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Critical number in scattering and escaping problems in classical mechanics
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Scattering and escaping problems for Hamiltonian systems with two degrees of freedom of the type kinetic
plus potential energy arise in many applications. Under some discrete symmetry assumptions, it is shown that
important quantities in these problems are determined by a relation between two canonical invariant numbers
that can be explicitly computed.
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[. INTRODUCTION of freedom. For a given value of angular momentum and in
convenient time and length scales, its Hamiltonian function
Invariant tori are very important in the global dynamics of is
two degree of freedom Hamiltonian systems. They split the
phase space in unconnected components. For several physi- 1 , X 2
cally relevant systems, the existence of such invariant tori, 1= 3 (Px TPy +V(X.y), V(Xy)=3|3~ C+y?)?)
and therefore the understanding of the phase-space structure, 2)
can only be achieved through numerical investigation. In this
paper, an analytic criterion for the existence of certain famiwherex is the radial coordinate andis the coordinate along
lies of invariant tori is presented. These families are importhe dipole axis. It is well known tha¥ satisfies the above
tant in some problems of escaping from and scattering off @roperties, so the level curves of the Stormer poteitiate
potential well. topologically as in Fig. 1V has two critical points, a mini-
The class of systems such that our results apply can bewum P, and a saddle-poinP, such thatV(P¢)=E,,
described as follows. The Hamiltonian function is of the type=1/32 and for energy values belol,, the corresponding
kinetic plus potential energy, energy-level sets have two distinct components, one bounded
and one unbounded. Fdd=E, these two components
1) touch at the equilibrium corresponding ®; and for H
>E,, the two components merge into a single unbounded
component.
whereV has two critical points: a minimur,, and a saddle- In this paper, two different problems will be considered
point Ps. The energy of the saddle point, which will be for systems similar to the Stormer system, contained in the
called critical energy and will be denoted,,, is V(Ps)  class defined below expressi@h. The first is the so-called
=E.. For energy values belovE, the corresponding ‘“escaping problem” or “escaping from a potential well,”
energy-level sets have two distinct components, one bounddbat is: for a given distribution of initial conditions inside the
and one unbounded. The bounded component projects to ti@tential well with fixed energye>E. to determine the
configuration spacex(y) inside what will be called the po- amount of solutions that remain inside the potential well af-
tential well (see Fig. 1 for a topological representation of theter timet>0. This type of escaping problem had been re-
level curves olV). ForH=E,,, these two components touch
at the equilibrium corresponding @ and forH>E,,, the i o(b)
two components merge into a single unbounded component.
Notice thatE, plays an important role in the dynamics. For y
energy values belok,,, there is always a large quantigiy
a measure sengef bounded orbits trapped inside the poten-

H=3(pz+p))+V(x.y),

tial well, while for energy values abovE,, this may not . -—
occeur. R — |D
An important example that belongs to the above class is — x T

the Hamiltonian system for the motion of a charged particle
in the field of a magnetic dipolésee, for instancgl]), also
called the Stormer system. Due to the rotation symmetry of
the magnetic field, this system can be reduced to two degrees
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cently considered by Contopoulet al. [2] and Kandrup gularities in scattering functions, one expects that the regu-
et al.[3] in a series of papers that were the main motivationlarity of these functions may strongly depend on the exis-
for the present paper. Escaping problems appear in sever@nce or not of a family of blocking tori.

branches of physics and chemistisee, for instancd,3,4] Our criterion for the existence of blocking tori is a con-
and references therginThe second problem addressed insequence of some previous mathematical and numerical in-
this paper is the so-called ‘“scattering problem.” For in- vestigations on systems with “saddle-center loop8=11].
stance, consider the Stormer system and a family of initiaPart of this work is presented in Sec. Il. In Sec. Il the results
conditions parametrized by an “impact-parametdy’with presented in Sec. Il are applied to the Stormer systems and to
constant energ\e>E., see Fig. 1. Most of these initial three other systems that were studied32,13. Section IV
conditions will be scattered off the potential well and will is a conclusion where we point out the main ideas in this
become asymptotically free asends to infinity. These scat- paper.

tered solutions can be characterized by their asymptotic

angle ¢(b) as shown in Fig. 1. In this case, the scattering Il. THE CRITICAL NUMBER

problem consists in determining the angiéb) as a function o ) ) S
of the impact-parametds. The scattering problem for other N order to simplify the presentation, this section is di-
systems(or even for this ongcan be defined in terms of Vided in several subsections.

other input-output variables instead lof- ¢(b). Scattering

problems have been extensively studied, in particular in the A. Hypotheses and the saddle-center loop map

context of chaotic systems. The reader can find many refer- ajthough the results described here are valid for a wider
ences on the subject in the special volume, Chaos 3, issuedass of systemssee references belgvin this section, we

