃).

So, if h̃ : D→ D is a homeomorphism with only isolated fixed points satisfying the
hypothesis of Handel’s theorem, as ind(̃h, γ )= 1, there exists a fixed point p̃′ ∈ int(γ )
with ind(̃h, p̃′) > 0.
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FIGURE 5. Cyclic order for Handel’s fixed point theorem when r = 3 and r = 5.

2.4.2. Existence of a hyperbolic φ̃-periodic point. Remember that φ : S→ S is a
homeomorphism which is pseudo-Anosov relative to P (see Lemma 9). As a map from
S to itself, φ is a homeomorphism isotopic to the identity. The map φ̃ : D→ D is the
natural lift of φ, the one which commutes with all deck transformations and extends as a
homeomorphism of D, which is the identity on the ‘boundary at infinity’.

In the next proposition, we prove that φ̃ has a hyperbolic periodic saddle point. When
we say hyperbolic saddle in this context, we mean that the local dynamics at the point is
obtained by gluing exactly four hyperbolic sectors, or, equivalently, the point is a regular
point of the foliations F u and F s .

PROPOSITION 11. The natural lift φ̃ : D→ D of the map φ from Lemma 9 has a
hyperbolic periodic (saddle) point p̃.

Proof. In the first part of this proof, we want to find a well-oriented Jordan curve β̃
contained in π−1(C ). After finding such a curve, we consider interior(β̃) ∩ π−1(C )c. We
will show that there is a connected component Ũ of the previous open set, whose boundary
is also a well-oriented Jordan curve. Finally, taking appropriate lifts of the periodic points
associated with the geodesics in C which have extended lifts containing arcs in ∂Ũ , we
get that the hypotheses of Handel’s theorem are satisfied for them.

First, choose some unoriented geodesics α1, α2, . . . , αr , for some r ≤ k, such that, as
a set,

⋃r
i=1 αi =

⋃k
i=1 γi , where C =

⋃k
i=1 γi is the fully essential system of curves.

If, for every 1≤ i ≤ r, there are two periodic points whose trajectories under the isotopy
are closed curves freely homotopic to αi , or concatenations of αi , with both possible
orientations, then any Jordan curve which is the boundary of a connected component of
π−1(C )c can be well oriented according to the orientations of the geodesics in C . This is
what we need.

So, assume that the above does not hold and choose some oriented extended lift γ̃a of
a geodesic γa in C , for which there is no periodic point following it with the opposite
orientation.
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FIGURE 6. How to find the well-oriented Jordan curve β̃.

Let ga be a deck transformation which has γ̃a as axis and translates points according to
the orientation of γ̃a . Denote the two connected components of γ̃ c

a as Õ+ and Õ−. It is
clearly possible to choose two oriented geodesics in C , such that, for some extended lifts
of them, one starts in ∂ Õ−\γ̃a and ends in ∂ Õ+\γ̃a and the other one goes in the opposite
direction. Denote these lifts by γ̃b and γ̃c. Iterating them under ga , if necessary, we can
suppose that they are disjoint and their relative position is as in Figure 6.

Still considering Figure 6, let α̃ be an oriented simple arc contained in π−1(C ) which
starts at some point in the open interval I ⊂ ∂D and ends at some point in the other open
interval F ⊂ ∂D. Remember that, as C is a fully essential system of curves, it is possible
to choose such an arc α̃ formed by the concatenation of finitely many oriented subarcs of
extended lifts of geodesics in π−1(C ).

If α̃ ∩ γ̃a has two or more points, then, clearly, α̃ ∪ γ̃a contains a well-oriented Jordan
curve β̃. This follows from the choice of γa : there is no periodic point in S with a lift that
follows γ̃a in the opposite orientation.

If not, then it is still easy to find a well-oriented Jordan curve β̃ contained in α̃ ∪ γ̃a ∪

γ̃b ∪ γ̃c.

Now, let us look at interior(β̃). If π−1(C ) intersects interior(β̃), pick any extended
lift η̃ ⊂ π−1(C ) that intersects interior(β̃). The oriented arc η̃ divides interior(β̃) into
finitely many disks, at least one of them with a well-oriented boundary, still contained in
π−1(C ). Denote this boundary by β̃1, which, as we just said, is a well-oriented Jordan
curve contained in π−1(C ). If π−1(C ) intersects interior(β̃1), repeat the process and
find a well-oriented Jordan curve β̃2 ⊂ π

−1(C ), and so on. As there are only finitely
many extended lifts of geodesics in π−1(C ) that intersect interior(β̃), after finitely many
steps, we arrive at a well-oriented Jordan curve β̃∗ ⊂ π−1(C ) such that π−1(C ) does not
intersect Ũ = interior(β̃∗).

Fix an oriented side ρ̃ of ∂Ũ = β̃∗, which is given by the intersection of a certain
extended lift of a geodesic γi1 in C with β̃∗. Denote this extended lift by γ̃i1 . Associated
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FIGURE 7. Ũ and how some points move with respect to its boundary.

with γ̃i1 ,we can find an appropriate lift p̃i1 of pi1 following γ̃i1 with the correct orientation
under iterates of φ̃.

If ρ̃ and ρ̃′ are two consecutive oriented sides of ∂Ũ , then the endpoints of the extended
lift of the geodesic associated to ρ̃ separate the endpoints of the extended lift of the
geodesic associated to ρ̃′. Putting all these observations together, we see that φ̃ satisfies
the hypotheses of Handel’s theorem (see Figure 7).

Since φ is pseudo-Anosov relative to a finite set P, for each period, it has only isolated
periodic points, and the same holds for φ̃. This means, by Handel’s theorem, that there
exists a fixed point p̃1 of φ̃ such that

ind(φ̃, p̃1)= ind(φ, π( p̃1)) > 0.

Observe that the same conclusion holds for φ̃m , for any m > 0.
But, for some appropriate large m1 > 0, the local dynamics at points in Fix(φ) imply

that
ind(φm1 , p)≤ 0 for all p ∈ Fix(φ).

This happens because all points in Fix(φ) with non-positive indexes are saddle-like
(maybe with more than four sectors) with φ-invariant separatrices, and points with
positive indexes are rotating saddles. So, for some m1 > 0 sufficiently large, φm1 fixes
the separatrices of all points in Fix(φ), and thus they all have non-positive indexes with
respect to φm1 . In particular, ind(φm1 , π( p̃1)) < 0.

Now let us look at φm1 . Again, as a consequence of Handel’s theorem, there is a fixed
point p̃2 of φ̃m1 with ind(φ̃m1 , p̃2)= ind(φm1 , π( p̃2)) > 0. In the same way as above for
some sufficiently large m2 > 0, the local dynamics at points in Fix(φm1) imply that

ind(φm1m2 , p)≤ 0 for all p ∈ Fix(φm1),

and, in particular, ind(φm1m2 , π( p̃2)) < 0.
If we continue this process, we get a sequence of pairwise different points

p̃1, p̃2, p̃3, . . .. In S, the points π( p̃1), π( p̃2), π( p̃3), . . . are also pairwise different.
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So, at some j, the cardinality of { p̃1, p̃2, . . . , p̃ j } is larger than the number of
singularities of the foliations F u , F s . This implies that, for some φ̃-periodic point
p̃, π( p̃ ) does not coincide with a singularity of the foliations F u , F s . Hence p̃ is a
hyperbolic periodic saddle point for φ̃. �

2.5. A first result towards the proof of Theorem 2 in the relative pseudo-Anosov case.
The stable and unstable foliations for φ lift to stable and unstable foliations for φ̃. If F s

p
is the stable leaf of F s that contains a point p ∈ S, we will denote by F̃ s

p̃ the lift of F s
p

that contains a point p̃ ∈ π−1(p). We do the same for unstable leaves of F u . Now we will
state some definitions and properties of pseudo-Anosov maps relative to finite invariant
sets, which will be useful in the proof of the next lemma.

Let p ∈ S be a fixed point of φ. As we already said, the dynamics of a sufficiently
large iterate of φ in a neighborhood of p can be obtained by gluing finitely many invariant
hyperbolic sectors together. In each sector, the dynamics are locally like the dynamics in
the first quadrant of the map (x, y) 7→ (λ1x, λ2 y), for some real numbers 0< λ2 < 1< λ1.

We define the stable set of p as the set W s(p) of points z in S such that φn(z)→ p when
n→∞, and we define the unstable set of p as the set W u(p) of points z in S such that
φ−n(z)→ p when n→∞. If p is a regular point of the foliations F s,F u , then W u(p)
is the union of two branches; the same is true for W s(p). This is the situation in which we
called the point a hyperbolic saddle point in the previous proposition. In the case where p
is a singular point of the foliations, p is a k-prong singularity (for k = 1 or some k ≥ 3),
which implies that W u(p) is the union of k branches; the same is true for W s(p). In this
singular case, each branch is actually a leaf of the proper foliation, which emanates from
the singularity, while, in the regular case, each leaf gives two branches. In both the regular
and the singular cases, the branches are either invariant or rotated around p under iterates
of φ (and are thus φn-invariant for some n > 0).

In the case where p′ ∈ S is a φ-periodic point, if n p′ is the least period of p′, then it is a
fixed point of φn p′ , so we define the stable and unstable sets of p′ accordingly, using φn p′

instead of φ.

LEMMA 12. Let φ̃ be the natural lift of φ. Then there exists p̃ ∈ D a φ̃-hyperbolic periodic
saddle point and deck transformations g1, g2 such that g1 ◦ g2 6= g2 ◦ g1 and

F̃u+
p̃ t F̃ s+

gi ( p̃ )
, i ∈ {1, 2},

where W u( p̃ )= F̃u+
p̃ ∪ F̃u−

p̃ , W s( p̃ )= F̃ s+
p̃ ∪ F̃ s−

p̃ and F̃u+
p̃ , F̃u−

p̃ , F̃ s+
p̃ , F̃ s−

p̃ are the
four branches at p̃.

Proof. Let p̃ ∈ D be the φ̃-periodic point given in Proposition 11. So, p = π( p̃ ) is a
hyperbolic φ-periodic saddle point. Without loss of generality, considering an iterate of
φ, if necessary, we will assume that each point in K = {p} ∪ P is fixed and, moreover,
that each stable or unstable branch at a point in K is also invariant under φ.

The map φ is pseudo-Anosov relative to P . In particular, any stable leaf F s
∈F s

intersects all unstable leaves Fu
∈F u C1-transversely and vice-versa. Let Fu

p be the
unstable leaf at the point p (as p is regular, Fu

p =W u(p)) and let F s
∗p′ be a stable leaf

at some point p′ ∈ P = {p1, . . . , pk}. The point p′ may be singular or regular. From what
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we said above, Fu
p t F s

∗p′ . So, there exists an unstable branch at p, denoted by Fu+
p ,

and an unstable branch at p′, denoted by Fu′
∗p′ , such that Fu+

p accumulates on Fu′
∗p′ and

Fu′
∗p′ tW s(p). Let F s+

p be a stable branch at p such that Fu′
∗p′ t F s+

p . Lifting everything
to the universal cover, having fixed some p̃ ∈ π−1(p), there exist deck transformations
g′ 6= Id and h such that

F̃u+
p̃ t F̃ s+

(g′)nh( p̃ ), (8)

for all sufficiently large n > 0. This follows from the fact that, having fixed some p̃ ∈
π−1(p), there exist a p̃′ ∈ π−1(p′) and deck transformations g′ 6= Id and h such that
φ̃( p̃′)= g′( p̃′), F̃u+

p̃ t F̃ s
∗ p̃′ and F̃u′

∗ p̃′ t F̃ s+
h( p̃ ).

Let g1 = (g′)nh for some n > 0 such that (8) holds. Now consider θ̃ to be a path in D
constructed as follows: θ̃ = θ̃ ′ ∗ θ̃ ′′, where θ̃ ′ is a compact subarc of F̃u+

p̃ starting at p̃ and
ending at a point in F̃u+

p̃ ∩ F̃ s+
g1( p̃ )

, and θ̃ ′′ is a compact subarc of F̃ s+
g1( p̃ )

starting at the
endpoint of θ̃ ′ and ending at g1( p̃ ).

