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05508-090 São Paulo, SP, Brazil

Abstract

We consider C1+ǫ diffeomorphisms of the torus, denoted f, homotopic

to the identity and whose rotation sets have interior. We give some uni-

form bounds on the displacement of points in the plane under iterates of a

lift of f, relative to vectors in the boundary of the rotation set and we use

these estimates in order to prove that if such a diffeomorphism f preserves

area, then the rotation vector of the area measure is an interior point of

the rotation set. This settles a strong version of a conjecture proposed

by P. Boyland. We also present some new results on the realization of

extremal points of the rotation set by compact f -invariant subsets of the
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1 Introduction and main results

The main motivation for this paper is to study how rigid is the displacement

of points in the plane under the action of a lift of a homeomorphism of the

two dimensional torus homotopic to the identity (more precise explanations will

be given below). The similar problem for an orientation preserving homeomor-

phism of the circle was already studied by H. Poincaré. He proved that given an

orientation preserving circle homeomorphism f : S1 → S1 and a lift of f to the

real line, denoted f̃ : IR → IR, there exists a number ω ∈ IR, called the rotation

number of f̃ , such that

∣∣∣f̃n(x̃)− x̃− n.ω
∣∣∣ < 2, for all x̃ ∈ IR and any integer n > 0.

The situation for homeomorphisms of the torus is more complicated. In

general there is no such ω as above and some points may not even have a rotation

vector, the generalization of rotation number to this new setting. In order to

make things precise and to present our main results and some motivation, a few

definitions are necessary:

Basic notation and some definitions:

1. Let T2 = IR2/ZZ2 be the flat torus and let p : IR2 −→ T2 be the associated

covering map. Coordinates are denoted as (x̃, ỹ) ∈ IR2 and (x, y) ∈ T2.

2. Let Diff1+ǫ
0 (T2) be the set of C1+ǫ (for some ǫ > 0) diffeomorphisms of

the torus homotopic to the identity and let Diff1+ǫ
0 (IR2) be the set of

lifts of elements from Diff1+ǫ
0 (T2) to the plane. Maps from Diff1+ǫ

0 (T2)

are denoted f and their lifts to the plane are denoted f̃ . By Diff0
0 (T

2)

we mean the set of homeomorphisms of T2 homotopic to the identity and

Diff0
0 (IR

2) is the set of lifts of elements from Diff0
0 (T

2) to the plane. In

this C0-setting, maps of the torus are also denoted f and their lifts to the

plane are denoted f̃ .

3. Let p1,2 : IR2 −→ IR be the standard projections; p1(x̃, ỹ) = x̃ and

p2(x̃, ỹ) = ỹ.
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4. Given f ∈ Diff0
0 (T

2) and a lift f̃ ∈ Diff0
0 (IR

2), the so called rotation

set of f̃ , ρ(f̃), can be defined as follows (see [11]):

ρ(f̃) =
⋂

i ≥ 1

⋃

n ≥ i

{
f̃n(z̃)− z̃

n
: z̃ ∈ IR2

}
(1)

This set is a compact convex subset of IR2 (see [11]), and it was proved in

[5] and [11] that all points in its interior are realized by compact f -invariant

subsets of T2, which can be chosen as periodic orbits in the rational case.

By saying that some vector ρ ∈ ρ(f̃) is realized by a compact f -invariant

set, we mean that there exists a compact f -invariant subset K ⊂ T2 such

that for all z ∈ K and any z̃ ∈ p−1(z)

lim
n→∞

f̃n(z̃)− z̃

n
= ρ. (2)

Moreover, the above limit, whenever it exists, is called the rotation vector

of the point z, denoted ρ(z).

As the rotation set is a compact convex subset of the plane, there are three

possibilities for its shape:

1. it is a point;

2. it is a linear segment;

3. it has interior;

An important problem in this set up is to decide which subsets can be realized

as rotation sets of homeomorphisms of the torus homotopic to the identity. For

instance, with a simple rotation, all points can be realized. Some linear segments

can be realized, for others it is not know. And what about the case when the

rotation set has interior. Which sets can be realized? Rational polygons [9] can,

but what else? We do not consider this problem, but we refer to [6] and [10].

In the first possibility above, Fábio Tal and Andrés Koropecki [8] presented

an example of an area preserving C∞ diffeomorphism of the torus homotopic
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to the identity, denoted f, which has a lift f̃ to the plane such that ρ(f̃) = {0}

and some points in the plane have unbounded orbits in every direction. In

particular, there exists a point x̃0 ∈ IR2 such that

∣∣∣f̃n(x̃0)− x̃0 − n.0
∣∣∣ is unbounded with n > 0.

This type of behavior is usually called sub-linear displacement because, although

there are unbounded f̃ -orbits in the plane, this behavior is not captured by the

rotation set.

Related to the second possibility for the shape of the rotation set, Pablo

Davalos [4] analyzed the following situation: Assume f : T2 → T2 is a homeo-

morphism of the torus homotopic to the identity and f̃ : IR2 → IR2 is a lift of

f such that some linear segment AB is contained in the boundary of ρ(f̃) for

some A,B rational vectors. He considered two situations:

• ρ(f̃) = AB;

• ρ(f̃) has interior;

In the first case, let −→v ⊥ be a unit vector orthogonal to AB with any of

the two possible orientations and in the second, let −→v ⊥ be the unit vector

orthogonal to AB such that −−→v ⊥points towards ρ(f̃). Then Davalos proved

the following:

Theorem [Davalos] : There exists a number M > 0 such that

〈
f̃n(x̃)− x̃− n.A,−→v ⊥

〉
≤ M, for all x̃ ∈ IR2 and any integer n > 0.