(1993 (in particular, se¢5] for a review and alsd6]. The  only consider Hamiltonian systems with two degrees of free-
scattering problem for the Stormer system has been consigom of the form kinetic plus potential energy:

ered, for instance, ifi7].
From a theoretical point of view, escaping and scattering H=3[pZ+p3]+U(q;,02), 3
problems are better understood for systems that either are
integrable or have fully hyperbolic recurrent sets. The syswhere,
tems considered here are mostly in between these two ex- ) )
treme cases. In the context of the Stormer system, our maif® U IS analytic,
result for the escaping problem can be summarized in the
following way. ForE larger than but close t&, solutions (b)) U(dy,0d2) =3[ — v?af+ 0?q3]+ O((ai+a3)*?),
initially in the potential well can escape to infinity. This cer- with @>0,>0,
tainly happens for solutions on tkxeaxis with initial velocity
parallel to it. Nevertheless, escape may not occur for moqtc)ﬁqzu(ql,o)zoy for any value ofqy,
solutions, if there exists a torus that projects to the configu-
ration space like the one shown in Fig(a# This torus  (d) equationU(q;,00=0 has a nontrivial nondegenerated
blocks the “exit” from the potential well for “most” solu-  ¢qution gy and no solutions in(0q;c).
tions. To be more precise about what we mean by “most
solutions,” it is necessary to consider the linkit-E. and The potential of the Stormer syste(@) satisfies these
to introduce the concept of a family of blocking tori.fAm-  hypotheses withy; =x, q,=y, and with @;,q,)=(0,0) re-
ily of blocking_tori is a set o_f invariant tori, one toruscTor placed byP,. The above systems have two important prop-
each Ee (E.,E), for some E>E, sufficiently close to E, erties
such that each { splits the phase space into one bounded L S .
component and one unbounded component and such f_hat'l{ (1) the cl)rlg'ln' IS an t_eqm(ljlbrlum p'om; c;;sadgle-cer.lter
tends to a curve GsE—E,,. Each torus E is called a ype, namely, it is associated to a pair of rear and a pair

_ . . LT
blocking torus By Tg— C asE—E. we mean convergence of imaginary * i« eigenvalues,

with respect to the Hausdorff metric, namely, (2) the phase-space plafg;,p;,q,=p,=0} is invariant
and it contains an orbil’ homoclinic to the originp;=
maxdistz,C): zeTg+maxdist(z,Te): zeCl—0 S e g0, 9P1=P,
as E—E,. The invariant set given by the saddle-center equilibrium

and the homoclinic orbil’ will be calledsaddle-center loop
The main result in this paper is to give a computable criteFrom a topological point of view, a saddle-center loop is
rion for the existence of blocking tori in a class of systemssimilar to a periodic orbit(of “infinite period”) in phase
that include the Stormer system. The implications of the exspace. Moreover, for systeii3), the saddle-center loop is
istence of blocking tori for scattering problems is the follow- placed exactly where one can expect a possible family of
ing. A blocking torus restrict the access of all incoming so-blocking tori to accumulatéthink about the Stormer sys-
lutions to a small phase-space region inside the potentidkm). These facts suggest two things: first, one can use Poin-
well. Since most of the recurrent dynamics happens insideare sections to study the saddle-center loop and second,
the potential well and recurrence is the main source of sinfamilies of blocking tori may be related to invariant circles
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Using these coordinates and the approximatignto H,
one can parametrizg, as

wl—E
vo

Q,=06=const>0, P;=

Similarly, one gets explicit expressions B, andX ;. The
integration of the linearized vector field near the origin gives
the linear flow

9
. . . my (&7 0 0 0
FIG. 2. Diagram showing the PoinCagectionsy,;, %,, andZ 5 1 ot
used to define mappindsandG. P1(t) _ 0 e 0 0
Qa(t) 0 0 cogwt) sin(wt)

on the induced Po_lncarmap_. Howev_gr, some difficulties P,(t) 0 0 —sinwt) codwt)
appear when one tries to define a Poincaep for a saddle-
center loop due to the presence of the unstable equilibrium in Q.(0)
the loop. In order to overcome this difficulty, a Poincarap P,(0)
for the saddle-center loop will be defined by the composition 1 0,0 |- )
of two distinct maps: one related to the passage of solutions P,(0)

near the saddle-center equilibrium denoted_bgnd another

related to the traveling of solutions ndlardenoted byG. In This flow induces a discontinuous Poincameap L: 3,

order to define these mappings, it is first necessary to study, : bv the followi lati Ei
the dynamics near the saddle-center equilibrium. The qua- 2U 23 given by the following relationsee Fig. 2