Let ω1 be the fixed point in ∂D of g1 such that limn→∞ gn
1 (q̃ )= ω1 for all q̃ ∈ D, and

let α1 be the other fixed point.
Define

2=
⋃
i∈Z

gi
1(θ̃).

By construction, 2 is a path connected subset of D, joining α1 to ω1. Since S\C is
a union of open topological disks, there exists an oriented geodesic γ ∗ in C and m ∈
Deck(π) such that the projection of the oriented axis of m in S is γ ∗ and the fixed points
of m in ∂D separate the endpoints ω1 and α1 of2. This follows from Propositions 6 and 7.

Now consider the fixed points ωm and αm of m in ∂D such that limn→∞ mn (̃q )=
ωm and limn→−∞ mn (̃q )= αm , for all q̃ ∈ D. We know that the axis of m is an oriented
extended lift of γ ∗, so ωm and αm are coherent with the orientation of γ ∗. Let n0 > 0
be a sufficiently large integer such that mn0(ω1) and mn0(α1) are close to ωm and 2 ∩
mn0(2)= ∅. This is possible because 2 accumulates on ωm under positive iterates of m.

Then
2=

⋃
i∈Z

gi
1(θ̃)⇒ mn0(2)=

⋃
i∈Z

mn0 gi
1(θ̃).

As φ̃ commutes with all deck transformations, θ̃ ′ ⊂ F̃u+
p̃ and φ̃(F̃u+

p̃ )= F̃u+
p̃ , we

get that, for all n > 0 and t ∈ Deck(π), t (θ̃ ′)⊂ φ̃n(t (θ̃ ′)). Similarly, since θ̃ ′′ ⊂ F̃ s+
g1( p̃ )

,
φ̃n(t (θ̃ ′′))⊂ t (θ̃ ′′), for all n > 0 and t ∈ Deck(π).

The hypotheses on C imply that there is a point p̃m ∈ π
−1(P) such that φ̃( p̃m)=

m( p̃m) and p̃m is in the connected component of D\2 that contains αm in its boundary.
As mn0(2) is in the other connected component of D\2, limn→∞ φ̃

n( p̃m)= ωm and
φ̃|∂D = Id, we get that, for a sufficiently large n′ > 0, there must exists two integers i ′,
i ′′ such that

φ̃n′(gi ′
1 (θ̃
′)) t mn0 gi ′′

1 (θ̃
′′).

In particular, F̃u+
gi ′

1 ( p̃)
t F̃ s+

mn0 gi ′′
1 ( p̃ )

, and so, F̃u+
p̃ t F̃ s+

(g−i ′
1 mn0 gi ′′

1 )( p̃ )
(see Figure 8).

Finally, let g2 = g−i ′
1 mn0 gi ′′

1 . We will show that g1 and g2 do not commute. If g1 ◦ g2 =

g2 ◦ g1, then there exists l ∈ Deck(π) and integers k1, k2 such that g1 = lk1 and g2 = lk2 .
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FIGURE 8. How to obtain g2.

Thus
g−i ′

1 mn0 gi ′′
1 = lk2 ⇒ l−i ′k1mn0l i ′′k1 = lk2 ⇒ mn0 = lk2+k1(i ′−i ′′).

Since mn0 and g1 are iterates of the same deck transformation, the geodesics associated
to the axes of m and g1 are equal. But this is in contradiction with our choice of m. So, g1

and g2 do not commute. �

2.6. Proof of Theorem 2 in a special case. In this subsection, we prove Theorem 2 in
case of relative pseudo-Anosov maps.

Remark 2.6. As φ : S→ S is pseudo-Anosov relative to a finite invariant set, if, for some
leaves Fu of F u and F s of F s, there are connected components F̃u of π−1(Fu) and
F̃ s of π−1(F s) which have non-empty intersection (not at a lift of a singularity of the
foliations), then they intersect in a C1-transverse way. In the proof of the next lemma, we
will not make use of this fact because, when proving Theorem 2, at some point we say
that the proof continues as the proof of the next lemma. So, in the proof of Lemma 13,
although intersections between stable and unstable leaves, either in S or in D, are always
C1-transverse, we will not use this fact.

Moreover, as we said in the introduction, the main feature of topologically transverse
intersections is the fact that a C0-version of the so called λ-lemma (see [26]) holds: if
M is a surface, f : M→ M is a C1 diffeomorphism, p, q ∈ M are f -periodic saddle
points and W u(p) has a topologically transverse intersection with W s(q), then W u(p)
C0-accumulates on W u(q), and, in particular, W u(p)⊃W u(q). So if p1, p2, p3 ∈ M are
hyperbolic f -periodic saddle points, W u(p1) has a topologically transverse intersection
with W s(p2) and W u(p2) has a topologically transverse intersection with W s(p3), then
W u(p1) has a topologically transverse intersection with W s(p3).

LEMMA 13. (Theorem 2 in case of relative pseudo-Anosov maps) Let φ̃ be the natural
lift of the map φ. Then there exists a contractible hyperbolic φ-periodic point p ∈ S, such



Full homotopical complexity of orbits for surface homeomorphisms 21

that, for any p̃ ∈ π−1(p) and any given g ∈ Deck(π),

W u( p̃ ) tW s(g( p̃ )).

Proof. Let p̃ be the hyperbolic φ̃-periodic point from Lemma 12 and let p = π( p̃ ). This
lemma implies the existence of g1 and g2 in Deck(π) and also the existence of an unstable
branch λu of W u(p) and a stable branch βs of W s(p) such that, if λ̃u is the connected
component of π−1(λu) contained in W u( p̃ ) and β̃s is the connected component of π−1(βs)

contained in W s( p̃ ), then
λ̃u t gi (β̃s), i ∈ {1, 2}.

Without loss of generality, as we did in Lemma 12, considering an iterate of φ̃ if,
necessary, we will assume that φ̃( p̃ )= p̃, φ̃(̃λu)= λ̃u and φ̃(β̃s)= β̃s .

Since φ̃ is the natural lift of φ, every point of the form h( p̃ ) with h ∈ Deck(π) is fixed
under φ̃. Moreover, if we consider the stable set of the point h( p̃ ) with respect to φ̃, then

W s(h( p̃ ))= h(W s( p̃ )),

and the same is true for the unstable set of p̃.
Consider the point p ∈ S. Choose ε > 0 small enough so that Bε( p̃ ) ∩ π−1(p)= p̃,

where Bε( p̃ )= {̃q ∈ D|dD( p̃, q̃ ) < ε}. Observe that, since every point on the fiber of p
is of the form h( p̃ ) for some h ∈ Deck(π), and h is an isometry, Bε(h( p̃ )) ∩ π−1(p)=
h( p̃ ). �

PROPOSITION 14. There exists a path connected set θ in D, containing p̃, that
geometrically is the concatenation of two curves in D, one joining p̃ to ωg1 and the other
joining p̃ to ωg2 , where ωg1 and ωg2 are the (different) attractive fixed points at infinity
of g1 and g2, respectively. Moreover, if θ avoids some curve φ and, for some n > 0, if
f̃ n(θ) has a topologically transverse intersection with φ, then W u( p̃ ) has a topologically
transverse intersection with φ.

Proof. From the fact that λ̃u t g1(β̃s), we can construct a path η1 in D joining p̃ to g1( p̃ )
exactly as in the previous lemma: η1 starts at p̃, consists of a compact connected piece
of λ̃u until it reaches g1(β̃s) and then it continues as a compact connected piece of g1(β̃s)

until it reaches g1( p̃ ). It is clear that we can choose the piece that belongs to g1(β̃s) to
be totally contained in Bε(g1( p̃ )). Analogously, we construct a path η2 in D joining p̃ to
g2( p̃ ). Let θ ⊂ D be the path connected set obtained as (see Figure 9)

θ =

(⋃
i≥0

gi
1(η1)

)
∪

(⋃
j≥0

g j
2 (η2)

)
. (9)

Clearly, θ is the the concatenation of two curves in D, one joining p̃ to ωg1 and the other
joining p̃ to ωg2 . The fact that g1 and g2 do not commute implies that the fixed points at
infinity of these deck transformations are all different, so, in particular, ωg1 6= ωg2 . The
last part of the proposition follows from the C0-version of the λ-lemma that holds for
topologically transverse intersections. �
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FIGURE 9. The construction of the path connected set θ .

In order to prove the Lemma 13, we show that, for every g ∈ Deck(π),

λ̃u t g(β̃s)⇒W u( p̃ ) tW s(g( p̃ )). (10)

Fix g ∈ Deck(π) with g 6= Id. The case where g = Id will be considered at the end.
As λ̃u t g1(β̃s), we get that

g−1
1 (̃λu) t β̃s and so gg−1

1 (̃λu) t g(β̃s)

can be rewritten as
gg−1

1 g−1(g(̃λu)) t g(β̃s).

Notice that an analogous statement holds for g2. Using this, let us construct a path
connected set θ ′ containing g( p̃ ) in a similar way to θ .

PROPOSITION 15. There exists a path connected set θ ′ in D, containing g( p̃ ), such that,
geometrically, θ ′ is the concatenation of two curves in D, one joining g( p̃ ) to g(αg1) and
the other joining g( p̃ ) to g(αg2), where αg1 and αg2 are the different repulsive fixed points
at infinity of g1 and g2, respectively. Moreover, if θ ′ avoids some curve φ and if, for some
n > 0, f̃ −n(θ ′) has a topologically transverse intersection with φ, then W s(g( p̃ )) has a
topologically transverse intersection with φ.

Proof. An important simple observation here is the fact that, for a fixed point of φ̃,
its stable set with respect to φ̃ coincides with its unstable set with respect to φ̃−1.
This duality allows us to construct the set θ ′ in the same way as θ, but using the
point g( p̃ ), the deck transformations gg−1

1 g−1, gg−1
2 g−1 and the map φ̃−1. Hence we

construct a path η′1 joining g( p̃ ) to gg−1
1 g(g( p̃ )) such that η′1 starts at g( p̃ ), consists of a

compact connected piece of g(β̃s) until it reaches gg−1
1 g−1(g(̃λu)) and then it continues

as a compact connected piece of gg−1
1 g−1(g(̃λu)) ∩ Bε(gg−1

1 g−1(g( p̃ ))) until it reaches
gg−1

1 g−1(g( p̃ )). Constructing η′2 analogously, we define

θ ′ =

(⋃
i≥0

gg−i
1 g−1(η′1)

)
∪

(⋃
j≥0

gg− j
2 g−1(η′2)

)
.

Similarly to θ, the curve θ ′ is given by the concatenation of two curves in D, one joining
g( p̃ ) to g(αg1) and the other joining g( p̃ ) to g(αg2), where αg1 and αg2 are the repulsive
fixed points at infinity of g1 and g2, respectively. As in the previous proposition, the last
part follows from the C0-version of the λ-lemma. �

The sets θ and θ ′ share similar properties.
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Properties 2.6 of θ and θ ′.
• For i ∈ {1, 2} and for all m > 0, all points of the form gm

i ( p̃ ) belong to θ and
λ̃u t gm

i (β̃s). Remember that λ̃u is a branch of W u( p̃ ) and gm
i (β̃s) is a branch of

W s(gm
i ( p̃ )).

• For i ∈ {1, 2} and for all m > 0, all points of the form gg−m
i g−1(g( p̃ )) belong to

θ ′ and gg−m
i g−1(g(̃λu)) t g(β̃s). And in this case, gg−m

i g−1(g(̃λu)) is a branch of
W u(gg−m

i g−1(g( p̃ ))) and g(β̃s) is a branch of W s(g( p̃ )).

If θ and θ ′ have a topologically transverse intersection, then the lemma is proved.
Indeed, if there is such an intersection, then at least one of the following four

possibilities holds.
• There exists j ′ ∈ {1, 2} and m′ > 0 such that gm′

j ′ ( p̃ )= g( p̃ ).

• There exists j ′ ∈ {1, 2} and m′ > 0 such that gg−m′
j ′ g−1(g( p̃ ))= p̃.