Our main result is similar to the above one, but it deals with all the possible

situations when ρ(f̃) has interior. As our methods rely on some results from

[1], we need a stronger hypothesis, namely we assume f ∈ Diff1+ǫ
0 (T2).

In order to state our main results, let us introduce a little more notation:

Given a compact convex subset K ⊂ IR2, for every α ∈ ∂K, there exists a

straight line r containing α such that K ⊂ r ∪ {one connected component of

rc}. This line is called a supporting line at α. For instance, in case α is a vertex,

there are infinitely many supporting lines at α.
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Theorem 1 : Let f ∈ Diff1+ǫ
0 (T2) be such that ρ(f̃) has interior. Then, there

exists a number Mf > 0 such that for any ω ∈ ∂ρ(f̃) and any supporting line r

at ω, if −→v ⊥ is the unitary vector orthogonal to r, pointing towards the connected

component of rc which does not intersect ρ(f̃), then

〈
f̃n(x̃)− x̃− n.ω,−→v ⊥

〉
≤ Mf , for all x̃ ∈ IR2 and any integer n > 0.

Remarks:

• Our proof will show that Mf can be precisely computed from f and more-

over, the same number works for any map in Diff1+ǫ
0 (T2) sufficiently

C1-close to f ;

• This theorem may be used as a tool to numerically estimate rotation sets.

For instance if one is considering a family of maps ft ∈ Diff1+ǫ
0 (T2) an

interesting problem connected to our result is to study how and when ρ(f̃t)

changes as t varies;

As a corollary of the above result, we prove a stronger version of Boyland’s

conjecture in the torus case:

Theorem 2 : Let f ∈ Diff1+ǫ
0 (T2) be a Lebesgue measure preserving diffeo-

morphism such that ρ(f̃) has interior. Then the rotation vector of the Lebesgue

measure is an interior point of ρ(f̃).

Remember that the rotation vector of the Lebesgue measure is defined as:

ρ(Leb)
def.
=

∫

T2

φ(x)dLeb, (3)

where φ : T2 → IR2 is the displacement function given by φ(x) = f̃(x̃) − x̃, for

any x̃ ∈ p−1(x). In general, if we denote by

Minv(f) = {subset of all f -invariant Borel probability measures in T2},

then for any µ ∈ Minv(f), we define the rotation vector of µ, ρ(µ), as

ρ(µ)
def.
=

∫

T2

φ(x)dµ.
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These definitions are clearly motivated by Birkhoff’s ergodic theorem, since for

every x ∈ T2 and any integer n > 0,

1

n

n−1∑

i=1

φ ◦ f i(x) =
f̃n(x̃)− x̃

n
, for any x̃ ∈ p−1(x).

So, given µ ∈ Minv(f), for µ a.e. x ∈ T2, Birkhoff’s ergodic theorem implies

that the following limit exists

lim
n→∞

1

n

n−1∑

i=1

φ ◦ f i(x) = lim
n→∞

f̃n(x̃)− x̃

n
= ρ(x) (the rotation vector of x)

and ∫

T2

ρ(x)dµ =

∫

T2

φ(x)dµ = ρ(µ).

One last remark about theorem 2 is the following: the original problem posed

by P. Boyland was to prove that if interior(ρ(f̃ )) 6= ∅ and ρ(Leb) = (0, 0), then

(0, 0) ∈ interior(ρ(f̃)), but in the homeomorphism setting. A proof of this

result in this C0-setting was obtained by Fábio Tal [12].

The next result is another easy corollary of theorem 1 and lemma 6. Before

stating it, we have to define a few more concepts. Let K ⊂ IR2 be a compact and

convex subset. We say that some point z ∈ K is an extremal point if, whenever

z is the convex combination of two other points z1, z2 ∈ K, then either z = z1

or z = z2. Clearly, extremal points are always in the boundary of K. We say

that z ∈ K is a vertex if z is an extremal point and there are at least two, which

implies infinitely many, supporting lines at z.

Corollary 3 : Let f ∈ Diff1+ǫ
0 (T2) be such that ρ(f̃) has interior. Suppose

for some µ ∈ Minv(f), ρ(µ) ∈ ∂ρ(f̃) is a vertex. Then, supp(µ) is a compact

f -invariant set which realizes the rotation vector ρ(µ). Moreover, there exists

Mµ > 0 such that for every x ∈ supp(µ), for any x̃ ∈ p−1(x) and any integer

n > 0,
∥∥∥f̃n(x̃)− x̃− n.ρ(µ)

∥∥∥ < Mµ, that is, there is no sub-linear displacement

in supp(µ). In case ρ(µ) is an extremal point, but not a vertex, if we assume

that the intersection of the (unique) supporting line at ρ(µ) with ρ(f̃) is just

ρ(µ), then supp(µ) also realizes the rotation vector ρ(µ). But in this case there

may be sub-linear displacement in supp(µ).
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Remarks:

• in the general case when ρ(µ) is an extremal point, we do not know if the

above corollary holds;

• It was proved by Franks [7] that rational extremal points of the rotation

set are realized by periodic orbits, but for general extremal points, the

problem was open.

In an ongoing work with Andre de Carvalho we are generalizing some results

from [1] to other surfaces. After that, using the methods from this paper, we

plan to prove a version of theorem 2 to surfaces of genus ≥ 2.

For homeomorphisms of the torus homotopic to Dehn twists, results analog

to theorem 1 and 2 were proved in [2].

This paper is organized as follows. In the second section we present a result

from [1] important for us and an idea of the proof of theorem 1 in an easy case.

In the third section we prove some auxiliary lemmas and after that, we prove

our main theorems.

2 An important result and some ideas on the

proofs

In [1], we considered diffeomorphisms f ∈ Diff1+ǫ
0 (T2) which preserve area.

But the preservation of area is not necessary to prove the following result, whose

proof is contained in the proof of theorem 6 of [1].