dratic part ofH is given by (i) If (Q2,P,,E)e> is such thatwl >E (namely, P,
>0) thenL(Q,,P,,E)=(Q;,P5,E') e, is given by[Z
12 2T LT — 12021 22042
Hi=z[p1+p2l+z [—voai+was]. 4 andZz’ denote the column vectorsg,P,) and Q5,P3),
This implies that the origin has a one-dimensional stabIJeSpeCt'Vely]’
manifold W®, a one-dimensional unstable manifaM', and E'=E, Z'=R(6)Z
a two-dimensional center manifold/®. Within the linear ’ ’
approximation, these manifolds are given bBW={p;= whereR(#) is the rotation matrix of angle
—v01,P2=02=0}, W'={p1=vq;,p2=0,=0}, W={p;
=(;=0,p5,92}. The part ofW* with g;>0 (q,;<0) will be cosf —sind
denoted asV%. (W?) and the part oM with g;>0 (q; R(6)= sing  cosd ) (6)

<0) will be denoted asVt (W"). Notice thatl" coincides

either with W3 and W or with W* and WX (this follows  and g=g(1,E) is given by

from a simple analysis in the invariafig;,p;} plane. To

simplify the presentation, it is assumed thatoincides with I5) 1) ) 1)

W5 and WY . Now, letX;, X,, and>; be three planar 9(|1E):_;|”(p_1>:jln(m_E)_;ln(‘SZ”)-
Poincare sections (three-dimensional transversal tows ,

WY, and W" , respectively, as shown in Fig. 2. Sections (i) If (Q,,P,,E)e2, is such thatwl <E (namely, E
31, 3,, andX 3, are locally parametrized hy,, p,, andE, >0 and P,;<0) then L(Q;,P,,E)=(Q5,P5,E')e3; is
whereE is again the energy. In order to simplify the compu- given by the same expressions as in itém

tations, it is convenient to define canonical variables

Q1,P1,Q2,P; E'=E, Z'=R(0)Z,
1 Jv except thatd is given by
q:=(P1+Qy) , P1=(P1= Q1) —,
\/5 V2 0w [—0 o 1)
0(1,E)=——In| =—|=—In(E—wl)— —In(5%v).
v P, v v
_ 1 Vo
2= (P2t Qo) ===, P2=(P2=Q2) (iii) If (Qz,P,,E)e3, is such thatwl =E (namely, E
=0 andP,=0) then the solution that leaves, is in the
in such a way thaH, becomes stable manifold of either a periodic orbit WW® (E>0) or the
saddle-center equilibriumE=0). So the flow does not de-
Hi=—-vP1Q:t wl, fine the Poincare map. In this case,L(Q,,P,,E)
) ) o =(Q3,P5,E’) is defined to be ir¥, with coordinates given
where |=3 [0 'p3+wq3]=3[P3+Q3]. by (Q},P5,E")=(Q,,P,,E).
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A Poincaremap G: 3.,—3, is defined in the usual way The results presented in this section are due to several
by the flow nearl. If (Q,,P,,E)eX, thenG(Q,,P,,E)  authors, especially Lermafl3] and Mielke, Holmes, and
=(Q5,P5,E")eX is given by O'Reilly [14]. The normal form theorem used to study the

integrable nonlinear dynamics near the saddle-center loop is
E=E', Z'=C(8)Z+Eu(d)+0O(E?+|Z|?), (7) due to Mosef15]with a supplement of Resmanr{16] (see
also[17], Appendix 8. Some early ideas related to the dy-
where C(6) is a two-by-two matrix[the (Q,,P,) compo- namics in systems with saddle-center equilibria using
nents of the derivative oz with respect to Q,,P,) at  Moser's theorem can be found in Conlgy8,19, Churchill,
(Q,,P,,E)=(0,0,0)] and u(é) is a vector[the (Q,,P,) Pecelli, and Rod12] and Churchhill and Rof20] (see, also
components of the derivative d& with respect toE at  earlier work by the same authors cited in these refergnces
(Q,,P,,E)=(0,0,0)]. The invariance of the plane and Llibre, Martinez, and Sim@1]. MappingsG, L, and the
{91,p1,9,=0,p,=0} by the flow implies thatG(0,0E) saddle-center loop map as presented here are due to Ler-
=(0,0E) and therefore in this cas®()=0. The flow ex- man[13] and Mielke, Holmes, and O’Reilly14], indepen-
pression(5) implies that if 5= 8,+D varies, wheres, is  dently.
some fixed positive number, the@(5) changes asC(d,
+A)=R(K")C(8p)R(K") where K’ € (0,27r] can assume B. The invariants @ and y
any value depending oft. Writing C(6p) = AgR(Kg) where
A is symmetric[polar decomposition o€(5,)] and choos-
ing A conveniently, one concludes th@( ) can be written
as C(0)=AR(K) whereA is a diagonal matrix. Using the

simplectic property of the flow, one gets that the daerminanfnvariant even under time reparametrizajiohhe parameter

of Alis one. Therefore, the expression for ti@,(P2) COM-  is harder to compute and is related to the flow linearized at
ponents ofG, denoted as5, within the linear approximation the orbitT. Let q;(t) be theq,; component ofl'(t). The