• There exists j ′, j ′′ ∈ {1, 2} and m′, m′′ > 0 such that gm′
j ′ ( p̃ )= gg−m′′

j ′′ g−1(g( p̃ )).
In the three possibilities above, using Properties 2.6, we get that (10) holds. The last

possibility is the following.
• There exists j ′, j ′′ ∈ {1, 2} and m′, m′′ ≥ 0 such that some compact piece of θ ∩

W u(gm′
j ′ ( p̃ )) has a topologically transverse intersection with some compact piece of

θ ′ ∩W s(gg−m′′
j ′′ g−1(g( p̃ ))). This happens because, for i ∈ {1, 2} and all n ≥ 0,

θ ∩W s(gn
i ( p̃ ))⊂ Bε(gn

i ( p̃ )) and
θ ′ ∩W u(gg−n

i g−1(g( p̃ )))⊂ Bε(gg−n
i g−1(g( p̃ )))

and all of these balls are disjoint. So, by the C0λ-lemma mentioned in Remark 2.6, the
proof is complete.

Hence let us suppose that θ and θ ′ do not have topologically transverse intersections.
Our goal is to show that, in this case, using the fully essential system of curves C and
the periodic points associated with the geodesics, we can force a topologically transverse
intersection between θ ′ and a path connected set θ0 ∈ D that has the same properties and
is obtained from θ .

PROPOSITION 16. W u( p̃ ) has a topologically transverse intersection with θ ′.

Proof. As we said above, we are assuming that θ and θ ′ do not have topologically
transverse intersections, otherwise the proposition is proved. The set D\θ has two
unbounded connected components U ′θ and U ′′θ ; the closure of one of them contains θ ′. We
will assume that θ ′ ⊂ closure(U ′′θ ). The boundary at infinity of U ′θ is equal to a segment of
∂D delimited by ωg1 and ωg2 that will be denoted λ′θ . Similarly, the boundary at infinity of
U ′′θ is equal to a segment of ∂D delimited by ωg1 and ωg2 that will be denoted byλ′′θ . In the
same way, D\θ ′ has two unbounded connected components U ′

θ ′
and U ′′

θ ′
. We will assume

that θ ⊂ closure(U ′
θ ′
) and call λ′

θ ′
, λ′′
θ ′

the segments of ∂D delimited by g(αg1) and g(αg2)

that are equal to the boundary at infinity of U ′
θ ′

and U ′′
θ ′

, respectively. Then λ′θ ⊆ λ
′

θ ′
and

λ′′
θ ′
⊆ λ′′θ (see Figure 10).

Let C(λ′θ , λ
′′

θ ′
) be the set of oriented simple arcs in π−1(C ) joining a point in the interior

of λ′θ to a point in the interior λ′′
θ ′

and formed by finitely many oriented subarcs of extended
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FIGURE 10. The case when θ and θ ′ do not have topologically transverse intersections.

lifts of geodesics in C . The definition of a fully essential system of curves C implies that
C(λ′θ , λ

′′

θ ′
) 6= ∅. For every β in C(λ′θ , λ

′′

θ ′
), we can write

β = β1 ∗ β2 ∗ · · · ∗ βl ,

where each βi , i ∈ {1, 2, . . . , l} is an oriented subarc of an extended lift of one geodesic
in C . We will prove that W u( p̃ ) t θ ′ and so W u( p̃ ) tW s(g( p̃ )) by induction on k =
min{l ∈ N|β ∈ C(λ′θ , λ

′′

θ ′
), β = β1 ∗ β2 ∗ · · · ∗ βl}.

The existence of a fully essential system of curves C (see Definition 1.3) implies that,
for any geodesic γi ∈ C and any γ̃i extended lift of that geodesic, there exists a point p̃i

in D and hi ∈ Deck(π) such that γ̃i is an oriented curve from αhi to ωhi , respectively, the
repulsive and the attractive fixed points of hi on ∂D, hi (γ̃i )= γ̃i , φ̃( p̃i )= hi ( p̃i ) and

lim
n→∞

φ̃n( p̃i )= ωi and lim
n→∞

φ̃−n( p̃i )= αi .

First step. k = 1. In this case, there exist β1 ∈ C(λ′θ , λ
′′

θ ′
) and γ̃1 an extended lift of a

geodesic in C with β1 = γ̃1. It is clear that the orientation on γ̃1 is from λ′θ to λ′′
θ ′

.
Associated to the extended lift γ̃1, there is a point p̃1 such that, for some h1 ∈ Deck(π)
with h1(γ̃1)= γ̃1,

φ̃( p̃1)= h1( p̃1),

where

lim
n→∞

φ̃−n( p̃1)= lim
n→∞

h−n
1 ( p̃1)= αh1 and lim

n→∞
φ̃n( p̃1)= lim

n→∞
hn

1( p̃1)= ωh1 .

Note that αh1 is the point at infinity of γ̃1 in interior(λ′θ ) and ωh1 is the point at infinity
of γ̃1 in interior(λ′′

θ ′
). The point p̃1 can be chosen as close as we want (in the Euclidean

distance) to the point αh1 , something that forces p̃1 to belong to U ′θ . Since φ̃|∂D ≡ Id, for
all n > 0, φ̃n(θ) is a path connected set in D joining the points ωg1 , ωg2 ∈ ∂D. As p̃1 ∈U ′θ
and φ̃ preserves orientation, we get that, for sufficiently large n > 0,

φ̃n(U ′θ ) ∩U ′′θ ′ 6= ∅,
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FIGURE 11. Intersection between φ̃n(θ) and θ ′.

which implies that
φ̃n(θ) t θ ′.

(see Figure 11). So, by Propositions 14 and 15,

W u( p̃ ) tW s(g( p̃ )).

Second step. k = 2 (main idea behind the general case). If k = 2, there exist β ∈
C(λ′θ , λ

′′

θ ′
), β = β1 ∗ β2 and γ̃1, γ̃2 extended lifts of geodesics in C such that β1 ⊂ γ̃1

and β2 ⊂ γ̃2. Moreover, in the same way as in the previous case, for i ∈ {1, 2} there exists
a point p̃i ∈ D and hi ∈ Deck(π) that leave γ̃i invariant such that

φ̃( p̃i )= hi ( p̃i ).

The points αh1 , ωh1 separate the points αh2 , ωh2 at ∂D, αh1 is in the interior of λ′θ and
ωh2 is in the interior of λ′′

θ ′
(see Figure 12). Let us consider a sufficiently large m1 > 0 in a

way that hm1
1 (θ) is close (in the Euclidean distance) to the point ωh1 and θ ∩ hm1

1 (θ)= ∅.
In particular, the points hm1

1 (ωg1) and hm1
1 (ωg2) are very close to ωh1 .

Exactly as when k = 1, p̃1 can be chosen sufficiently close to αh1 in the Euclidean
distance, in a way that p̃1 ∈U ′θ , and then for a sufficiently large n > 0, φ̃n( p̃1) is very
close to ωh1 , so that it implies that φ̃n(θ) t hm1

1 (θ).

But then, as in the previous case, there exists i ′, i ′′ ∈ {1, 2} and j ′, j ′′ > 0 such that
W u(g j ′

i ′ ( p̃ )) tW s(hm1
1 g j ′′

i ′′ ( p̃ )),
which implies, again by the C0λ-lemma, that

W u( p̃ ) tW s(hm1
1 g j ′′

i ′′ ( p̃ )).

(11)

Note that, since k = 2, αh2 is not in the interior of λ′θ , otherwise there would be a
path in C(λ′θ , λ

′′

θ ′
) with size one, which contradicts the fact that k = 2. So, we can always

choose i0 ∈ {1, 2} and construct a new path connected set θh1 using ηi0 of expression (9)
and an analogous construction obtained from expression (11). Before going into details,
we emphasize that the choice of i0 is very important because αh2 is not in the interior of
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FIGURE 12. Intersection between φ̃n(θ) and hm1
1 (θ).

λ′θ , but it could be one of its endpoints. So, if αh2 is one of the endpoints of λ′θ , gi0 must
be chosen to be associated with the other endpoint of λ′θ .

In order to construct θh1 , first consider the set ηi0 of expression (9) associated to
gi0 , chosen as before. Since expression (11) holds, there exists a path η joining p̃ to
hm1

1 g j ′′

i ′′ h
−m1
1 (hm1

1 ( p̃ )) as follows: η starts at p̃, consists of a compact connected piece of

λ̃u until it reaches hm1
1 g j ′′

i ′′ h
−m1
1 (hm1

1 (β̃s)) and then it continues as a compact connected

piece of hm1
1 g j ′′

i ′′ h
−m1
1 (hm1

1 (β̃s)) until it reaches hm1
1 g j ′′

i ′′ h
−m1
1 (hm1

1 ( p̃ )). As before, we

choose the arc in η contained in hm1
1 g j ′′

i ′′ h
−m1
1 (hm1

1 (β̃s)) to be very small; it is contained

in Bε(h
m1
1 g j ′′

i ′′ h
−m1
1 (hm1

1 ( p̃ ))). Note that i ′′ ∈ {1, 2} was defined before expression (11).
Finally, pick the ηi ′′ as in expression (9).

Then, define

θh1 =

(⋃
i≥0

gi
i0
(ηi0)

)
∪ η ∪

(⋃
j≥ j ′′

hm1
1 g j

i ′′h
−m1
1 (hm1

1 (ηi ′′))

)
. (12)

The new path connected set θh1 has similar properties to θ, and, as was explained for
θ and θ ′, it can be understood as the concatenation of two curves in D, one joining p̃ to
ωgi0

and the other joining p̃ to hm1
1 (ωgi ′′

). If θh1 t θ
′, then W u( p̃ ) tW s(g( p̃ )). And in

the case where there is no such topologically transverse intersection, as when αh2 is in the
interior of λ′θh1

and ωh2 is in the interior of λ′′
θ ′
, we are reduced to the previous case.

Hence, arguing exactly as when k = 1, we conclude that W u( p̃ ) tW s(g( p̃ )).

Third step. (The induction). Suppose the result is true when

min{l ∈ N|β ∈ C(λ′θ , λ
′′

θ ′), β = β1 ∗ β2 ∗ · · · ∗ βl} = 1, 2, . . . , k − 1

and let us prove that it holds for k. We can assume that k ≥ 3. Fix β ∈ C(λ′θ , λ
′′

θ ′
) with

β = β1 ∗ β2 ∗ β3 ∗ · · · ∗ βk . Let γ̃i , 0≤ i ≤ k, be the extended lifts of the geodesics in C

such that βi ⊂ γ̃i . For each i ∈ {1, . . . , k}, as the βi ′ are oriented, there exists a point
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FIGURE 13. Position of the first two extended lifts when k ≥ 3.

p̃i ∈ D and hi ∈ Deck(π) that leaves γ̃i invariant and moves points according to the
orientation of γ̃i such that

φ̃( p̃i )= hi ( p̃i ).

We claim that the following facts are true: since k ≥ 3 and there exists no path in
C(λ′θ , λ

′′

θ ′
) using less than k extended lifts of geodesics, if the first two extended lifts

γ̃1 and γ̃2 associated to β1 and β2 are considered, then their relative positions with respect
to θ can only be as in one of the three possibilities of Figure 13.

The reason for this is the following: γ̃2 does not start inside θ, otherwise there would
be a shorter path. So, it may start and end outside θ (this is the first case in Figure 13).
Or it starts at one endpoint of θ and ends outside θ. It cannot end inside θ because, in this
case, some γ̃i for i > 2 would have to start inside the region bounded by γ̃2 and inside θ
and its endpoint would have to be outside θ. And this also gives a shorter path, which is a
contradiction. The third possibility is when γ̃2 starts outside θ and ends inside it or at one
of its endpoints. These are the three cases in the figure.

In this way, choose an integer m1 > 0 sufficiently large so that in the segment
[hm1

1 (ωg1), hm1
1 (ωg2)] of ∂D delimited by hm1

1 (ωg1) and hm1
1 (ωg2), and containing the point

ωh1 , there are no other α′ and ω′. Since there is a finite number of α′ and ω′, this is always
possible.