Theorem 4 : Suppose f belongs to Diff1+ǫ
0 (T2) and (0, 0) ∈ int(ρ(f̃)). Then,

f has a hyperbolic periodic saddle point Q ∈ T2 such that any Q̃ ∈ p−1(Q) is

f̃-periodic and for any pair of integers (a, b), Wu(Q̃) ⋔ W s(Q̃+ (a, b)).

Remarks:

1. Clearly, the rotation vector of Q is (0, 0).
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2. By saying that Wu(Q̃) ⋔ W s(Q̃+ (a, b)) we mean that they have a topo-

logically transverse intersection, which of course is not necessarily C1

transversal. See figure 1 for a picture which clarifies this. For a pre-

cise explanation, see definition 9 (right before the statement of lemma 1)

of [1].

3. In the proof of theorem 4, we obtain a C1-transverse intersection at least

when (a, b) = (0, 0).

The converse of this result is also true, namely if some map f ∈ Diff1+ǫ
0 (T2)

has a hyperbolic periodic point Q̃ such that for three non collinear integer

vectors (a1, b1), (a2, b2), (a3, b3) we have Wu(Q̃) ⋔ W s(Q̃ + (ai, bi)), for i =

1, 2, 3 and (0, 0) belongs to the convex hull of {(a1, b1), (a2, b2), (a3, b3)}, then

(0, 0) ∈ int(ρ(f̃)). This follows from the following: The fact that Wu(Q̃) ⋔

W s(Q̃+(ai, bi)) implies that we can produce a topological horseshoe at Q ∈ T2

such that for some sequence in the symbolic dynamics (one corresponding to

points visiting only one particular rectangle in the horseshoe), there is a periodic

orbit for f whose rotation vector is
(

ai

Ni
, bi
Ni

)
, for some integer Ni > 0. And so,

(0, 0) ∈ interior of the Conv.Hull{

(
a1
N1

,
b1
N1

)
,

(
a2
N2

,
b2
N2

)
,

(
a3
N3

,
b3
N3

)
},

which is contained in the interior of ρ(f̃) because of its convexity.

The argument used to prove theorem 1 can be summarized as follows in

the specific situation when (0, 0) ∈ int(ρ(f̃)), ω =(0, 1) ∈ ∂ρ(f̃) and there is

a horizontal supporting line denoted r at (0, 1). This is clearly not a general

setting: Both the point ω ∈ ∂ρ(f̃) and the direction of the supporting line may

be irrational, but it is illustrative of the general strategy.

Let Q̃ ∈ IR2 be a hyperbolic periodic point for f̃ as in theorem 4 which

by remark 3 after it, has a C1-transverse homoclinic intersection. Without

loss of generality, we can assume that Q̃ is fixed, otherwise we consider the

map g̃ = f̃n
Q̃ , where n

Q̃
is the period of Q̃ (maybe twice the period if the

eigenvalues at Q are negative). The rotation set changes as ρ(g̃) = n
Q̃
.ρ(f̃).

So (0, 0) ∈ int(ρ(g̃)), (0, n
Q̃
) ∈ ∂ρ(g̃) and there is a horizontal supporting line
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denoted r′ at (0, n
Q̃
). In the beginning of the proof of theorem 1 we show that

the statement of the theorem holds for f̃ , if and only if, it holds for g̃, which is

actually something very easy to prove. So, let us assume that n
Q̃
= 1.

The existence of such a point Q̃ as above implies that there are arbitrarily

small topological rectangles D
Q̃
⊂ IR2 such that:

Q̃ is a vertex of D
Q̃

and the sides of D
Q̃
, denoted α

Q̃
, β

Q̃
, γ

Q̃
and δ

Q̃

are contained in W s(Q̃),Wu(Q̃),W s(Q̃) and Wu(Q̃) respectively,
(4)

see figure 2. As D
Q̃

is arbitrarily small, we can assume that

D
Q̃
∩ (D

Q̃
+ (a, b)) = ∅, for all integer pairs (a, b) 6= (0, 0),

which means that p(D
Q̃
) ⊂ T2 is also a topological rectangle.

Moreover, there exists an integer

N ′′ > 0 such that for all n ≥ N ′′ we have: (5)

1. f̃n(β
Q̃
) and f̃n(δ

Q̃
) have topologically transverse intersections with α

Q̃
+

(0, 1), γ
Q̃
+ (0, 1) and with α

Q̃
+ (1, 0), γ

Q̃
+ (1, 0);

2. f̃n(γ
Q̃
) ⊂ α

Q̃
;

Now we construct a closed path connected set θ ⊂ IR2 such that:

1. θ = θ + (1, 0);

2. θ contains D
Q̃
+ i(1, 0), for all integers i;

3. θ contains two compact simple arcs η1 and η2 of the following form: The

arc η1 starts at Q̃, goes through f̃N ′′

(β
Q̃
) until it crosses α

Q̃
+ (1, 0) and

γ
Q̃
+(1, 0). The arc η2 starts at f̃

N ′′

(δ
Q̃
∩α

Q̃
), goes through f̃N ′′

(δ
Q̃
) until

it crosses α
Q̃
+ (1, 0) and γ

Q̃
+ (1, 0), see figure 3;

4. clearly, θ contains η1(or 2) + i(1, 0), for all integers i;

5. θ is bounded in the (0, 1) direction, that is, θ is contained between two

straight lines, both parallel to (1, 0), and the distance between them is

denoted d(1,0);
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Now, assume that the uniform bound in the statement of theorem 1 does not

hold. This means that for every M > 0, there exists x̃M ∈ IR2 and an integer

nM > 0, nM
M→∞
→ ∞, such that

p2 ◦ f̃
nM (x̃M )− p2(x̃M )− nM > M.

