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Abstract

Let f be a homeomorphism of the closed annulus A that preserves the

orientation, the boundary components and the Lebesgue measure. Sup-

pose that f has a lift f̃ to the infinite strip Ã which has zero Lebesgue

measure rotation number and f̃ has only two fixed points in each funda-

mental domain, both in the interior of Ã. In this case, zero is an interior

point of the rotation set of f̃ .
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1 Introduction and statement of the main result

In this note we consider homeomorphisms f of the closed annulus A = S1×[0, 1],
which satisfy certain special conditions, namely:

1. f preserves the orientation and the boundary components of A;

2. f preserves the Lebesgue measure;

3. there exists a special lift f̃ of f to the universal cover of the annulus
Ã =IR×[0, 1], satisfying the following:

If p1 : Ã →IR is the projection on the first coordinate and p : Ã → A is
the covering mapping, we can define the displacement function φ : A→IR
as

φ(x, y) = p1 ◦ f̃(x̃, ỹ) − x̃, (1)

for any (x̃, ỹ) ∈ p−1(x, y). Then the rotation number of the Lebesgue
measure λ satisfies

ρ(λ)
def.
=

∫

A

φdλ = 0.

Following the usual definition (see [3]), we refer to such mappings as rota-
tionless homeomorphisms. Every time we say that f is a rotationless homeo-
morphism, a special lift f̃ is fixed, and is used to define φ and the rotation set

ρ(f̃)
def.
= {ω ∈ IR : ω =

∫
A

φdµ for some Borel probability f -invariant measure
µ}.

Boyland’s Conjecture says that if the rotation set of a rotationless home-
omorphism of the annulus is not reduced to a point, then zero is an interior
point of it.

Our theorem is the following:

Theorem 1 : If f̃ has exactly two fixed points in each fundamental domain of

A, both not in ∂Ã, then its rotation set is an interval and 0 is an interior point

of it.

Remark:
The above theorem is not complete solution to Boyland’s conjecture because

of our assumption on the fixed points of f̃ . Although this may not look like a
very restrictive assumption, a glance at our proof shows that it can not be easily
adapted to the general setting.

2 An auxiliary lemma

Lemma 1 : If f is a rotationless homeomorphism, then it has at least one fixed

point of zero rotation number in the interior of the annulus.
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Proof:

Consider some z̃ ∈ [0, 1]×]0, 1[ which is not fixed under f̃ . Then there exists

a ball B ⊂ [0, 1]×]0, 1[ centered at z̃ such that B ∩ f̃(B) = ∅. If for some integer

n > 1, B∩ f̃n(B) 6= ∅, then Brouwer’s theory implies that f̃ has a fixed point in

interior(Ã). So assume that B is wandering. In this case, as f̃ preserves area,
for each integer k > 0, if N is the first integer larger than 10k/λ(B) > 0, then
there exists nk ∈ {1, 2, ..., N} such that

λ(f̃nk(B)) ∩ (] −∞,−k − 1] × [0, 1] ∪ [k + 1, +∞[×[0, 1]) >
1

2
λ(B).

Taking a subsequence if necessary, we can suppose without loss of generality,
that for each integer k > 0, λ(f̃nk(B)) ∩ [k + 1, +∞[×[0, 1] > 1

2
λ(B). But this

means that there exists a subset Bk ⊂ B, λ(Bk) > λ(B)/2, such that for any
z̃ ∈ Bk,

p1(f̃
nk(z̃)) − p1(z̃)

nk

≥
k

11k/λ(B)
=

λ(B)

11
> 0.

As ρ(λ) = 0, the facts that

• the above expression is true for every integer k > 0;

• λ(Bk) > λ(B)/2;

imply that 0 is an interior point of ρ(f̃). Finally using the main result of [6],

which says that if f̃ has positively and negatively returning disks, then there
are fixed points in the interior of the annulus, we obtain a fixed point for f̃ in
interior(Ã). 2

3 Proof of the main theorem

First, note that there is a version of the Conley-Zehnder theorem for the annulus
which implies that every rotationless homeomorphism g has at least two fixed
points with zero rotation number, that is, the special lift g̃ has at least two
fixed points in each fundamental domain. See, for instance, corollary 3.3 of [4]
to obtain at least one fixed point, and the main theorem of [7] to get the second
fixed point. We are assuming that f has exactly two fixed points with zero
rotation number, say z1 and z2, and they both belong to the interior(A).

If the rotations in S1×{0} and S1×{1} have opposite sign, then the theorem

is proved because in this case ρ(f̃) would have negative and positive elements.

So, as we are assuming that there are no fixed points in the boundary of Ã,
without loss of generality we can suppose that the rotation numbers in the
boundary components of the annulus are both positive.

As in [1] and [2], let B− be the union of all unbounded connected components
of

B =
⋂

n≤0

f̃n(] −∞, 0] × [0, 1]),
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which by theorem 1 of [1] is not empty and intersects {0} × [0, 1]. Clearly,

B− ∩ ∂Ã = ∅ and f̃(B−) ⊂ B−.