Now proceed as when k = 2 and construct the path connected set θh1 in the same way
as in (12). Some care must be taken with the choice of the endpoints at infinity of θh1 .

• If γ̃1 and γ̃2 are as in the first case of Figure 13, we can choose any of the endpoints of
θ as one endpoint of θh1 .

• If γ̃1 and γ̃2 are as in the second case of Figure 13, we choose as one of the endpoints of
θh1 the endpoint of θ that is contained in the segment [αh1 , ωh1 ] of ∂D which contains
ωh2 .

• If γ̃1 and γ̃2 are as in the third case of Figure 13, we choose as one of the endpoints of
θh1 the endpoint of θ that is contained in the segment [αh1 , ωh1 ] of ∂D which contains
αh2 .

Constructing θh1 in this way, it follows that λ′θh1
⊆ λ′

θ ′
and αh2 is in the interior of λ′θh1

.
If θh1 t θ

′, then W u( p̃ ) tW s(g( p̃ )). In case where there is no such intersection, let β ′2
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be the subarc of γ̃2 joining αh2 to the intersection point of γ̃2 and γ̃3. Create βmod = β
′

2 ∗

β3 ∗ · · · ∗ βk,which is an oriented arc joining a point in the interior of λ′θh1
to a point in the

interior of λ′′
θ ′

formed by k − 1 subarcs of extended lifts of geodesics in C . This implies
that min{l ∈ N|β ∈ C(λ′θh1

, λ′′
θ ′
), β = β1 ∗ β2 ∗ · · · ∗ βl} ≤ k − 1. So using the induction

hypothesis we conclude that W u( p̃ ) tW s(g( p̃ )). This concludes the induction.
So, for all g ∈ Deck(π), g 6= Id, W u( p̃ ) tW s(g( p̃ )). In order to deal with

g = Id, consider some h, h−1
∈ Deck(π), h 6= Id. Then W u( p̃ ) tW s(h( p̃ )) and

W u( p̃ ) tW s(h−1( p̃ )). As φ̃ commutes with all deck transformations, W u(h−1( p̃ )) t
W s( p̃ ) and so, by the C0 λ-lemma, W u( p̃ ) tW s( p̃ ).

Actually, as we said at the beginning, we proved something a little bit stronger: for all
g ∈ Deck(π), λ̃u t g(β̃s). �

2.7. The global shadowing. The next result says that as the map φ is pseudo-Anosov
relative to some finite invariant set, its complicated dynamics being, in some sense,
inherited by f . It is related to Handel’s global shadowing [14]; more precisely it appeared
as Theorem 3.2 of Boyland’s paper [3].

THEOREM 17. (Global shadowing) If f : S→ S is a homeomorphism of a closed
orientable surface S isotopic to the identity, P is a finite f -invariant set and f is isotopic
relative to P to some map φ : S→ S which is pseudo-Anosov relative to P, then there
exists a compact f -invariant set W ⊂ S and a continuous surjection s :W → S that is
homotopic to the inclusion map i :W → S such that s semi-conjugates f |W to φ : that is,
s ◦ f |W = φ ◦ s.

Observe that, as s :W → S is homotopic to the inclusion map i :W → S, s has a lift
s̃ : π−1(W )→ D such that

s̃ ◦ f̃ |π−1(W ) = φ̃ ◦ s̃,

where φ̃ and f̃ are the natural lifts of φ and f, and sup{dD(̃s (̃q), q̃ )|̃q ∈ π−1(W )}< C f ,

for some constant C f > 0.

2.8. Special horseshoes for the pseudo-Anosov map φ. In this subsection, we state a
simple lemma used in the proofs of Theorems 1 and 2. The setting is the following: let
f : S→ S be a homeomorphism isotopic to the identity with a fully essential system of
curves C and let P be the set of periodic points associated with the geodesics in C .

From Lemma 9, we know that there exists an integer m0 > 0 such that f m0 is isotopic
relative to P to φ : S→ S, a homeomorphism which is pseudo-Anosov relative to P
and isotopic to the identity as a homeomorphism of S. From Lemma 13, there exists a
contractible hyperbolic φ-periodic point p ∈ S such that, for any p̃ ∈ π−1(p) and any
given g ∈ Deck(π), W u( p̃ ) tW s(g( p̃ )). In D, we are considering the natural lift of φ,
denoted by φ̃. As we did previously, without loss of generality, we assume that p is fixed
under φ and also that all four branches at p are φ-invariant.

LEMMA 18. For any g ∈ Deck(π) and any fundamental domain Q̃ ⊂ D of S such that
p̃ = π−1(p) ∩ Q̃ is in the interior of Q̃, there exists arbitrarily small rectangles R̃ ⊂ Q̃
such that:
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(1) interior(R̃) contains p̃, and two sides of R̃ are very close to an arc β̃, p̃ ∈ β̃ ⊂
W s( p̃ ) ∩ R and the two other sides of R̃ have very small length; and

(2) for some N > 0, φ̃N (R̃) ∩ R̃ ⊃ R̃0 and φ̃N (R̃) ∩ g(R̃)⊃ R̃1, where R0 = π(R̃0),
R1 = π(R̃1) are rectangles contained in R = π(R̃) that have two sides contained
in the sides of R which are very close to β = π(β̃) and two sides contained in the
interior of R.

Proof. This is a standard result in hyperbolic dynamics, so we omit the proof and just
present a figure. �

2.9. The C1+ε case: some background in Pesin theory. In this subsection, assume that
f : S→ S is a C1+ε diffeomorphism, for some ε > 0. Recall that an f -invariant Borel
probability measure µ is hyperbolic if all the Lyapunov exponents of f are non-zero at
µ-almost every point (for instance, see the supplement of [19]). The following paragraphs
were taken from [7]. They consist of an informal description of the theory of non-uniformly
hyperbolic systems, together with some definitions and lemmas from [7].

Let µ be a non-atomic hyperbolic ergodic f -invariant Borel probability measure.
Given 0< δ < 1, there exists a compact Pesin set 3δ , with µ(3δ) > 1− δ, having the
following properties: for every p ∈3δ, there exists an open neighborhood Up, a compact
neighborhood Vp ⊂Up and a diffeomorphism F : (−1, 1)2→Up, with F(0, 0)= p and
F([−1/10, 1/10]2)= Vp, such that the local unstable manifolds W u

loc(q) of all points q in
3δ ∩ Vp are the images under F of graphs of the form {(x, F2(x))|x ∈ (−1, 1)}, where F2

a function with small Lipschitz constant. Any two such local unstable manifolds are either
disjoint or equal and they depend continuously on the point q ∈3δ ∩ Vp. Similarly, the
local stable manifolds W s

loc(q) of points q ∈3δ ∩ Vp are the images under F of graphs of
the form {(F1(y), y)|y ∈ (−1, 1)}, where F1 a function with small Lipschitz constant. Any
two such local stable manifolds are either disjoint or equal and they depend continuously
on the point q ∈3δ ∩ Vp.

It follows that there exists a continuous product structure in 3δ ∩ Vp : given any r, r ′ ∈
3δ ∩ Vp, the intersection W u

loc(r) ∩W s
loc(r

′) is transversal and consists of exactly one
point, which will be denoted by [r, r ′]. This intersection varies continuously with the two
points and may not be in 3δ . Hence we can define maps Ps

p :3δ ∩ Vp→W s
loc(p) and

Pu
p :3δ ∩ Vp→W u

loc(p) as Ps
p(q)= [q, p] and Pu

p (q)= [p, q].
Let R± denote the set of all points in S which are both forward and backward recurrent.

By the Poincaré recurrence theorem, µ(R±)= 1.

Definition 2.9. (Accessible and inaccessible points) A point p ∈3δ ∩ Vp ∩ R± is
inaccessible if it is accumulated on both sides of W s

loc(p) by points in Ps
p(3δ ∩ Vp ∩

R±) and also accumulated on both sides of W u
loc(p) by points in Pu

p (3δ ∩ Vp ∩ R±).
Otherwise, p is accessible.

After this definition, we can state two lemmas from [7] about accessible and
inaccessible points and the relation between these points and hyperbolic periodic points
close to them.
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LEMMA 19. Let q ∈3δ ∩ Vp ∩ R± be an inaccessible point. Then there exist rectangles
enclosing q that have sides along the invariant manifolds of hyperbolic periodic saddles
in Vp and that have arbitrarily small diameter.

A rectangle is a Jordan curve made up of alternating segments of stable and unstable
manifolds, having two of each. The segments forming the boundary are its sides and the
intersection points of the sides are the corners. A rectangle is said to enclose p if it is the
boundary of an open topological disk containing p.

LEMMA 20. The subset of accessible points in 3δ ∩ Vp ∩ R± has zero µ measure.

Another concept that will be a crucial hypothesis for us is positive topological entropy.
In the following we describe why.

When the topological entropy h( f |K ) is positive, for some compact f -invariant set
K , by the variational principle, there exists a f -invariant Borel probability measure µ0

with supp(µ0)⊂ K and hµ0( f ) > 0. Using the ergodic decomposition of µ0, we find an
extremal point µ of the set of Borel probability f -invariant measures, such that supp(µ)
is also contained in K and hµ( f ) > 0. Since the extremal points of this set are ergodic
measures, µ is ergodic. The ergodicity and the positiveness of the entropy imply that µ has
no atoms and applying the Ruelle inequality to f we see that µ has a positive Lyapunov
exponent (see [19]). Working with f −1 and using the fact that hµ( f −1)= hµ( f ) > 0, we
see that f −1 must also have a positive Lyapunov exponent with respect to µ, which is the
negative of the negative Lyapunov exponent for f .

Hence, when K is a compact f -invariant set and the topological entropy of f |K is
positive, there always exists an ergodic, non-atomic, invariant measure supported on K
with non-zero Lyapunov exponents, one positive and one negative, with the measure
having positive entropy: a hyperbolic measure.

The existence of this kind of measure will be important for us because of the following
theorem, which can be proved by combining the main lemma and [18, Theorem 4.2].

THEOREM 21. Let f be a C1+ε (for some ε > 0) diffeomorphism of a surface M and
suppose that µ is an ergodic hyperbolic Borel probability f -invariant measure with
hµ( f ) > 0 and compact support. Then, for any α > 0 and any p ∈ supp(µ), there exists a
hyperbolic periodic point q ∈ Bα(p) which has a transversal homoclinic intersection, and
the whole orbit of q is contained in the α-neighborhood of supp(µ).

3. Statement and proof of a C0 result
In this section, we fully state and prove Theorem 1.

THEOREM 1. (Precise statement) Let f : S→ S be a homeomorphism isotopic to the
identity with a fully essential system of curves C and let f̃ be its natural lift. Then there
exists a constant C f ≥ 0 such that, for all g ∈ Deck(π) and any fundamental domain
Q̃ ⊂ D of S, there exist arbitrarily large natural numbers N > 0, a point r̃ = r̃(N ) ∈ D
and a compact set K = K (N )⊂ VC f (Q̃) (the open C f -neighborhood of Q̃ in the metric
dD of D) such that

f̃ N (̃r)= g(̃r) and f̃ N (K )= g(K ).
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Remark. Note that if, for some p̃ ∈ D, f̃ n( p̃ )= g( p̃ ) for some g ∈ Deck(π), then, for
every h ∈ Deck(π), f̃ n(h( p̃ ))= hgh−1(h( p̃ )).

So, if f : S→ S is a homeomorphism isotopic to the identity that has a fully essential
system of curves, then

⋃
n>0 f̃ n(VC f (Q̃)) accumulates in the whole boundary of D, and,

given any compact set M ⊂ D, if

DM
def.
= {g(VC f (Q̃)) : g is some deck transformation for which g(VC f (Q̃)) ∩ M 6= ∅},

then there exists NM > 0 such that, for all n ≥ NM , f̃ n(VC f (Q̃)) intersects all expanded
fundamental domains contained in DM . By expanded fundamental domains, we mean
translates of VC f (Q̃) by deck transformations.