If we choose a sufficiently large M > 0 and the point x̃M below θ satisfying

dist.(x̃M , θ) ≤ 2 + 2.d(1,0), then we get that

f̃nM (θ) intersects θ + (0, nM +
⌊
M − 4− 4.d(1,0)

⌋
).

More precisely, for some integer a,

f̃nM+N ′′

(D
Q̃
) ∩
(
D

Q̃
+ (a, nM +

⌊
M − 5− 4.d(1,0)

⌋
)
)

contains a connected topological rectangle R̃∗ as in figure 4. So, there is a

topological horseshoe in DQ = p(D
Q̃
) ⊂ T2 and in particular, this topological

horseshoe has a point which is fixed under iterates of fnM+N ′′

and this point

belongs to p(R̃∗) ⊂ DQ. So, it has a rotation vector whose second coordinate is

equal to
nM +

⌊
M − 5− 4.d(1,0)

⌋

nM +N ′′
,

which is larger than one, if M > 0 is sufficiently large. So we produced a point

whose rotation vector belongs to the connected component of rc which does not

intersect the rotation set. This contradiction proves the theorem.

3 Proofs

In the first subsection, we prove some auxiliary results.

3.1 Auxiliary results

In the next lemma we are going to produce, for every possible direction −→v , an

unbounded closed connected set θ−→v ⊂ IR2 which separates the plane into two

special unbounded connected components (maybe there are other components

in the complement of θ−→v ), by concatenating integer translates of appropriate
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pieces of the stable and unstable manifolds of the hyperbolic f̃ -periodic point Q̃

given in theorem 4 (in the applications, the direction −→v is that of the supporting

line at the rotation vector ω in the boundary of ρ(f̃) we are considering). The

subset θ−→v is a general version of the set θ considered in the previous section.

As we already explained, for any Q̃ ∈ p−1(Q), where Q is given in theorem

4, there are arbitrarily small topological rectangles D
Q̃

⊂ IR2 whose sides are

contained in W s(Q̃) and Wu(Q̃), see (4). In order to construct the sets θ−→v , let

us first consider the following basic pieces, denoted Γ(1,0) and Γ(0,1) (suppose

some Q̃ ∈ p−1(Q) is fixed):

1. Γ(1,0) is given by the union of D
Q̃
with D

Q̃
+(1, 0) and the region bounded

by them and two simple arcs ηH1 , ηH2 defined as follows: the arc ηH1 starts

at Q̃, goes through f̃N ′′

(β
Q̃
) until it crosses α

Q̃
+ (1, 0) and γ

Q̃
+ (1, 0).

The arc ηH2 starts at f̃N ′′

(δ
Q̃
∩α

Q̃
), goes through f̃N ′′

(δ
Q̃
) until it crosses

α
Q̃
+ (1, 0) and γ

Q̃
+ (1, 0). We say that the beginning of Γ(1,0) is at DQ̃

and the end is at D
Q̃
+ (1, 0).

2. Γ(0,1) is given by the union of D
Q̃
with D

Q̃
+(0, 1) and the region bounded

by them and two simple arcs ηV1 , ηV2 analogously defined: the arc ηV1 starts

at Q̃, goes through f̃N ′′

(β
Q̃
) until it crosses α

Q̃
+ (0, 1) and γ

Q̃
+ (0, 1).

The arc ηV2 starts at f̃N ′′

(δ
Q̃
∩α

Q̃
), goes through f̃N ′′

(δ
Q̃
) until it crosses

α
Q̃
+(0, 1) and γ

Q̃
+(0, 1), see figure 5. As above, we say that the beginning

of Γ(0,1) is at DQ̃
and the end is at D

Q̃
+ (0, 1).

Remember that the definition of N ′′ appears in expression (5) and below it.

Also note that all crosses mentioned above are topologically transverse intersec-

tions in the sense of theorem 4.

Lemma 5 : Given a vector −→v ∈ IR2, we can construct a path connected closed

set θ−→v ⊂ IR2 such that θ−→v is obtained by the union of integer translates of Γ(1,0)

and Γ(0,1) in a way that:

1. θ−→v intersects every straight line parallel to −→v ⊥, a vector orthogonal to

−→v ;
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2. θ−→v is bounded in the direction of −→v ⊥, that is, θ−→v is contained between

two straight lines l− and l+, both parallel to −→v , and the distance between

these lines is less then 3+ 2.max{diameter(Γ(1,0)), diameter(Γ(0,1))}. So,

in particular (θ−→v )
c has at least two unbounded connected components,

one containing l− and the other containing l+;

Proof:

To prove this lemma, we fix some Q̃ ∈ IR2 as in theorem 4 and consider

a straight line r passing through Q̃ parallel to −→v . Without loss of generality,

we can assume that Q̃ = (0, 0) and −→v = (a, b) (so let −→v ⊥ = (−b, a)), with

a ≥ 0, b ∈ IR and a2 + b2 = 1. If a = 0, then

θ−→v = ∪
i∈integers

(
Γ(0,1) + (0, i)

)

and if b = 0,
θ−→v = ∪

i∈integers

(
Γ(1,0) + (i, 0)

)
,

so first, let us consider the case a, b > 0. We denote the Euclidean distance

between two points in the plane by dEuc(•, •).

We start building the piece of θ−→v which follows the semi-line contained in r

given by {y = (b/a).x : x ≥ 0} . Our strategy is the following. We compute the

numbers

∣∣〈−→v ⊥, (1, 0)
〉∣∣ def.= a0 = dEuc(Q̃ + (1, 0), r) = |−b|

and∣∣〈−→v ⊥, (0, 1)
〉∣∣ def.= b0 = dEuc(Q̃+ (0, 1), r) = a.