The dynamics of the saddle-center loop map depends on
the two parametery and . The parametey=w/v is the
ratio between the modulus of two eigenvaluesnd v and
therefore is invariant under any change of coordinéiteis

and with a convenient choice afis given by (g,,p2) components of the vector field linearizedlaare
A a 0 1o=D-,
Z'=G(Z)=AR(K)Z, where A:(O " ) a=1. 42= P2
o . o
(8) po=—[w?+S{au(t)}]0s, (11)

Let 3¢ and2 ,¢ be the restrictions af; andX ,, respec- where

tively, to the energy level sétl=E, for E close to zero.
Since the dynamics preserves energy, it is convenient to re-
strict mapd. andG to X ;¢ and3 ,¢, respectively. The above
expressions fok imply that the Q,,P,) components ot,

®?+8(qy) = w’+0(qy) = q,.q,Y(01,0).

In the variables Q,,P,) these equations become

denoted byL, restricted toS ;¢ are given by Q,=wP,
e HESEROS Po=—[w+ o 'S@1}IQ:. 12
where 6(1,E)=yIn|l - *E[|+K’, (9 For a givens>0, lett_(8) andt,(8) be two time values

such that the@,,P;) coordinates of [t_(5)] are(0, ) and
where y=w/v, K’ €[0,27) is some fixed number that de- the (Q;,P;) coordinates of [t, (8)] are(s, 0). Let (t_ ,t)
pends ond, andZ’ belongs to eithek e or X3¢ depending  pe a fundamental system of solutions of E4j2) such that
on wl —E=0 or ol —E<O0, respectively(if ol +E thenZ"  y(t_ t_) is the identity matrix. Then, matri€(s) appear-
=2Z). Notice that forE=0,L: 2 15— 250, G: 250—210, and  ing in Eq.(7) is given by ¢(t_,t,) and a(d) is the square
the compositiorF=GoL: 3,53, is well-defined. In this  root of the largest eigenvalue @(5)C(8)T, whereC(6)"
case,Z' =F(Z)=AR(2yIn|Z|—yIn2+K’+K)Z and with a  denotes the transpose 6f(5) [geometrically,«(d) is the
simple rescalingZ— 82, Z'—BZ', where 2yInB=vyIn2 largest semiaxis of an ellipsis that is the image of a unit

—K—K’, one can writeF in the simple form circle by C(6)]. In principle, the value of(5) depends not
only on é but also on the coordinates used near the saddle-
Z'=F(2)=AR(2vyIn||Z|)z, (10)  center equilibrium. However, a computation using Moser co-

ordinateq or assuming as true the linear flow approximation
that will be calledsaddle-center loop magseveral approxi- (5)] shows that(8) does not depend of Still, this property
mations were made in the derivation 6f In particular, the depends on this special system of coordinates. In order to
linearized flow was used to describe the dynamics near thpresent a characterization af that does not depend on a
equilibrium. S0,6>0 must be chosen small. It can be shownspecial coordinate system, one definés-5, and &,

[9,10] that the real Poincam@ap froms, ;;— 3 ;o differs from = ;e 2™ 7. Then, one takes the limit as—x to get: &,
the one above by a term bounded KyZ||?>, whereK is  —0,t.— o, andy(t_ ,t.)— p(—o,+»): TWE—TWE,
some positive constant. whereTWF is the tangent manifold toV° at the origin(this
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limit is explained in detail i8], Theorem 3. The trace of B=0, namely, a resonance in the “quantum scattering prob-
Yy(—, +o) does not depend on coordinate systems anylem” (13)—(14). The numbera first appeared if13] and
more, but depends on the choice &f. Nevertheless, one [14]. An invariant characterization of it was given[i@] that
can proveas in[8], Theorems 3 and)4hat the maximum of was the source for most of the presentation above.

the trace ofy(—o, +x) for &, varying in the interval

[se 27, y] is equal toa+a ! and it does not depend C. A class of examples wherer can be easily computed

either oné or on the coordinate system. This construction
gives an invariant definition fow. In order to computey, it

is necessary to take a special linfif—oe, +o) of the funda-
mental solution of Eq(12). For the particular systems in this
paper, this limit gets a very familiar form. Notice that both
equations(11) and (12) are equivalent to second-order dif-
ferential equations fog, and Q,, respectively. Moreover,
both equations fog, andQ, are the same and are given by

In general, it is not easy to solve the scattering equation
(13). In most cases this can only be done numerically. Nev-
ertheless, there is an important class of potentials where this
problem can be solved analytical(]. This class is de-
scribed in the following. Suppose that the potentiah Eq.