In the case of a torus, if (0, 0) belongs to the interior of the rotation set, an analogous
property holds (with C f = 0). Therefore, in the situation when the fundamental group is
not Abelian (surfaces of genus larger than one), our hypotheses, the fully essential system
of curves C (see Definition 1.3), are an analog for (0, 0) being in the interior of the rotation
set when the surface is the torus.

Proof of Theorem 1. Let f : S→ S be a homeomorphism satisfying the theorem
hypotheses. If we remember §2.8 and Lemma 18, for any fixed g ∈ Deck(π) and any
fundamental domain Q̃ ⊂ D of S, there exist arbitrarily small rectangles R ⊂ S such that a
connected component R̃ of π−1(R) is contained in interior(Q̃) (we may have to perturb Q̃
a little bit) and, for some N > 0, φN (R) ∩ R ⊇ R0 ∪ R1.Remember that φ̃N (R̃) ∩ R̃ ⊇ R̃0

and φ̃N (R̃) ∩ g(R̃)⊇ R̃1, where R̃0 and R̃1 are connected components of π−1(R0) and
π−1(R1). Associated with this horseshoe, if we consider the φN -fixed point q ∈ R1, then,
for q̃ = π−1(q) ∩ R̃,

φ̃N (̃q )= g(̃q )⇒ for all j > 0, φ̃ j N (̃q )= g j (̃q ).

Let s :W → S be the semi-conjugacy given by Theorem 17 and let s̃ : π−1(W )→ D be
its lift which relates the natural lifts f̃ and φ̃. Fix z̃ ∈ s̃−1(̃q ). Since s̃ ◦ f̃ (̃z)= φ̃ ◦ s̃ (̃z),

s̃( f̃ j N (̃z))= φ̃ j N (̃s (̃z))= φ̃ j N (̃q )= g j (̃q ).

As we explained in §2.7, the fact that s is isotopic to the inclusion implies the existence
of C f > 0 such that dD(̃s(w̃), w̃) < C f , for all w̃ ∈ π−1(W ). In particular,

dD( f̃ j N ( z̃ ), s̃( f̃ j N ( z̃ )))= dD( f̃ j N (̃z), g j (̃q )) < C f for all j > 0.

As g−1
∈ Deck(π) is an isometry of dD,

dD( f̃ j N ( z̃ ), g j (̃q ))= dD(g− j ( f̃ j N ( z̃ )), q̃ ) < C f .

This means that, for any z̃ ∈ s̃−1(̃q) and for all j > 0, (g−1 f̃ N ) j ( z̃ ) ∈ BC f (̃q ). So the
positive orbit of z̃ with respect to g−1 f̃ N is bounded. Thus, defining K̃g as the ω-limit set
of the point z̃ under g−1 f̃ N , K̃g is a compact g−1 f̃ N -invariant set contained in VC f (Q̃),
and hence f̃ N (K̃g)= g(K̃g). By Brouwer’s lemma on translation arcs [5], g−1 f̃ N has a
fixed point, that is, there exists r̃ ∈ D with g−1 f̃ N (̃r)= r̃ , and so

f̃ N (̃r)= g(̃r). �
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FIGURE 14. Horseshoe associated to W u( p̃ ) tW s (g( p̃ )).

4. Proof of Theorem 2
Let f : S→ S be a C1+ε diffeomorphism isotopic to the identity with a fully essential
system of curves C . As in Theorem 1, let φ : S→ S be the pseudo-Anosov map relative
to P that is isotopic to f m0 relative to P (for some m0 > 0, which, as before, to simplify
the notation, we assume to be one). The finite set P is the set of periodic points associated
with the geodesics in C . By Lemma 13, for any given g ∈ Deck(π) and any fundamental
domain Q̃ of S, if φ̃ : D→ D is the natural lift of φ, there exists a hyperbolic φ̃-periodic
point p̃ ∈ Q̃ ⊂ D such that

W u( p̃ ) tW s(g( p̃ )).

Again, as we did in previous results, without loss of generality, and considering an
iterate of φ̃, if necessary, we assume that p̃ is fixed under φ̃ and that each branch at p̃ is
also φ̃-invariant.

Using Lemma 18, if the transversal intersection W u( p̃ ) tW s(g( p̃ )) at some z̃ ∈ D is
projected to the surface S, it corresponds to a transversal homoclinic point z = π(̃z) ∈
W u(p) ∩W s(p). Associated with this intersection, a horseshoe in S can be obtained,
i.e., on the surface there exists a small rectangle R, containing the arc β in W s(p)
from p to z (as always R is very close to β) and a positive integer N > 0 such that
φN (R) ∩ R ⊇ R0 ∪ R1, where R0 is a rectangle inside R containing p and R1 is another
rectangle inside R containing z (see Figure 14).

As z̃ ∈W u( p̃ ) ∩W s(g( p̃ )) can be chosen as close as we want to g( p̃ ), the rectangle
R ⊂ S can be chosen small enough so that all the singular points of the stable and
unstable foliations of φ do not belong to R. Moreover, considering the compact set
�=

⋂
k∈Z φ

k N (R0 ∪ R1), we know that if R is sufficiently close to β, then for every
bi-infinite sequence in {0, 1}Z, denoted by (an)n∈Z, there is a single point z∗ ∈� which
realizes it: that is, φk N (z∗) belongs to Rak for all integers k.

LEMMA 22. There exists a point q̃2 ⊂ R̃, the connected component of π−1(R) that
contains p̃, such that φ̃3N (̃q2)= g(̃q2) and W u (̃q2) tW s (̃q2).
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Proof. Let q1 = p, q2 and q3 be the φN -periodic points in � satisfying

sequence(q1)= · · · 000000000000 · · · ,
sequence(q2)= · · · 001001001001 · · · ,
sequence(q3)= · · · 011011011011 · · · .

Since there are no singular points of the stable and unstable foliations inside R, the
points q2, q3 are regular points of the stable and unstable foliations and are φ3N -periodic.
Moreover, there is a local product structure inside R : given i, j ∈ {1, 2, 3}, i 6= j, the
intersection W u

loc(qi ) ∩W s
loc(q j ) is transversal and consists of exactly one point. By

W s,u
loc (qi ), we mean the connected components of W s,u(qi ) ∩ R containing qi .

Let p̃ = q̃1 ∈ R̃ and fix q̃2 = π
−1(q2) ∩ R̃ and q̃3 = π

−1(q3) ∩ R̃. By construction,

φ̃3N (̃q1)= q̃1,

φ̃3N (̃q2)= g(̃q2),

φ̃3N (̃q3)= g2(̃q3).

If we set ψ̃ = g−1φ̃3N , then

ψ̃ (̃q1)= g−1(̃q1),

ψ̃(q̃2)= q̃2,

ψ̃(q̃3)= g(̃q3).

In particular, q̃2 is a hyperbolic fixed saddle point for ψ̃ . As W u
loc(q2) tW s

loc(q1), we
get that W u (̃q2) tW s(q̃1) (note that, for all m > 0, W s,u(g−m (̃q1)) is the lift of W s,u(q1)

to g−m(R̃)). Since ψ̃(q̃1)= g−1(q̃1), using that W u (̃q2) is invariant under ψ̃ and the fact
that g−1 commutes with ψ̃, we conclude that, for all m > 0,

W u (̃q2) tW s(g−m (̃q1)). (13)

Note that, as W u
loc(q1) intersects W s

loc(q2) transversely, there exists m′ > 0 such that

W u (̃q2) tW s(g−m′(q̃2)). (14)

The same argument considering the point q3 instead of q1, gives an integer m′′ > 0 such
that

W u (̃q2) tW s(gm′′(q̃2)). (15)

So, by the λ-lemma,

W u (̃q2) tW s(gm′m′′ (̃q2)) and W u (̃q2) tW s(g−m′m′′ (̃q2)),

which finally imply that
W u (̃q2) tW s (̃q2). �

Associated with the transversal intersection W u (̃q2) tW s(q̃2), there is a compact
ψ̃N ′ -invariant set �g , for some N ′ > 0, such that h(ψ̃N ′

|�g ) > 0. Defining �∗g =⋃N ′−1
i=0 ψ̃ i (�g), it is a ψ̃-invariant compact set with h(ψ̃ |�∗g ) > 0. We are looking for a

similar statement for the map g−1 f̃ 3N .
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LEMMA 23. There exists a set Kg ⊂ S which is analogous to f of the set �∗g with respect
to φ.

Proof. Theorem 14 implies that there exists a compact f -invariant set W and a continuous
surjective map s :W → S, homotopic to the inclusion, such that s ◦ f |W = φ ◦ s. Instead
of W,we will consider a compact f -invariant subset W ′′ ⊆W constructed in the following
way: since φ is pseudo-Anosov relative to a finite set, there exists a point z0 in S such
that Orb+φ (z0)= {φ

n(z0)|n ≥ 0} is dense in S. Choose some point w0 ∈ s−1(z0) and let

W ′ = Orb+f (w0). Clearly, f (W ′)⊆W ′, and defining W ′′ =
⋂

n≥0 f n(W ′), we get that
f (W ′′)=W ′′, it is compact and s(W ′′)= S. In particular, Orb+f (w0) is dense in W ′′.

Lifting s :W ′′→ S to s̃ : π−1(W ′′)→ D, we obtain a compact g−1 f̃ 3N -invariant set

Kg ⊆
⋃
n≥0

(g−1 f̃ 3N )n (̃s−1(�∗g))⊂ π
−1(W ′′)⊂ D with h(g−1 f̃ 3N

|Kg ) > 0. �

As we explained in §2.9, the fact that h(g−1 f̃ 3N
|Kg ) > 0 implies the existence of a non-

atomic, hyperbolic, ergodic g−1 f̃ 3N -invariant Borel probability measure µg with positive
entropy, whose support is contained in Kg .

As µg(R± ∩ supp(µg))= 1, for 0< δ < 1, choosing any point r̃ ∈3δ ∩ supp(µg) ∩

R±, we get that µg(Ṽr ∩3δ ∩ R±) > 0. So Lemmas 19 and 20 and Theorem 21 assure
that, given η > 0, there exists an inaccessible point z̃g ∈ supp(µg)⊂ Kg (see definition
(2.9)) such that arbitrarily small rectangles enclosing z̃g can be obtained, where the sides
of these rectangles are contained in the invariant manifolds of two hyperbolic g−1 f̃ 3N -
periodic saddle points, r̃ ′g , r̃ ′′g , whose orbits are contained in the η-neighborhood of
supp(µg). Moreover, W u (̃r ′g) tW s (̃r ′′g ) and W u (̃r ′′g ) tW s (̃r ′g) in a C1-transverse way.
So W u (̃r ′g) tW s (̃r ′g) and W u (̃r ′′g ) tW s (̃r ′′g ), also in a C1-transverse way. An important
observation that will be used later is that each of these rectangles contains infinitely
many points belonging to supp(µg)⊂ π

−1(W ′′) because µg is non-atomic. For these two
periodic points, there exists k′, k′′ > 0 such that

f̃ 3Nk′ (̃r ′g)= gk′ (̃r ′g) and f̃ 3Nk′′ (̃r ′′g )= gk′′ (̃r ′′g ).

Going back to the surface S, we define zg = π(̃zg), r ′g = π(̃r
′
g) and r ′′g = π(̃r

′′
g ).

Then r ′g and r ′′g are hyperbolic f -periodic saddles for which W u(r ′g) tW s(r ′′g ) and
W u(r ′′g ) tW s(r ′g) in a C1-transverse way and so W s(r ′g)=W s(r ′′g ) and W u(r ′g)=
W u(r ′′g ). Associated with these points there are small rectangles in S whose sides are
contained in their invariant manifolds and enclose the point zg; they are the projection
under π of the rectangles in D.

LEMMA 24. There exists a contractible periodic hyperbolic saddle point r̃0 ∈ D and
deck transformations g′′1 and g′′2 such that g′′1 g′′2 6= g′′2 g′′1 and W u (̃r0) tW s(g′′1 (̃r0)) and
W u (̃r0) tW s(g′′2 (̃r0)).

Proof. First, choose g1, g2 ∈ Deck(π) such that they correspond to different geodesics
in S. In this way, g1g2 6= g2g1, and their powers are never conjugated: i.e., for all h ∈
Deck(π) and n, m integers, hgn

1 h−1
6= gm

2 .
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FIGURE 15. The rectangles R0, R1 and R2.