(6)

If a0 ≤ b0, then we start with Γ(1,0). In this case n0
def.
= (1, 0). If a0 > b0, then

we start with Γ(0,1). In this case n0
def.
= (0, 1).

So we have our first approximation, which is θ0+−→v
def.
= Γn0

, where n0 ∈

{(0, 1), (1, 0)} is chosen as explained above. Now, in order to decide which of the

subsets, Γ(1,0) + n0 or Γ(0,1) + n0 we add, we make the following computations

analogous to the ones in (6):

∣∣〈−→v ⊥, n0 + (1, 0)
〉∣∣ def.= a1 = dEuc(Q̃+ n0 + (1, 0), r)

and∣∣〈−→v ⊥, n0 + (0, 1)
〉∣∣ def.= b1 = dEuc(Q̃ + n0 + (0, 1), r).
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If a1 ≤ b1, then we add Γ(1,0)+n0. If a1 > b1, then we add Γ(0,1)+n0. Now we

have θ1+−→v
def.
= Γn0

∪ (Γn1
+ n0), where as before n1 ∈ {(0, 1), (1, 0)}. Continuing,

in order to decide which of the subsets Γ(1,0) + n0 + n1 or Γ(0,1) + n0 + n1 we

add, we compute:

∣∣〈−→v ⊥, n0 + n1 + (1, 0)
〉∣∣ def.= a2 = dEuc(Q̃+ n0 + n1 + (1, 0), r)

and∣∣〈−→v ⊥, n0 + n1 + (0, 1)
〉∣∣ def.= b2 = dEuc(Q̃ + n0 + n1 + (0, 1), r).

If a2 ≤ b2, then we add Γ(1,0)+n0+n1. If a2 > b2, then we add Γ(0,1)+n0+n1.

Now we have θ2+−→v
def.
= Γn0

∪ (Γn1
+ n0) ∪ (Γn2

+ n0 + n1), again for some

n2 ∈ {(0, 1), (1, 0)}. After l steps we arrive at

θl+−→v
def.
= Γn0

∪ (Γn1
+ n0) ∪ ... ∪ (Γnl

+ n0 + n1 + ...+ nl−1).

By construction, the points Q̃, Q̃+ n0, Q̃+ n0 + n1, ..., Q̃+n0 +n1 + ...+ nl

all belong to θl+−→v . Now let us prove that for all integers l ≥ 0, dEuc(Q̃ +

n0 + n1 + ... + nl, r) ≤ 1. Clearly, dEuc(Q̃, r) = 0 and dEuc(Q̃ + n0, r) ≤

min{|a| , |b|} ≤ 1. So, suppose by induction that for some integer i′ ≥ 0,

dEuc(Q̃ + n0 + n1 + ... + ni, r) ≤ 1, for all 0 ≤ i ≤ i′. This means that if

we define ∆i′
def.
=
〈−→v ⊥, n0 + n1 + ...+ ni′

〉
, then |∆i′ | ≤ 1.

If ∆i′ > 0, then

−1 ≤
〈−→v ⊥, n0 + n1 + ...+ ni′ + (1, 0)

〉
= ∆i′ − b < ∆i′ ≤ 1.

If ∆i′ < 0, then

−1 ≤ ∆i′ <
〈−→v ⊥, n0 + n1 + ...+ ni′ + (0, 1)

〉
= ∆i′ + a ≤ 1.

These estimates clearly imply that dEuc(Q̃+n0+n1+ ...+ni′+1, r) ≤ 1 because

ni′+1 ∈ {(0, 1), (1, 0)} is chosen in a way to minimize the distance. So, our claim

is proved.

If ∆i′ = 0, this means that Q̃+n0 +n1 + ...+ni′ belongs to r, which means

that −→v is a rational direction and so

θ−→v = ∪
i∈integers

(
Γn0

∪ (Γn1
+ n0) ∪ ... ∪ (Γni′

+ n0 + n1 + ...+ ni′−1)+
+i.(n0 + n1 + ...+ ni′−1 + ni′)

)
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In case ∆i 6= 0 for all integers i > 0, we define θ+−→v
def.
= ∪

i≥0
θi+−→v . In order to

get the whole θ−→v , we have to construct the other side of it. For this, let

θi−−→v
def.
= (Γn0

− n0) ∪ (Γn1
− n1 − n0) ∪ ... ∪ (Γni

− ni − ni−1...− n1 − n0)

and analogously θ−−→v
def.
= ∪

i≥0
θi−−→v . As we did above, for any integer i ≥ 0 points

of the form Q̃− n0 − n1...− ni all belong to θ−−→v and

dEuc(Q̃− n0 − n1...− ni, r) =
∣∣〈−→v ⊥,−n0 − n1...− ni

〉∣∣ =

=
∣∣〈−→v ⊥, n0 + n1 + ...+ ni

〉∣∣ = |∆i| ≤ 1.

So, finally we make θ−→v
def.
= θ−−→v ∪ θ+−→v . It is a closed, connected subset of the

plane and from the properties obtained above, the projection of θ−→v in the direc-

tion of−→v ⊥ has diameter smaller than 3+2.max{diameter(Γ(0,1)), diameter(Γ(1,0))},

so it is contained between two straight lines parallel to −→v , whose distance is

less than 3 + 2.max{diameter(Γ(0,1)), diameter(Γ(1,0))}. The fact that θ−→v in-

tersects every straight line parallel to −→v ⊥ is easy. If a > 0 and b < 0, the proof

is analogous. ✷

The next lemma uses theorem 1 and easily implies theorem 2:

Lemma 6 : Suppose f ∈ Diff1+ǫ
0 (T2) has a rotation set ρ(f̃) with interior.