(3) satisfies the following additional hypotheses:

)
) _ V(91,0 =~ 3 v’qi+ ——ai*?,
4= —[w?+S{au(t)}1az, (13 n+1
where §q,(t)] decays exponentially fast to zero ds Iq2q2V(01,0)= w2+ Ba] L. (17

— *oo, Equation (13) is a one-dimensional Schiimger o ) N . ,

equation similar to those appearing in one-dimensional quan-Trh'S implies that the solution homoclinic to the origin satis-
tum scattering problems. It has a complex-valued solugion fi€s d2=p,=0 and
with the following asymptotic behavior: ..
1=+ v?q,— 83 .

A Al ot —iwt _
o(t)—Ae“'+Be ! as t— —x, It can be checked that they component of" is given by

H(t)—e'“t ast—owo, A B complex. (14) tv(n—l))

ql(t)=Csecﬁ’(“1)( >

A and B are the usual scattering coefficients of quantum

mechanics. 18] (Theorem 4 it is shown that the maximum (n+1)p2| Un-1)
with respect tod, of the trace of the limity(—o, +) (as where C= T)
discussed aboyewhich is equal tax+ a1, is also equal to
2\[B[?+1. Therefore, one gets that=1 is given by This implies that Eq(13) becomes
a=|B|+[B[?+1, (15 ) , B(n+1)1? ty(n—1)
d2=—| 0’ + ——> sech > q,. (18

where |B| is determined by the one-dimensional scattering

problem(13)—(14). This is a well-known one-dimensional Schinger equation

The numbera can be also understood in a different and ,opjem that can be solved using hyper geometric functions.
more geometric way. The center manifold of the saddleThe modulus oB is given in[22], Sec. 25, Eq. 4, as

center equilibrium is foliated by periodic orbitg, one for
each energ¥>0. In the linear flow approximatio(d) ¢ is co[(w/2) \/;]

a circle of radius V2E/w in the plane {Q;=P; B|? sintP(me) if >0,
=0,Q,,P,}. The stablgunstable manifold of /¢ is a cylin-
der that intersecty ;¢ (2,g) at a circleC,g (C,g) with the —
same radius. The global mappi® mapsC,ze 3, to a |B|2:COSH_[(7T/2) 77], if <0, (19
closed curveC;g e 3¢ that is approximately an ellipsis if sinff(me)
E>0 is small. In generalC ¢ intersects the circl€,g trans- where
versally. LetB’ denote the area outsid® ¢ and insideC;¢
and letB be the area insid€,¢. SinceG restricted to2 ¢ 2w B 8(n+1)
preserves area, then<(B'/B<1. Let B, be the limit of €= h—1)»’ 77:501——1)2+1'
B'(E)/B(E) asE—0. Then one gets
- 5 Then, « follows from these expressions and from=|B]
cos([g’*?)z ——. 16  *+IBIP+1[Eq.(15]

Notice that if the unstable and stable manifolds{gfcoin- D. Families of blocking tori and the critical number

cide thena=1. This is a necessary condition for integrability  In the introduction, a family of blocking tori was defined
obtained in(13] and[14]. Notice that in terms of the scatter- using the topology of the energy-level sets of the Stormer
ing coefficientB, a necessary condition for integrability is system as a model. That definition can be easily generalized
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to systems that satisfy the hypotheses of Sec. Il A. In this In [11], a numerical study of was done in order to
case, a blocking torus splits the phase space into two corestimate the region in the parameter space0, a=1,
nected components but none of them has to be necessarilyhere invariant circles surroundingexists. Very curiously
bounded. For these systems, the existence of a family ahe following simple criterion was obtained.
blocking tori accumulating af' is implied by the existence Stability criterion Let c be the numbe(stability numbey.
of a family of invariant curves accumulating at the trivial
fixed point of the saddle-center mé&p Eq. (10). Before ex- c=y(a—a Y. (20)
plaining this claim, it is necessary to study the dynamics of
F. The following two paragraphs were essentially taken from There is a critical value o€, denoted as. and called
[11]. critical number, such that

Map F has among other symmetries a remarkable one: it ] ) ) ]
is invariant under discrete dilatioZ—e™?Z [namely, o |f c<cq, then there are invariant circles sgrroundmg 0
F(e™7Z)=e™"F(Z)]. In particular, this symmetry implies SO all orbits ofF are bounded and & a stable fixed point.

that the fixed poinZ=(0,0)=0 is stable whenw is suffi- « If c>c. then there are no invariant circles surrounding 0
ciently close toa=1. In fact fora=1. F leaves all circles @ndF has an infinite heteroclinic chain connectingdin-

centered at Onvariant(F is just a rotation in each circleFar finity.