For the maps Id, g1, g2, we consider the compact sets KId, Kg1 and Kg2 contained
in D and inaccessible points z̃Id ∈ KId, z̃g1 ∈ Kg1 and z̃g2 ∈ Kg2 . From what we just did,
there are hyperbolic f -periodic saddles r ′Id, r ′′Id, r ′g1

, r ′′g1
, r ′g2

and r ′′g2
in S, with R0 being a

small rectangle in S whose sides are contained in the invariant manifolds of r ′Id and r ′′Id and
enclose the point π(̃zId)= zId ∈W ′′. Similarly, for i ∈ {1, 2}, Ri is a small rectangle in S
whose sides are contained in the invariant manifolds of r ′gi

and r ′′gi
and enclose the point

π(̃zgi )= zgi ∈W ′′, see Figure 15.
Let ncomm > 0 be a natural number that is a common period of all the points r ′Id, r ′′Id,

r ′g1
, r ′′g1

, r ′g2
and r ′′g2

, which also leaves invariant all stable and unstable branches of these
points. Clearly, the orbits of all the previous points can be assumed to be disjoint.

As we said, R0 is the small rectangle enclosing the point zId. For all 0≤ i ≤ ncomm
− 1,

f i (R0) is a rectangle in S. If we denote the arcs in the boundary of R0 as α′0 ∈W s(r ′Id),
ω′0 ∈W u(r ′Id), α

′′

0 ∈W s(r ′′Id) and ω′′0 ∈W u(r ′′Id), then, for large m > 0 and for all 0≤ i ≤
ncomm

− 1,

∂( f ncommm( f i (R0)))⊂ f ncommm( f i (α′0)) ∪W u(r ′Id) ∪ f ncommm( f i (α′′0 )) ∪W u(r ′′Id),

and the sets f ncommm( f i (α′0)), f ncommm( f i (α′′0 )) are as close as we want to the points
f i (r ′Id) and f i (r ′′Id), respectively. Using an analogous notation with the rectangles R1

and R2, we can find a natural number m0 > 0 such that, for 0≤ i, j ≤ ncomm
− 1, k, t ∈

{0, 1, 2}, k 6= t and m > m0,

f ncommm( f i (α′k)) ∩ f j (ω′t )= ∅,

f ncommm( f i (α′k)) ∩ f j (ω′′t )= ∅,

f ncommm( f i (α′′k )) ∩ f j (ω′t )= ∅,

f ncommm( f i (α′′k )) ∩ f j (ω′′t )= ∅.

(16)

As f i (zId) and f i (zg1) are in the interior of f i (R0) and f i (R1), respectively, they are
both accumulated by points in W ′′, and as there exists a point whose orbit is dense in W ′′,
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we get that, for all 0≤ i ≤ ncomm
− 1, there exist integers l0(i), l1(i) > m0ncomm such that

f l1(i)( f i (R1)) ∩ R0 6= ∅ and f l0(i)( f i (R0)) ∩ R1 6= ∅.

So, for any 0≤ i ≤ ncomm
− 1, there exist integers m0(i), m1(i)≥ m0 and other

integers 0≤ j0(i), j1(i)≤ ncomm
− 1 such that

f ncommm1(i)( f i (R1)) ∩ f j0(i)(R0) 6= ∅ and f ncommm0(i)( f i (R0)) ∩ f j1(i)R1 6= ∅.

Since the boundary of rectangle R0 is contained in the invariant manifolds of r ′Id and
r ′′Id, and

W u(r ′Id) tW s(r ′′Id),
W u(r ′′Id) tW s(r ′Id),

with the same being true for R1, r ′g1
and r ′′g1

, we conclude by expression (16) that, for all
0≤ i ≤ ncomm

− 1, W u( f i (r ′Id)) tW s( f j1(i)(r ′g1
)) and W u( f i (r ′g1

)) tW s( f j0(i)(r ′Id)).
Then a combinatorial argument implies that there exist 0≤ i, j ≤ ncomm

− 1 such that
W u( f i (r ′g1

)) tW s( f j (r ′Id)) and W u( f j (r ′Id)) tW s( f i (r ′g1
)) (see [1]).

Doing the same for R2, r ′g2
and r ′′g2

, and using the fact that topologically transverse
intersections are mapped into themselves under f, we can find 0≤ k ≤ ncomm

− 1
such that, for the same j as above, W u( f k(r ′g2

)) tW s( f j (r ′Id)) and W u( f j (r ′Id)) t
W s( f k(r ′g2

)).
Set r0 = f j (r ′Id), r1 = f i (r ′g1

) and r2 = f k(r ′g2
). Then these are hyperbolic f -periodic

saddle points and, for i ∈ {1, 2},

W u(r0) tW s(ri ) and W u(ri ) tW s(r0).

Fix any r̃0 in π−1(r0). By our construction, since there is a point r̃ ′0 ∈ π
−1(r0) whose

orbit is forever close to KId, we get that f̃ ncomm
(̃r0)= r̃0.

Recall that ncomm is a common period for r0, r1 and r2. The fact that W u(r0) tW s(r1)

implies that there exists a point r̃1 ∈ π
−1(r1) for which W u (̃r0) tW s (̃r1). Moreover,

arguing as above, there exists an integer n1 > 0 such that f̃ ncomm
(̃r ′1)= gn1

1 (̃r
′

1) for some
r̃ ′1 ∈ π

−1(r1), close to Kg1 . As r̃1, r̃ ′1 ∈ π
−1(̃r1), there exists h1 ∈ Deck(π) with r̃1 =

h1(̃r ′1). Hence, f̃ ncomm
(̃r1)= h1gn1

1 h−1
1 (̃r1).

Set g′1 = h1gn1
1 h−1

1 . As before, since W u (̃r0) tW s (̃r1) and f̃ ncomm
(̃r1)= g′1(̃r1), for all

m ≥ 0
W u (̃r0) tW s((g′1)

m (̃r1)).

As W u(r1) intersects W s(r0) in a topologically transverse way, there is a compact
connected piece of a branch of W u(r1), denoted by λ1, such that one of its endpoints
is r1 and it has a topologically transversal intersection with W s(r0). If λ̃1 is the lift of λ1

starting at the point r̃1, then there exists h′1 ∈ Deck(π) such that

λ̃1 tW s(h′1(̃r0)).

This implies that, if m1 > 0 is sufficiently large, then a piece of W u (̃r0) is sufficiently
close in the Hausdorff topology to (g′1)

m1 (̃λ1), something that forces W u (̃r0) to have a
topological transverse intersection with W s((g′1)

m1 h′1(̃r0)). Summarizing, for all m1 > 0
sufficiently large,

W u (̃r0) tW s((g′1)
m1 h′1(̃r0)).
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Arguing in an analogous way with respect to the point r2, we find h2, h′2 ∈ Deck(π)
and an integer n2 > 0 such that, if g′2 = h2gn2

2 h−1
2 , then, for all m2 > 0 sufficiently large,

W u (̃r0) tW s((g′2)
m2 h′2(̃r0)).

In order to conclude, let us show that m1, m2 > 0 can be chosen in a way that (g′1)
m1 h′1

and (g′2)
m2 h′2 do not commute. We started with deck transformations g1 and g2 for which

g1g2 6= g2g1 and gn
1 is not conjugated to gm

2 , for all integers n, m.As we already explained,
the above conditions follow from the fact that g1 and g2 correspond, in S, to different
geodesics.

In particular, this implies that the deck transformations g′1 and g′2 do not commute and
the fixed points of g′1 and g′2 at the boundary at infinity ∂D are all different, i.e., Fix(g′1) ∩
Fix(g′2)= ∅.

Fix two large integers m1, m2 > 0 and let us analyze (g′1)
m1 h′1 and (g′2)

m2 h′2. If they do
not commute, there is nothing to do.

So assume that (g′1)
m1 h′1 and (g′2)

m2 h′2 commute. Since they commute,
Fix((g′1)

m1 h′1)= Fix((g′2)
m2 h′2). Observe that either g′1 does not commute with (g′1)

m1 h′1
or g′2 does not commute with (g′2)

m2 h′2.
In fact, if they both commute, then

Fix(g′1)= Fix((g′1)
m1 h′1)= Fix((g′2)

m2 h′2)= Fix(g′2),

and this contradicts the fact that g′1 and g′2 do not commute. So, without loss of generality,
assume that g′1 and (g′1)

m1 h′1 do not commute. Hence Fix(g′1) ∩ Fix((g′1)
m1 h′1)= ∅.

We claim that (g′1)
m1+1h′1 = g′1(g

′

1)
m1 h′1 and (g′2)

m2 h′2 do not commute. Otherwise,

Fix((g′1)
m1+1h′1)= Fix((g′2)

m2 h′2)= Fix((g′1)
m1 h′1).

So, for all q̃ ∈ Fix((g′1)
m1 h′1),

q̃ = g′1((g
′

1)
m1 h′1(̃q))= g′1(̃q ),

which means that Fix((g′1)
m1 h′1)= Fix(g′1), which contradicts our previous assumption

that g′1 and (g′1)
m1 h1 do not commute. Hence (g′1)

m1+1h′1 and (g′2)
m2 h′2 do not commute.

So, we can always find arbitrarily large integers m1, m2 > 0 such that if g′′1 = (g
′

1)
m1 h′1

and g′′2 = (g
′

2)
m2 h′2, then g′′1 g′′2 6= g′′2 g′′1 and

W u (̃r0) tW s(g′′1 (̃r0)) and W u (̃r0) tW s(g′′2 (̃r0)). �

Now, as in the proof of Lemma 13, we construct the path connected sets θ and θ ′ using
the point r̃0 and the deck transformations g′′1 and g′′2 . Since f has a fully essential system
of curves C and the periodic points P associated to C , the exact same proof of Lemma 13
without any modifications shows that, for every g ∈ Deck(π),

W u (̃r0) tW s(g(̃r0)).

As r̃0 ∈ π
−1(r0) was arbitrary, after redefining p = r0, the proof is complete. �
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5. Proof of Theorem 3
Let p̃ ∈ D be a hyperbolic periodic saddle point for f̃ given by Theorem 2 (as before,
assume, without loss of generality, that p̃ is fixed and all four branches at p̃ are f̃ -invariant;
otherwise, consider some iterate of f̃ ). For all g ∈ Deck(π),

W u( p̃ ) tW s(g( p̃ )).

In fact, a stronger statement holds: the proof of Theorem 2 gives an unstable branch λ̃u

of W u( p̃ ) and a stable branch β̃s of W s( p̃ ) such that, for all g ∈ Deck(π),

λ̃u t g(β̃s). (17)

Fix some 0< ε < 1/10 small enough so that, for any z ∈ S, if z̃1, z̃2 ∈ π
−1(z), z̃1 6= z̃2,

then B2ε (̃z1) ∩ B2ε (̃z2)= ∅. Let λ̃ be a compact subarc of λ̃u , small enough so that one
of its endpoints is p̃ and λ̃⊂ Bε (̃q ). In a similar way, let β̃ be a compact subarc of β̃s,

so that p̃ is one of its endpoints and β̃ ⊂ Bε( p̃ ). The arc β̃ satisfies another property: its
endpoint which is not p̃ belongs to W u( p̃ ) and, actually, this endpoint is a C1-transversal
homoclinic point. It is possible to choose β̃ in this way because the proof of Theorem 2
implies the existence of a C1-transversal intersection between W s(Id( p̃ )) and W u( p̃ ).
When, instead of Id, we consider any other deck transformation, only topologically
transverse intersections are assured, but for the Id, C1-transversality was obtained.

Now choose h1, h2, . . . , h2g ∈ Deck(π), where g > 0 is the genus of S, such that the
geodesics in S associated to {h1, h2, . . . , h2g} generate the first homotopy group, π1(S).
Expression (17) implies the existence of a compact arc 3̃ such that λ̃u ⊃ 3̃⊃ λ̃ and

3̃ contains both endpoints of β̃, 3̃ t hi (β̃), for all 1≤ i ≤ 2g, the
endpoint of 3̃ which is not p̃ is contained in the interior of β̃ and

it is a C1-transversal homoclinic point.
(18)

Clearly, the above choice implies that every connected component of the complement of
π(3̃ ∪ β̃) is an open disk in S.