Let µ ∈ Minv(f) be such that the rotation vector of µ, ρ(µ) ∈ ∂ρ(f̃). Let r be a

supporting line at ρ(µ) and −→v ⊥ be the unitary vector orthogonal to r, pointing

towards the connected component of rc which does not intersect ρ(f̃). Then, if

x′ ∈ supp(µ), for any x̃′ ∈ p−1(x′) and any integer n > 0,

∣∣∣
〈
f̃n(x̃′)− x̃′ − n.ρ(µ),−→v ⊥

〉∣∣∣ ≤ 2 +Mf , (7)

where Mf comes from theorem 1.

Proof:

Let us denote rc = Ω1 ∪ Ω2, in a way that ρ(f̃) ⊂ r ∪ Ω1.
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Fact 3.1: Every ergodic measure ξ that appears in the ergodic decomposition

of µ has rotation vector contained in r.

Proof:

This follows from ρ(f̃)∩Ω2 = ∅ and ρ(µ) ∈ r. By contradiction, assume that

for some ξ in the ergodic decomposition of µ, ρ(ξ) does not belong to r. Then

ρ(ξ) ∈ Ω1. Here we are using the non-obvious fact that

ρ(f̃) = {ω ∈ IR2 :∃η ∈ Minv(f) such that ρ(η) =

∫

T2

φ(x)dη = ω},

see [11]. Therefore, as ξ is in the ergodic decomposition of µ, the fact that

ρ(ξ) ∈ Ω1 would imply the existence of another ergodic measure ξ′ also in

the ergodic decomposition of µ such that ρ(ξ′) ∈ Ω2 (because ρ(µ) ∈ r). This

contradiction proves the fact. ✷

To prove lemma 6, we again argue by contradiction. So let us suppose

that there exists x′ ∈ supp(µ) and some integer n0 > 0, such that for any

x̃′ ∈ p−1(x′),

〈
f̃n0(x̃′)− x̃′ − n0.ρ(µ),

−→v ⊥
〉
< −2−Mf . (8)

Theorem 1 implies that if the present lemma does not hold, then the above

is the only possibility.

Expression (8) and a simple continuity argument clearly imply that there

exists ǫ′ > 0 such that for all x ∈ Bǫ′(x
′) (the ball of radius ǫ′ centered at x′)

and any x̃ ∈ p−1(x),

〈
f̃n0(x̃)− x̃− n0.ρ(µ),

−→v ⊥
〉
< −2−Mf . (9)

Now let ν ∈ Minv(f) be an ergodic measure in the ergodic decomposition

of µ such that x′ ∈ supp(ν). As ρ(ν) ∈ r (see fact 3.1), ρ(ν) = ρ(µ) + λ.−→v ,

where −→v is parallel to r and λ is some adequate real number. So,
〈
ρ(ν),−→v ⊥

〉
=

〈
ρ(µ),−→v ⊥

〉
.

We also define the relative to µ displacement function in the direction of

−→v ⊥ as φµ,−→v ⊥ : T2 → IR given by φµ,−→v ⊥(x) =
〈
f̃(x̃)− x̃− ρ(µ),−→v ⊥

〉
, for any

x̃ ∈ p−1(x). Then the following consequences hold:

14



1.
∫
T2 φµ,−→v ⊥(x)dν = 0;

2. for any x̃ ∈ IR2 and any integer n > 0, if x = p(x̃), then

〈
f̃n(x̃)− x̃− n.ρ(µ),−→v ⊥

〉
=

n−1∑

i=0

φµ,−→v ⊥(f i(x));

So from Atkinson’s lemma (see [3]) we get that for every 0 < ǫ < ǫ′, there

exists x∗ ∈ Bǫ(x
′), such that for some integer n1 > n0 and any x̃∗ ∈ p−1(x∗),

∣∣∣
〈
f̃n1(x̃∗)− x̃∗ − n1.ρ(µ),

−→v ⊥
〉∣∣∣ < 1.

Thus, from expressions (9) and the above one, we finally obtain that

〈
f̃n1−n0(f̃n0(x̃∗))− f̃n0(x̃∗)− (n1 − n0).ρ(µ),

−→v ⊥
〉
> 1 +Mf ,

a contradiction with theorem 1. So expression (8) does not hold and the lemma

is proved. ✷

3.2 Proof of theorem 1

First, let us consider a map g̃(•)
def.
= f̃ q(•) − (p, s) for some rational vector(

p
q
, s
q

)
∈ int(ρ(f̃)), not necessarily in irreducible form, in a way that g has a

FIXED hyperbolic saddle point Q ∈ T2 with positive eigenvalues, as in theorem

4. For example,
(

p
q
, s
q

)
could be equal to

(
1
3 ,

2
3

)
, but q = 30, p = 10 and s = 20.

It is easy to see that ρ(g̃) = q.ρ(f̃) − (p, s). So if we fix some ω ∈ ∂ρ(f̃) and

a supporting line r at ω, parallel to some unitary vector −→v , the corresponding

rotation vector and supporting line for g̃ are: q.ω− (p, s) ∈ ∂ρ(g̃) and a straight

line r′ passing through q.ω − (p, s), also parallel to −→v .

Let us show that if the theorem holds for g, then it also holds for f. For

this, assume there exists a number Mg > 0 such that for any τ ∈ ∂ρ(g̃) and

any supporting line r at τ, if −→v ⊥ is the unitary vector orthogonal to r, pointing

towards the connected component of rc which does not intersect ρ(g̃), then

〈
g̃n(x̃)− x̃− n.τ,−→v ⊥

〉
≤ Mg, for all x̃ ∈ IR2 and any integer n > 0. (10)
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From the relation between ρ(g̃) and ρ(f̃),

ω ∈ ∂ρ(f̃) ⇔ q.ω − (p, s) ∈ ∂ρ(g̃).

Expression (10) implies that
〈
f̃n.q(x̃)− x̃− n.q.