from the origin,F is analytic and the KAM(Kolmogorov, .. An approximated value ot., probably overestimated, is
Arnold, and Moser theorem can be used to prove that, if c.=1N3

|a— 1] is sufficiently small, then invariant closed curves sur- ° Rema.rk'The above criterion was obtained numerically
_roft_m_dl?g Dexist. dSlnce thﬁred'ﬁ one such a curve tgerﬁ a'Both the form of the critical curve and the critical number
Infinitely many, due to the dilation symmetry, and these; _ 1.5 are only approximations. The computation near the

cuq_/ﬁs 3ﬁcu_mulate at (WherleF IS not dlfferetr;tlablg;. | haoreakup of the last invariant curve is delicate. For instance,
_'he |at|c_Jn Sy”lme”y aiso suggests a beautrlu _MeCh3for some particular values of, it was numerically verified a
nism for the instability of Owhen« is large. Fora>1, if F stability-instability transition at,=0.55[23].

has a fixed poinp distinct from ( then it has an infinite — Ngtice that the appearance of the above heteroclinic chain
family of fixed points given bye*™”p, ke Z. Indeed, an ex-  reminds us ofand it is very similar tothe so-called “reso-
pI|(_:|t compute_ltlon Sh_O\N$ tha has four farruhes of fixed nance overlap criterion” of Chirikoy24]. This idea of reso-
points. The first family is denoted by, ke 7, wheréz,  hances overlap when applied to the standard map also pro-
=e™?z,. The elements of the second family are given bygces infinite heteroclinic chains. A remarkable property of

—2. The element, has coordinates the saddle-center loop mépis that this infinite heteroclinic
chain of F implies a semi-infinite heteroclinic chain for the
S5 5 m\ . . S
P,=expg — ——|cosd, Q,=exp —— —|siné, original Hamiltonian systen3) [10].
y 4y Y 4y Now, we turn back to the question of the existence of

families of blocking tori. All the discussion above supposes
the energyE to be zero. Nevertheless, the concept of families
of blocking tori requires the existence of invariant tori for
E>0. In fact, using the KAM theoren(as, for instance, in
[10]) it can be shown that the existence of sufficiently
smooth invariant circles surroundingfér E=0 imply the
existence of perturbed invariant circles fée£ 0, |E| small.
N X . The statement is as follows. If the above invariant circles for
implies that the unstable manifold @f intersects transver- g_q exist, then given ar>0 there existss>0 such that
sally the stable manifold ofy, ; for all ke Z. The same is ¢, |E|< 6 the mappingGsL restricted taS ¢ has an invari-
valid for the family —z,, ke 7. So, due to the discrete Sym- 4n: circle with a radius less than This conclusion clearly
metry, the existence of a transversal heteroclinic orbit conyjies the existence of a family of blocking tori associated
nectingz, to z, implies the existence of two infinite hetero-  the saddle-center equilibrium at the origin of syst&n
clinic chains, or “Arnold's transition chains’[24], which g4 " the stability criterion above can also be used as a crite-

implies (besides a lot of “chaos) the instability of O In  jon for the existence of families of blocking tori. More in-
order to show that this scenario indeed occurs, it is still NeCiormation about invariant curves f&>0 can be found in

essary to show that the unstable manifoldzgintersects the [10] (in particular, in Fig. 4 of10] one can find a diagram

stable manifold ofz, transversally. This is related to the in5t motivated the definition of a family of blocking tori
nonexistence of homotopically nontrivial invariant curves in

the saddle-center loop map. It was proved 10] that the
above transition chain exists #f(a¢—a~!)>1. For the real
saddle-center loop map, that takes into account the higher- In Sec. Il A we presented mapisand G to describe the
order corrections t&, it was proved 10] the existence of a dynamics near a saddle-center loop of a system satisfying
semi-infinite heteroclinic chain connecting points arbitrarily certain hypotheses. In this section, the dynamics generated
close to the saddle-center loop to points at finite distance dby these maps will be studied for a fixed small valueEof

it. >0. For simplicity, the inde>E will be omitted from ¢,

where é=arctan(1l&) € (0,7/4). The linearization ofF
aroundz, and -z, for all k, is associated to the same pair
of eigenvalues X,\ 1), determined byA + X "1=2+2y(«a
—a~1). This implies that alt- z, are hyperbolic. Now, sup-
pose the unstable manifold af intersects transversally the
stable manifold ofz;. Then, the dilation symmetry off

E. The saddle-center scattering map
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3,e, and2 g, and the restriction of theQ,,P,) compo-
nents ofL and G to the energy-level seE will be denoted S g ; output
also byL and G, respectively. So, the dynamics near the Z
saddle-center loop in this case is determined by the pair of L ?
mappingg see Eqgs(9) and(8)] S e
L: 3,—-3,U% : G ‘ T
: —2,U23,
1—722U23 z, S T &
input {l | —>21—> eos
Z'=L(2)=R(yIn||Z|?- 20 *E|+K")Z, A 6
%
and