Let R ⊂ B2ε(p) be a closed rectangle which has p as a vertex and β = π(β̃) as one
side; R is very thin, close to β in the Hausdorff topology. ∂R is given by the union of four
arcs: α, α′, β and β ′. The arcs α and α′ are contained in W u(p) : α ⊂ π(̃λ) and α′ contains
the endpoint of β which is not p.

From the choice of 3̃,
π(3̃)⊃ α′. (19)

Clearly, β and β ′ are contained in W s(p) and β ′ is C1-close to β. As was explained when
defining β̃, the existence of such a rectangle R follows from Theorem 2, which says that
W u( p̃ ) has C1-transverse intersections with W s( p̃ ).

At this point, we need to determine the size of α and α′ and a number N > 0, as follows:
we know (from (18)) that 3̃ t hi (β̃), for all 1≤ i ≤ 2g. Choose β ′ sufficiently close to β
(so α and α′ are very small) in such a way that if R̃ is the connected component of π−1(R)
that contains β̃ (the sides of R̃ are denoted by α̃ ⊂ λ̃, α̃′, β̃ and β̃ ′; α̃, α̃′ ⊂W u( p̃ ) and
β̃, β̃ ′ ⊂W s( p̃ )), then

3̃ t hi (β̃
′) for all 1≤ i ≤ 2g.
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Now, fix some N > 0 such that

f̃ N (β̃ ′)⊂ β̃, f̃ N (̃α)⊃ 3̃⊃ α̃′ and f̃ N (̃α′)⊃ 3̃′, an arc
sufficiently C1-close to 3̃, whose endpoints
are also in β̃, in a way that 3̃′ t hi (β̃) and

3̃′ t hi (β̃
′), for all 1≤ i ≤ 2g. Moreover, the arcs in β̃

connecting the appropriate endpoints (the ones
which are closer) of 3̃ and 3̃′ are disjoint from 3̃ ∪ 3̃′.

(20)

Changing the subject a little, remember that §1.2 implies that

ρm( f )= Conv(ρerg( f ))= Conv(ρmz( f )).

We also know that every extremal point of the convex hull of ρmz( f ) is the rotation
vector of some recurrent point.

Let w be a extremal point of Conv(ρmz( f )), and let qw ∈ S be a recurrent point with

w = lim
n→±∞

9n
f (qw)

n
. (21)

From the existence of a fully essential system of curves C , it is easy to see that 0=
(0, . . . , 0) belongs to the interior of the Conv(ρerg( f )). So, w 6= 0.

Since qw is a recurrent point, fix a fundamental domain Q̃ ⊂ D. If we pick q̃w ∈
π−1(qw) ∩ Q̃, then there exists a sequence nk→∞ such that, for some gk ∈ Deck(π),

f̃ nk (q̃w) ∈ gk(Q̃) and dD( f̃ nk (̃qw), gk (̃qw)) <
1
k

for all k > 0.

For all k > 0, let βk be a path in S joining f nk (qw) to qw with l(βk) < 1/k. As ‖[I nk
qw ∗

βk] −9
nk
f (qw)‖ ≤ 2CA + 1 and w = limk→∞ 9

nk
f (qw)/nk, we get that

w = lim
k→∞

[I nk
qw ∗ βk]

nk
.

Let Ĩ nk
q̃w be the lift of I nk

qw with base point q̃w. Then Ĩ nk
q̃w is a path in D joining q̃w to

f̃ nk (q̃w) and so the loop I nk
qw ∗ βk lifts to a path Ĩ nk

q̃w ∗ β̃k joining q̃w to gk (̃qw).
For any g ∈ Deck(π), a path γ̃g joining any point q̃ ∈ D to g(̃q ) projects into a

loop γg = π(γ̃g) whose free homotopy class (and, in particular, its homology class) is
determined only by g. We denote by [g] = [γg] this homology class. Hence, we can write

w = lim
k→∞

[gk]

nk
. (22)

LEMMA 25. There exist deck transformations {m1, m2, . . . , m J } for some J > 0 such
that, for all sufficiently large k > 0 and for a fixed fundamental domain Q̃ ⊂ D, with nk >

2 · N > 0 (see (22) and (20)), if f̃ nk (Q̃) intersects gk(Q̃) for some deck transformation
gk (see expressions (21) and (22)), then there exist i0, i1 ∈ {1, . . . , J }, which depend on
k, such that f̃ N+nk (R̃) ∩ (m−1

i0
gkmi1(R̃))⊃ R̃1, where N > 0 is given in (20) and R̃1 is a

‘vertical rectangle’ in m−1
i0

gkmi1(R̃): two of its sides are contained, one in m−1
i0

gkmi1(β̃)

and the other in m−1
i0

gkmi1(β̃
′) and the two other sides are contained in the interior of

m−1
i0

gkhi1(R̃), each one connecting a point from one of the previous sides to the other.

Clearly, f̃ N+NQ̃ (R̃) ∩ R̃ ⊃ R̃0, a rectangle similar to R̃1, but contained in R̃.
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FIGURE 16. How to obtain the sets M̃3̃, M̃3̃′ and M̃min.

Proof. Define

M̃3̃ = filled(β̃ ∪ 3̃), M̃3̃′ = filled(β̃ ∪ 3̃′) and M̃min = M̃3̃ ∩ M̃3̃′ , (23)

where, for any compact connected subset K̃ of D,

filled(K̃ )= K̃ ∪ {all bounded connected components of K̃ c
}.

It is well known that fill(K̃ )c is open, connected and unbounded.
From the choice of 3̃, 3̃′ and β̃, the sets M̃3̃, M̃3̃′and M̃min are connected and

the complement of any of the three sets π(M̃3̃), π(M̃3̃′), π(M̃min) is a union of open
disks, see Figure 16. So, given a fundamental domain Q̃ ⊂ D of S, there exist deck
transformations {m1, m2, . . . , m J }, for some J > 0, such that

J⋃
i=1

mi (M̃min)

is a (bounded) connected closed set and its complement has a bounded connected
component denoted θ̃ which contains Q̃. Moreover,

dD

( J⋃
i=1

mi (M̃min), Q̃
)
> 1.

In particular, this implies that Q̃ ⊂ filled(
⋃J

i=1 mi (M̃min)).

The reason why the above is true is as follows: π−1(π(M̃min)) is a closed connected
equivariant subset of D and its complement has only open topological disks as connected
components, all with diameters uniformly bounded from above. Let 0̃ be a simple closed
curve which surrounds Q̃ and such that

dD(0̃, Q̃) > 1.

As 0̃ is compact and 3̃ t hi (β̃), 3̃′ t hi (β̃), for all 1≤ i ≤ 2g, there exists deck
transformations {m1, m2, . . . , m J }, for some J > 0, such that

⋃J
i=1 mi (M̃min) is

connected and its complement has a bounded connected component (the one we previously
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denoted by θ̃ ) which contains 0̃. Moreover, if ν is a simple arc which avoids unstable
manifolds of periodic saddle points and ν connects a point in the unbounded connected
component of (Neighborhood1/5(

⋃J
i=1 mi (M̃min)))

c to a point in Q̃, then, for some
i ∈ {1, 2, . . . , J }, ν must cross mi (R̃) from mi (β̃) to mi (β̃

′) or vice-versa. This happens
because, as diameter(R) < 2 · ε < 1/5,

Neighborhood1/5

( J⋃
i=1

mi (M̃min)

)
⊃

J⋃
i=1

mi (R̃).

Assume that k > 0 is sufficiently large, so that nk > 2 · N and

filled
( J⋃

i=1

mi (M̃3̃ ∪ M̃3̃′)

)
∩ gk

(
filled

( J⋃
i=1

mi (M̃3̃ ∪ M̃3̃′ ∪ R̃)
))
= ∅.

This implies the following remark.

Claim 5. f̃ nk (filled(
⋃J

i=1 mi (M̃3̃ ∪ M̃3̃′))) does not intersect gk(
⋃J

i=1 mi (3̃ ∪ 3̃
′)).

Proof of the claim. Otherwise, if some point

z̃ ∈ gk

( J⋃
i=1

mi (3̃ ∪ 3̃
′)

)
∩ f̃ nk

(
filled

( J⋃
i=1

mi (M̃3̃ ∪ M̃3̃′)

))
,

then f̃ −nk (̃z) ∈ gk(
⋃J

i=1 mi (̃α)) ∩ filled(
⋃J

i=1 mi (M̃3̃ ∪ M̃3̃′)), which is contained in

gk

(
filled

( J⋃
i=1

mi (M̃3̃ ∪ M̃3̃′ ∪ R̃)
))
∩ filled

( J⋃
i=1

mi (M̃3̃ ∪ M̃3̃′)

)
= ∅.

But this is a contradiction. �

The previous claim, although simple, will be very important.
As q̃w ∈ Q̃ ⊂ filled(

⋃J
i=1 mi (M̃min)) and f̃ nk (q̃w) ∈ gk(Q̃), we can argue as follows:

consider the connected components of

interior
{

filled
[

f̃ nk

( J⋃
i=1

mi (M̃min)

)
∪

( J⋃
i=1

mi (M̃min)

)]
∩

(
filled

( J⋃
i=1

mi (M̃min)

))c}
.

From the existence of q̃w, as above, there is one such connected component, denoted by
C̃k,which intersects gk(Q̃). The boundary of C̃k is a Jordan curve, made of two simple arcs
which only intersect at their endpoints: one arc is contained in ∂(filled(

⋃J
i=1 mi (M̃min)))

and its endpoints are in
⋃J

i=1 mi (β̃) and the other arc is equal to f̃ nk (̃ξ ), where ξ̃ is an arc
either contained in mi0(3̃) or mi0(3̃

′) (assume it is mi0(3̃)), for some i0 ∈ {1, . . . , J }.
As both endpoints of f̃ nk (̃ξ ) are contained in

⋃J
i=1 mi (β̃)⊂ filled(

⋃J
i=1 mi (M̃min)),

there exists some i1 ∈ {1, . . . , J ′} such that f̃ nk (̃ξ ) crosses gk .mi1(R̃) from outside
gk(filled(

⋃J
i=1 mi (M̃3̃ ∪ M̃3̃′ ∪ R̃))) to inside gk(Q̃) : that is, it crosses gk .mi1(R̃) from

gk .mi1(β̃) to gk .mi1(β̃
′), or vice-versa, in order to intersect gk(Q̃).
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From the definition of M̃min (see (23)), and our assumption that ξ̃ is contained
in mi0(3̃), there exists an arc ξ̃ ′ ⊂ mi0(3̃

′), whose endpoints are also contained in⋃J
i=1 mi (β̃)), such that

ξ̃ ⊂ interior
(

filled
( J⋃

i=1

mi (M̃min) ∪ ξ̃
′

))
. (24)

This implies that

Strip
[̃ξ ,̃ξ ′] = closure

(
filled

( J⋃
i=1

mi (M̃min) ∪ ξ̃
′

)∖
filled

( J⋃
i=1

mi (M̃min)

))
has two types of boundary points:
• an inner boundary, contained in ∂(filled(

⋃J
i=1 mi (M̃min))) and containing ξ̃ ; and

• an outer boundary, equal to ξ̃ ′.
The inclusion in (24), together with the facts that f̃ nk (̃ξ ) is the part of the boundary of

C̃k which crosses gk .mi1(R̃) from outside gk(filled(
⋃J

i=1 mi (M̃3̃ ∪ M̃3̃′ ∪ R̃))) to inside
and that f̃ nk (Strip

[̃ξ ,̃ξ ′]) ∩ gk(
⋃J

i=1 mi (3̃ ∪ 3̃
′))= ∅ (true by Claim 5), imply that f̃ nk (̃ξ ′)

also has to cross gk .mi1(R̃) from outside gk(filled(
⋃J

i=1 mi (M̃3̃ ∪ M̃3̃′ ∪ R̃))) to inside.
This implies the existence of a ‘rectangle’, as in the statement of the lemma contained in

f̃ nk (Strip
[̃ξ ,̃ξ ′]) ∩ gkmi1(R̃).