τ + (p, s)

q
,−→v ⊥

〉
≤ Mg, for all x̃ ∈ IR2 and any integer n > 0.

Which gives,

〈
f̃n(x̃)− x̃− n. τ+(p,s)

q
,−→v ⊥

〉
≤ Mg + q.

(
sup
z̃∈IR2

∥∥∥f̃(z̃)− z̃
∥∥∥+ sup

ι∈ρ(f̃)

‖ι‖

)
,

for all x̃ ∈ IR2 and any integer n > 0.

As sup
ι∈ρ(f̃)

‖ι‖ ≤ sup
z̃∈IR2

∥∥∥f̃(z̃)− z̃
∥∥∥ and the map τ→ τ+(p,s)

q
is a bijection from

∂ρ(g̃) to ∂ρ(f̃), if we choose Mf = Mg + 2q.

(
sup
z̃∈IR2

∥∥∥f̃(z̃)− z̃
∥∥∥
)
, then we are

done.

So it remains to show that the present theorem holds for g. Let us fix some

τ ∈ ∂ρ(g̃) and any supporting line r at τ, parallel to some vector −→v . Also,

let −→v ⊥ be the unitary vector orthogonal to r, pointing towards the connected

component of rc which does not intersect ρ(g̃). From lemma 5, fixed some Q̃ ∈

p−1(Q), there exists a subset θ−→v ⊂ IR2 as in the statement of that lemma,

containing Q̃. This means that there are straight lines, l− and l+, both parallel to

−→v , at a distance less then dθ
def.
= 3+2.max{diameter(Γ(0,1)), diameter(Γ(1,0))}

such that θ−→v is contained between l− and l+ and −→v ⊥ points from l− to l+. Let

U−
−→v

and U+
−→v

be the unbounded connected components of (θ−→v )
c, such that −→v ⊥

points towards U+
−→v
, or equivalently l− ⊂ U−

−→v
and l+ ⊂ U+

−→v
. Note that θ−→v also

intersects all straight lines parallel to −→v ⊥.

If (a, b) is an integer vector such that
∣∣〈(a, b),−→v ⊥

〉∣∣ > dθ, then θ−→v ∩ (θ−→v +

(a, b)) = ∅. More precisely, if
〈
(a, b),−→v ⊥

〉
> dθ, then (θ−→v + (a, b)) ⊂ U+

−→v
and if

〈
(a, b),−→v ⊥

〉
< −dθ, then (θ−→v + (a, b)) ⊂ U−

−→v
.

Now let us suppose by contradiction that there exists x̃∗ ∈ IR2 and an integer

n∗ > N ′′ > 0 such that
〈
g̃n

∗

(x̃∗)− x̃∗ − n∗.τ,−→v ⊥
〉
> 100 + 20.dθ +N ′′.

〈
τ,−→v ⊥

〉
. (11)
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Remember that N ′′ was defined in expression (5) and
〈
τ,−→v ⊥

〉
> 0 because

(0, 0) ∈ int(ρ(g̃)). Without loss of generality, we can assume that x̃∗ belongs to

the connected component of (l−)
c contained in U−

−→v
and dEuc(x̃

∗, l−) < 1.

Now let us choose some integer vector (a+, b+) such that

50+3.dθ+(n∗+N ′′).
〈
τ,−→v ⊥

〉
<
〈
(a+, b+),

−→v ⊥
〉
< 70+10.dθ+(n∗+N ′′).

〈
τ,−→v ⊥

〉
.

From what we explained above, (θ−→v + (a+, b+)) ⊂ U+
−→v

and g̃n
∗

(x̃∗) belongs

to the connected component of (l+ + (a+, b+))
c contained in U+

−→v
+ (a+, b+).

So, g̃n
∗

(θ−→v ) intersects θ−→v +(a+, b+). More precisely, there exist integer vectors

(ai, bi), (af , bf ) such that Q̃ + (ai, bi) ∈ θ−→v , Q̃ + (af , bf) ∈ θ−→v + (a+, b+) and

at least one of the following possibilities hold:

• g̃n
∗

(ηH1 + (ai, bi)) and g̃n
∗

(ηH2 + (ai, bi)) intersect both α
Q̃
+ (af , bf ) and

γ
Q̃
+ (af , bf );

• g̃n
∗

(ηV1 + (ai, bi)) and g̃n
∗

(ηV2 + (ai, bi)) intersect both α
Q̃
+ (af , bf ) and

γ
Q̃
+ (af , bf );

In any of the above cases, from the definition of N ′′ (see expression (5)), we

get that g̃n
∗+N ′′

(D
Q̃
+(ai, bi))∩ (D

Q̃
+(af , bf)) contains a topological rectangle

R̃fast with one side contained in α
Q̃
+ (af , bf ), another one contained in γ

Q̃
+

(af , bf ) and the two other sides contained in the interior of D
Q̃
+ (af , bf ), see

figure 6. This implies that there is a compact g-invariant set contained in

DQ = p(D
Q̃
) ⊂ T2 whose dynamics is semi-conjugate to that of a horseshoe. In

particular, there exists a fixed point for gn
∗+N ′′

in p(R̃fast) (such a point must

exist, but it may not be unique) and its rotation vector with respect to g̃ is

ρfast =

(
af − ai, bf − bi

n∗ +N ′′

)
.

As Q̃, Q̃+ (ai, bi) ∈ θ−→v and Q̃+ (af , bf) ∈ θ−→v + (a+, b+) we get that

〈(
af − ai, bf − bi

n∗ +N ′′

)
− τ,−→v ⊥

〉
=

〈(
Q̃+ (af , bf )− (Q̃ + (ai, bi))

n∗ +N ′′

)
− τ,−→v ⊥

〉
>

>
50 + 3.dθ + (n∗ +N ′′).