FIG. 3. Diagram showing the sequence of mappings used to
define the saddle-center scattering map. Notice that points outside
the dotted circle i, are mapped t&, and then mapped back to

, %, by G. Those points inside the dotted circle 1, are mapped
whereK andK' are two constant phases (@,2m) and the outside the potential well t8,5. For them the scattering process is

image ofL is in X, if |Z|*~ 2w 'E=0 otherwise itis i%; g qr
(see Fig. 2 For a system satisfying the hypotheses of Sec.
Il A, a typical scattering problem, similar to the one for the
Stormer system mentioned in the introduction and illustrate
in Fig. 1, is the following. The incoming particles are given
by a line of initial conditions with fixed energg>0 atq;
=0 with p;=¢,=0v>0, v constant satisfying € v < 2E.
For E small, from the linearized HamiltoniaH, (4), one
gets that this set of initial conditions corresponds to a circl
in phase space given by

G: 3,—%;, Z'=G(Z)=AR(K),

tances. At firstE>0 has to be sufficiently small. At sec-
nd, the stability numbec of the previous section must be
less than the critical one.~1#2, namely, the system must
have a family of blocking tori. If this last condition is not
verified, then points initially close t&=(Q,,P,)=(0,0)
can escape to infinity under iterations b#G. Therefore,
e[hey will never hit3;. Moreover, mapping$ and L ap-
proximate the real dynamics only whd&|| is not large.
Even whenc is large, the scattering results obtained with
02 mappingsG andL may be a good approximation to the real
E- 7)- scattering in its first few iterates.

We point out that the scattering map defined[&5],
which consists of reinjecting the scattered solutions, may be
easily obtained in the context of the saddle-center scattering
map. This is done through the identification H§ and ..

Q __ v P v Q2+ P2=—
1 \/Z, 1 \/Z, 2 2

The linearized flow(5) maps this circle to another circtin
3., with the same radius. So one can consiflerY, as the
input of the scattering process. It is clear that if the only exit . . A .
from the potential well is over the saddle-center equilibrium TN€ result is a mapping from: %, —2, given by
at the origin, then any scattered solution musthjt There-
fore, a suitable output for the scattering problem is the
(Q,,P,) componentgor any function of themof the inter-
section of an exiting solution witR ;. ) o
Under some circumstances, as discussed below, the scathereK andK' are constants if0,2) and the mapping is
tering problem presented above is approximately determinethe identity if [Z]*— 2o~ *E=0.
by the dynamics oE andG in the following way. The initial

Z'=F(2)=AR(yIn||Z|]*- 20w E|+K'+K)Z,

condition for the scattering process is given by the cisle IIl. APPLICATIONS
€2,. This circle is mapped byG to an ellipsis G(S)
e3,, see Fig. 3. The points iB(S) have two possible The goal in this section is to apply the results presented in

ways. If they are outside the circlZ||?=2w 'E (repre- the previous one to four examples. The first three are taken

sented by a dotted circle in Fig) 3hen they are mapped from[3,2,12.
back toX,, by L. If they are inside this circle, then they are
mapped ta>; by L. The scattering process for the points in A. Example 1
2.5 is finished and the corresponding output value are their
(Q2,P,) components. Moreover, the scattering time in this
case may be taken as one, because they were scattered after
one cycle of iteration ofs andL. Then the pointd.cG(S) H=3 (pi+p3)+V(x.y),
€3, are mapped again td, and so on, see Fig. 3. The
result is that from this iteration schem@&hich we call
“saddle-center scattering map’one can get all scattering V(X,y)=3 (X*+y?) =5 y>+ ux?y.
functions.

The procedure described in the above paragraph approxihis is Eq.(3) of [3]. For u=1, it is the well-studied Feon-
mates well the real scattering process under two circumHeiles systen{26,12. For any value ofu=0, the potential

In this example, the Hamiltonian function is
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function has a saddle point ax,f/)=(0,1) with an associ- y ' ' ' . . . .
ated critical energye,=1/6. With the change of variables
y=1-q;, X=0,, one gets 15 -

V(x,y)=3[—q?+(1+2u)q3]+ 3 a3— 1q,03.