So f̃ nk+N (mi0(R̃)) ∩ gk .mi1(R̃) contains such a ‘rectangle’ and thus

f̃ nk+N (R̃) ∩ m−1
i0

gkmi1(R̃)⊃ R̃1.

Clearly, f̃ nk+N (R̃) ∩ (R̃)⊃ R̃0, by our choice of 3̃ and 3̃′. �

So we can finally build a ‘topological horseshoe’: arguing exactly as when all crossings
are C1-transversal, it can be proved that for every bi-infinite sequence in {0, 1}Z, denoted
by (an)n∈Z, there is a compact set which realizes it (not necessarily a point, as in the C1-
transverse case; see [6], and also [2], for a simpler application of the above construction).

If we denote by Mk ⊂ R the compact set associated with the sequence (1)Z and
M̃k = π

−1(Mk) ∩ R̃, then, by our construction, f̃ m(N+nk )(M̃k)= (m−1
i0

gkmi1)
m(M̃k),

for all m > 0. In particular, if r ∈ Mk and r̃ ∈ π−1(r) ∩ M̃k, then f̃ m(N+nk )(̃r) ∈
(m−1

i0
gkmi1)

m(M̃k), for all m > 0.
By our choice of R, for all m > 0, we can find β ′m , a path in R joining f m(N+nk )(r) to

r with l(β ′m) < 2ε. Thus, if Ĩ m(N+nk )
r̃ ∗ β̃ ′m is the lift of I m(N+nk )

r ∗ β ′m with base point r̃ ,
then Ĩ m(N+nk )

r̃ ∗ β̃ ′m is a path in D joining r̃ to (m−1
i0

gkmi1)
m (̃r). In particular,

[I m(N+nk )
p ∗ β ′m]

m(N + nk)
=
[(m−1

i0
gkmi1)

m
]

m(N + nk)
=

m[m−1
i0

gkmi1 ]

m(N + nk)
=
[m−1

i0
] + [gk] + [mi1 ]

N + nk
.

As w = limk→∞[gk]/nk , N > 0 is fixed and there is just a finite number of possibilities
for mi0 and mi1 , if k > 0 is large enough, then

[m−1
i0
] + [gk] + [mi1 ]

N + nk

is as close as we want to w.
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So given an error> 0, if k > 0 is sufficiently large, defining

gw = m−1
i0

gkmi1 and nw = N + nk, (25)

we get that ∥∥∥∥ [gw]nw
− w

∥∥∥∥< error.

Using the above construction, we will show that ρmz( f )= Conv(ρmz( f )). For this we
need Steinitz’s theorem [17]. This theorem says that if a point is interior to the convex hull
of a set X in Rn, it is interior to the convex hull of some set of 2n or fewer points of X.

Since ρmz( f ) is a compact set, Conv(ρmz( f ))= Conv(Ext(ρmz( f ))), where
Ext(ρmz( f )) is the set of all extremal points of Conv(ρmz( f )). Using Steinitz’s theorem,
any point in the interior of Conv(ρmz( f )) is a convex combination of at most 4g extremal
points.

Rational case. Let v be a point in int(Conv(ρmz( f ))) ∩Q2g . By the previous observation,
there exists at most 4g extremal points (here, without loss of generality, we will assume
that exactly 4g extremal points are used) w1, . . . , w4g such that

v =

4g∑
i=1

λiwi ,

where λi ∈ ]0, 1[, for all 1≤ i ≤ 4g and λ1 + · · · + λ4g = 1. By the previous construction,
for some general w, choose deck transformations gw1 , . . . , gw4g and natural numbers
nw1 , . . . , nw4g (as in expression (25)) such that

v ∈ int
(

Conv
(
[gw1 ]

nw1

, . . . ,
[gw4g ]

nw4g

))
.

This is always possible since [gwi ]/nwi can be chosen as close as desired to wi . As
[gwi ]/nwi ∈Q2g for all 1≤ i ≤ 4g, and v is a rational point in the interior of the convex
hull of these points, there exist λ′1, . . . , λ

′

4g , with λ′i ∈ (0, 1) ∩Q, λ′1 + · · · + λ
′

4g = 1,
such that

v =

4g∑
i=1

λ′i
[gwi ]

nwi

.

Thus, multiplying both sides of the previous equation by an appropriate positive integer,
we get positive integers aTotal, a1, . . . , a4g such that aTotal = a1 + · · · + a4g and

aTotalv =

4g∑
i=1

ai
[gwi ]

nwi

,

For each i ∈ {1, 2, . . . , 4g}, f̃ nwi (R̃) intersects gwi (R̃) in a vertical rectangle, as in
Lemma 25. Since f̃ commutes with every deck transformation, f̃ nw j (gwi (R̃)) intersects
gwi gw j (R̃) in a similar rectangle, see Figure 17.

Let Nproduct = nw1nw2 · · · nw4g and, for all 1≤ i ≤ 4g, let ui = Nproduct/nwi . By the
previous definitions, f̃ (ai ui )nwi (R̃)= f̃ ai Nproduct(R̃) satisfies that f̃ (ai ui )nwi (R̃) ∩ gai ui

wi (R̃)
contains a vertical rectangle, as in Lemma 25. So, considering all iterates of this type
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FIGURE 17. How to create intersections between iterates of R̃ and its translates.

for 1≤ i ≤ 4g and composing them, we obtain that f̃ aTotal Nproduct(R̃) ∩ hv(R̃) contains a
vertical rectangle, as in Lemma 25, where hv = ga1u1

w1 ◦ ga2u2
w2 ◦ · · · ◦ g

a4gu4g
w4g .

Clearly, as f̃ aTotal Nproduct(R̃) ∩ R̃ contains a vertical rectangle similar to R̃0, just thinner,
we can consider the compact f aTotal Nproduct -invariant subset Kv ⊂ R of the topological
horseshoe we just produced associated with the sequence (1)Z. If K̃v = R̃ ∩ π−1(Kv),
then

f̃ aTotal Nproduct(K̃v)= hv(K̃v).

So h−1
v f̃ aTotal Nproduct(K̃v)= K̃v, which implies, using Brouwer’s lemma on translation

arcs [5], that h−1
v f̃ aTotal Nproduct has a fixed point z̃v. Since

f̃ aTotal Nproduct (̃zv)= hv (̃zv)

and

[hv]
aTotal Nproduct

=
[ga1u1
w1 ◦ ga2u2

w2 ◦ · · · ◦ g
a4gu4g
w4g ]

aTotal Nproduct
=

4g∑
i=1

ai ui [gwi ]

aTotal Nproduct

=
1

aTotal

4g∑
i=1

ai
[gwi ]

nwi

= v,

we conclude that the f -periodic point zv = π(̃zv) has a rotation vector ρ( f, zv)= v. This
shows that v ∈ ρmz( f ). Since ρmz( f ) is compact, ρmz( f )= Conv(ρmz( f )).

Irrational case. For any v ∈ (Q2g)c ∩ int(ρmz( f )), exactly as in the rational case, one can
find 4g rational points w1, . . . , w4g in ρmz( f ) for which

v ∈ int(Conv({w1, . . . , w4g}))

and such that, for positive integers nw1 , . . . , nw4g , f̃ nwi (R̃) ∩ gwi (R̃) contains a vertical
rectangle, as in Lemma 25, for some gwi ∈ Deck(π) such that [gwi ]/nwi = wi .
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As above, let Nproduct = nw1 · · · nw4g and ui = Nproduct/nwi . Then, f̃ Nproduct(R̃) ∩
gui
wi (R̃) also contains a vertical rectangle R̃i as in Lemma 25.

Clearly,
[gui
wi ]

Nproduct
=

ui · [gwi ]

Nproduct
= wi .

So, going back to the surface S,

f Nproduct(R) ∩ R ⊇ R1 ∪ · · · ∪ R4g where Ri = π(R̃i ).

We claim that there exists an infinite sequence in {1, . . . , 4g}N, denoted by

a1a2 · · · an · · ·

such that, for some constant C∗ > 0,∥∥∥∥ n∑
i=1

[g
uai
wai
] − nNproduct · v

∥∥∥∥< C∗ for all n > 0.

The existence of this kind of sequence is what is behind, in the case of a torus, the
realization of irrational rotation vectors in the interior of the rotation set by compact
invariant sets with bounded mean motion in the universal cover. This was done for relative
pseudo-Anosov maps in [25, Lemma 3] and was extended to the original map using a
shadowing result, similar to Theorem 17 (see [25] for details).

Now let z ∈ R be any point which corresponds to the sequence a1a2 · · · an · · · ,

namely, f nNproduct(z) ∈ Ran , for all n ≥ 1. Clearly, for z̃ ∈ R̃ ∩ π−1(z) and any n ≥ 1,

f̃ n·Nproduct (̃z) ∈ g
ua1
wa1
· g

ua2
wa2
· · · guan

wan (R̃),

so not only the rotation vector of z is v, but

‖[αl
z] − l · v‖<C∗ + Nproduct · ‖v‖ + 2ε

+ max{dD( f̃ i (̃z), z̃) : z̃ ∈ D and 0≤ i ≤ Nproduct}.

This implies that the ω-limit set of z, denoted by Kv, has the property we are looking
for because, for any z′ ∈ Kv , ‖[αn

z′ ] − n · v‖ is smaller than some constant which is
independent of n and z′ ∈ Kv. �

6. Proof of Theorem 4
Here we just make use of the machinery developed in the proof of Theorem 3.

Suppose, by contradiction, that, for every M > 0, there exists ω ∈ ∂ρmz( f ), a
supporting hyperplane ω ∈ H ⊂ R2g , z ∈ S and n > 0 such that

([αn
z ] − n · ω) · −→vH > M,

where −→vH is the unitary normal vector to H pointing towards the connected component of
H c which does not intersect ρmz( f ).

We fix some fundamental domain of S, denoted by Q̃ ⊂ D. Then there exists z̃ =
π−1(z) ∩ Q̃ such that, for some g ∈ Deck(π),

f̃ n (̃z) ∈ g(Q̃) and ([g] − n · ω) · −→vH > M − CQ̃,
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where CQ̃ > 0 is a constant which depends only on the shape of Q̃. From the proof of the
previous theorem, we know that there are deck transformations {m1, m2, . . . , m J }, for
some J > 0, which do not depend on the choices of:

M > 0, ω ∈ ∂ρmz( f ), the supporting hyperplane ω ∈ H ⊂ R2g, z ∈ S and n > 0,

such that, for some i0 and i1 in {1, . . . , J }, there exists a compact subset K̃M for which

f̃ N+n(K̃M )= m−1
i0

gmi1(K̃M ),

where N > 0 is given in expression (20). Thus for some point z̃M ∈ D, f̃ N+n (̃zM )=

m−1
i0

gmi1 (̃zM ).

So, if M > 0 is large enough so that

([m−1
i0

gmi1 ] − (n + N ) · ω) · −→vH > 0,

we get a contradiction. �

7. Proof of Theorem 5
This proof is very similar to the proof of Theorem 2 of [2]. In particular, the following
lemma from that paper, which was proved for the torus, holds without any modifications
under the hypotheses of the present paper.

LEMMA 26. (Adapted [2, Lemma 6]) Suppose f : S→ S is a C1+ε diffeomorphism
isotopic to the identity which has a fully essential system of curves C . Let µ be a f -
invariant Borel probability measure such that its rotation vector ρm( f, µ) belongs to
∂ρmz( f ). Let H be a supporting hyperplane at ρm( f, µ) and let −→vH be the unitary
vector orthogonal to H, pointing towards the connected component of H c which does
not intersect ρmz( f ). Then, if x ′ ∈ supp(µ), for any integer n > 0,

|([αn
x ′ ] − n · ρm( f, µ)) · −→vH | ≤ 2+ M( f ), (26)

where M( f ) > 0 comes from Theorem 4.

Now the proof continues exactly as the proof of Theorem 2 of [2].
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