〈
τ,−→v ⊥

〉
− 2.dθ

n∗ +N ′′
−
〈
τ,−→v ⊥

〉
=

50 + dθ
n∗ +N ′′

> 0.
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And this is a contradiction, because from
〈
ρfast − τ,−→v ⊥

〉
> 0 we get that

ρfast /∈ ρ(g̃). So expression (11) does not hold and thus, for all x̃ ∈ IR2 and any

integer n > 0,

〈
g̃n(x̃)− x̃− n.τ,−→v ⊥

〉
≤ max{

(
100 + 20.dθ +N ′′.

〈
τ,−→v ⊥

〉)
, Mg,N ′′},

where the number

Mg,N ′′

def.
= 2N ′′.

(
sup
x̃∈IR2

‖g̃(x̃)− x̃‖

)

appears because for any x̃ ∈ IR2 and any 0 ≤ n ≤ N ′′,
〈
g̃n(x̃)− x̃− n.τ,−→v ⊥

〉
≤ ‖g̃n(x̃)− x̃‖+ n. ‖τ‖ ≤

≤ n.

(
sup
x̃∈IR2

‖g̃(x̃)− x̃‖

)
+ n. sup

ι∈ρ(g̃)

‖ι‖ ≤ 2n.

(
sup
x̃∈IR2

‖g̃(x̃)− x̃‖

)
≤ Mg,N ′′ .

So we can take

Mg
def.
= max{

(
100 + 20.dθ +N ′′. sup

x̃∈IR2

‖g̃(x̃)− x̃‖

)
,Mg,N ′′},

because sup
x̃∈IR2

‖g̃(x̃)− x̃‖ ≥ sup
ι∈ρ(g̃)

‖ι‖ ≥
〈
τ,−→v ⊥

〉
for every τ ∈ ∂ρ(g̃) and −→v ⊥ an

unitary vector orthogonal to the supporting line at τ oriented in an adequate

way. ✷

3.3 Proof of theorem 2

By contradiction, suppose that the rotation vector of the Lebesgue measure,

denoted ω, belongs to ∂ρ(f̃). Let r be a supporting line at ω and let −→v ⊥ be a

unitary vector orthogonal to r, pointing towards the connected component of

rc that does not intersect ρ(f̃). From lemma 6 we get that for all x̃ ∈ IR2 and

any integer n > 0 (remember that supp(Lebesgue) = T2),

∣∣∣
〈
f̃n(x̃)− x̃− n.ω,−→v ⊥

〉∣∣∣ ≤ 2 +Mf , where Mf comes from theorem 1. (12)

Now pick some point z ∈ T2 which is periodic and has a rotation vector

ν ∈ int(ρ(f̃)). As ν /∈ r,
〈
ν,−→v ⊥

〉
6=
〈
ω,−→v ⊥

〉
. So, for any z̃ ∈ p−1(z),

〈
f̃n(z̃)− z̃ − n.ω,−→v ⊥

〉

n

n→∞
→

〈
ν − ω,−→v ⊥

〉
6= 0,

18



a contradiction with expression (12). This proves the theorem. ✷

3.4 Proof of corollary 3

First, assume ρ(µ) ∈ ∂ρ(f̃) is a vertex. Then there are 2 different supporting

lines at ρ(µ) (in fact, there are infinitely many), denoted r1 and r2, and
−→v ⊥

1 ,
−→v ⊥

2

are unitary vectors orthogonal, respectively to r1 and r2, such that −−→v ⊥
1 and

−−→v ⊥
2 point towards ρ(f̃). From lemma 6, for every x ∈ supp(µ), for any x̃ ∈

p−1(x) and any integer n > 0,

∣∣∣
〈
f̃n(x̃)− x̃− n.ρ(µ),−→v ⊥

i

〉∣∣∣ ≤ 2 +Mf , for i = 1, 2.

As −→v ⊥
1 and −→v ⊥

2 are not parallel, the above expression implies that there

exists Mµ which depends only on Mf and −→v ⊥
1 ,

−→v ⊥
2 such that for every x ∈

supp(µ), for any x̃ ∈ p−1(x) and any integer n > 0,

∥∥∥f̃n(x̃)− x̃− n.ρ(µ)
∥∥∥ < Mµ.

This proves the first part of the corollary. Now suppose ρ(µ) is an extremal

point of ρ(f̃) and the intersection of the supporting line r at ρ(µ) with ρ(f̃)

is just ρ(µ). From lemma 6, we know that for every x ∈ supp(µ) and for any

x̃ ∈ p−1(x),

lim
n→∞

〈
f̃n(x̃)− x̃

n
− ρ(µ),−→v ⊥

〉
= 0, (13)

where −→v ⊥ is the unitary vector orthogonal to r oriented in a way that −−→v ⊥

points towards ρ(f̃). As the accumulation points of the sequence

f̃n(x̃)− x̃

n

belong both to r (this follows from expression (13)) and to ρ(f̃), there is just

one accumulation point and it is ρ(µ). So ρ(x) exists and it is equal to ρ(µ). As

x is any point in supp(µ), this proves the second part of the corollary. ✷
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Figure captions.

Figure 1. Diagram showing a topologically transverse intersection between Wu(Q̃)

and W s(Q̃ + (a, b)).

Figure 2. Diagram showing the topological rectangle D
Q̃
.

Figure 3. Diagram showing the set θ.

Figure 4. Diagram showing the topological rectangle R̃∗ contained in f̃nM+N ′′

(D
Q̃
)∩(

D
Q̃
+ (a, nM +

⌊
M − 5− 4.d(1,0)

⌋
)
)
.

Figure 5. Diagram showing the sets: (a) Γ(0,1) and (b) Γ(1,0).

Figure 6. Diagram showing the the topological rectangle R̃fast.
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