Lemma 3.1 of [2] says that if ω(B−)
def
=
⋂∞

n=0

(⋃∞

i=n f̃ i(B−)
)

= ∅, then

ρ(f̃) contains negative values and we are done. Thus, we can suppose that
ω(B−) 6= ∅.

Since the rotation number of f̃ restricted to S1×{0} and S1×{1} is strictly

positive, there exists σ > 0 such that p1(f̃(x̃, i)) > x̃ + 2σ for all x̃ ∈ IR and i =
0, 1. Let ǫ > 0 be sufficiently small such that for all (x̃, ỹ) ∈ IR×{[0, ǫ]∪[1−ǫ, 1]},
p1 ◦ f̃(x̃, ỹ) > x̃ + σ.

Let us first consider the case when S1 × {[0, ǫ/2] ∪ [1 − ǫ/2, 1]} intersects
p(ω(B−)). Then there is a real a such that

ω(B−) ∩ {a} × [0, ǫ] 6= ∅ or ω(B−) ∩ {a} × [1 − ǫ, 1] 6= ∅. (2)

Without loss of generality, we can suppose that the first intersection in
expression (2) is non-empty. The fact that ω(B−) ⊂ B− is closed implies
that there must be a δ ≤ ǫ such that (a, δ) ∈ ω(B−), and such that for all
0 ≤ ỹ < δ, (a, ỹ) /∈ ω(B−) (remember that IR × {0} and IR × {1} do not inter-
sect B−). In other words, (a, δ) is the “lowest” point of ω(B−) in {a} × [0, ǫ].
We denote by v the interval {a} × [0, δ[.

Let Ω be the connected component of (ω(B−) ∪ v)
c
that contains ]−∞, a[×{0}.

Now we remember two results from [2] (proposition 3.2 and corollary 2.7):

Lemma 2 : The following holds: Ω ⊂ f̃(Ω) and λ(f̃(Ω) \ Ω) > 0.

Lemma 3 : Let (f, f̃) be a rotationless homeomorphism and let Ω be an open

subset of the strip, Ω ⊂ (−∞, 0]×[0, 1], such that Ω ⊂ f̃(Ω) and λ(f̃(Ω)\Ω) > 0.
Then 0 is an interior point of the rotation set of f̃ .

So, in this case, our main theorem follows.
Let us deal with the remaining case, when S1 × {[0, ǫ/2] ∪ [1 − ǫ/2, 1]} ∩

p(ω(B−)) = ∅, but ω(B−) is not empty. Let A∗ be the connected component

of
(
p(ω(B−))

)c

which contains S1 × {0}. The next result is lemma 3.3 of [2]:

Lemma 4 : The set A∗ is a f -invariant open sub-annulus.

The boundary of A∗ has two connected components, one is S1 × {0} and
the other is denoted by K. Clearly, K ⊂ S1 × [ǫ/2, 1 − ǫ/2] and as A∗ is a f -
invariant annulus, we can compute the rotation number of the Lebesgue measure
restricted to it,

∫
A∗

φdλ. If it is negative, then the proof is over. If it is positive,

then
∫

Ac
∗

φdλ < 0 and the proof is also over. So, in the remainder of our proof

we suppose it is zero.
An important thing to consider is the rotation set of f̃ restricted to K,

defined as follows:

ρ(f̃ |K) = {ω ∈ IR : ω =
∫

A
φdµ for some Borel probability

f -invariant measure µ supported on K}
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It is clearly a non-empty closed interval or a single point. If ρ(f̃ |K) does
not contain 0, then either it is contained in ]−∞, 0[ and our theorem is proved
because we assumed that the boundary components of the annulus have positive
rotation number or ρ(f̃ |K) is contained in ]0,∞[. In this case, clearly B−∩(S1×
{0} ∪ K) = ∅ and if we define

B−
∗ = B− ∩ A∗,

we get that B−
∗ 6= ∅. This follows from the proof of theorem 1 of [1] (remember

that B− ∩ (S1 × {0} ∪ K) = ∅) and the fact that the rotation number of the

Lebesgue measure restricted to A∗ is zero. As f̃(B−
∗ ) ⊂ B−

∗ , we get that

ω(B−
∗ )

def
=

∞⋂

n=0

(
∞⋃

i=n

f̃ i(B−
∗ )

)
= ω(B−) ∩ A∗ = ∅,

so our theorem follows from lemma 3.1 of [2]. Thus we are left to consider the

case when 0 ∈ ρ(f̃ |K). In this case, proposition 5.4 of [5] says that a fixed point
of f with zero rotation number belongs to K. Using lemma 1, one concludes
that f has a fixed point with zero rotation number in A∗. So, it follows that
{z1, z2} ⊂ closure(A∗).

Finally, let A∗∗ be the connected component of
(
p(ω(B−))

)c

which contains

S1 ×{1}. As above, A∗∗ is a f -invariant open sub-annulus. As it does not have
fixed points with zero rotation number, lemma 1 implies that

∫
A∗∗

φdλ can not

be zero, proving our main theorem because
(∫

A∗∗

φdλ
)

.
(∫

Ac
∗∗

φdλ
)

< 0.
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