This system satisfies the hypotheses in Sec. I1C with:
=1, n=2, 6=1, ow=1+2u, B=-2u. So, € 051
=2{1+2u, n=—48u+1, and the values ofB| follow
from Eq. (19). For instance, foru=0, ©=0.43, ©=0.49,
and =1, one obtaingB|=0, |B|~0.25, andB|~0.89, re- or
spectively. Using Eq(15), the stability number can be writ-
ten in terms ofiB| as

-05

C= 2'y| Bl, 0.8 06 -0.4 0z 0 02 04 o6 Li:
a

which impliesc=0, c~0.55, c=~1#2, andc~3.1, for u @
=0, ©=0.43,1.=0.49, andu=1, respectively. In this case, Y
the criterion for the nonexistence of invariant tori around the |
saddle-center loop using the critical numlzgr= 1V2 gives
for u the critical valueuw=0.49. A more careful numerical
analysis of the dynamics of the saddle-center loop méqr 1k
the particular parameter values of this problem showed, how-
ever, that the breaking up of the last invariant toriFofhap-
pens foru=0.43 that corresponds toca=0.55[23]. This is o8
in agreement with numerical simulations of the real flow
[23]. So, in this example, the critical value pfis taken as
0.43.

It is interesting to visualize projections of blocking tori in
the configuration space. Consider the sequence of Figs. 4 fos |-
different parameter valugs and for a fixed value of energy - - : s : ' 1
equal to 0.17aboveE = 1/6). In Figs. 4a) (u=0) and 4b) R ’ ° o ° %
(w=0.4), we show projections of invariant tori on the con- (®)
figuration space that block the escaping channel over the ' ' ' ‘ ‘
saddle-center equilibrium. In Fig. 4aE&0.7) we exhibit a
single solution starting near the boundary of the potential 51 i
well that escapes from it. This shows that there is no variant ’
torus near the saddle-center loop blocking the exit of the
potential well.

In order to illustrate the dependence of a scattering prob-
lem for this system on the paramejerconsider a scattering 5|
function ¢ defined in the following way. For a givelB>0,
let {x=b, y=1.1, p,=0, p,<0} be a one parameter family
of input initial conditions wherep, is determined byH =E or
=const and the impact-parameters defined in a maximal
interval whereV(b,1.1)<E. Consider the solution generated
by the initial condition associated tmand suppose that for . . ‘ .
some timeT(b) this solution hits the phase-space hypersur- e 06 04 02 0 02 04 06 ot
face {y=1} with p,>0 and x=(b). The functionsb (©)
—T(b) andb— (b) will be called as time delay and scat-
tering return map, respectively. It seems from a sequence of FIG. 4. Projections on the configuration space of orbits of the
graphs of the scattering return map, obtained through thé’enon'z'ioe)”ez fam(ig/)Wi(t)h eﬂ(ec;?y gqua|;0(())-lf7 and ir:)itial(((:)(;ndi-
variation of u for E=0.17 fixed, that near.=0.43 the rate  tions y(0)=0, p,(0)=0, p,(0)>0, and: (8 for u=0, x
(with respect tow) of loss of regularity ofo— y(b) is en- = 0:12; (b) for £=0.4,x(0)=0.12; (¢) for ©=0.7,x(0)=0.58.
hanced. Nevertheless, the transition that occurs near
=0.43 can be much easily seen through a plot of an averaged The potentialV above has two more saddle points

time delay function?(,u) as shown in Fig. 5. This functioh == (1/2u \/ﬁ) V1+2u==*X, y=—1/(2u)=Yy, at energy
is obtained taking the average ®{b) over many equally E=(1+3u)/(24u>). There is a homoclinic solution to each
spaced values df for a fixed value of. saddle-center equilibrium corresponding to each of these
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% ‘ ' : ' ' ‘ ‘ ‘ ' ues*=v2 and +iv2(y=1). There is one pair of heteroclinic
/ orbits connecting the equilibria akf{y)=(1,1) and &,y)

3 b /

/] =(—1,—-1), and one pair of heteroclinic orbits connecting

Al // | the equilibria at x,y)=(1,—1) and &,y)=(—1,1). In prin-

T(p)

ciple, the results in Sec. Il A, for homoclinic orbits to saddle-
center equilibria do not apply. Nevertheless, there is a simple
adaptatior}9,10] of the above-presented results to the case of
heteroclinic loops. Again, the scattering problem for the de-
termination of « is explicitly solvable and gives]B]
~0.119,c=27|B|~0.238< 1#2. This implies that there are
invariant tori accumulating at the saddle-center heteroclinic

20

.l o i loop, and therefore, a family of blocking tori f&>E,,,
- E—E,.
%o o1 0z 03 o4 o5 95 o7 05 0o /; D. The escaping problem and the dynamics
for examples 1, 2, and 3
FIG. 5. Graph of the averaged time delay functibfu). The escaping problem for the systems in Examples 1, 2,

and 3 was studied by Kandrugt al.[3]. They have a param-
saddle points. These homoclinic solutions are givexx@ly  etere in their systems that coincides with the parameién
=+xu(t), y(t)=yu(t), where u satisfies i=—u+u?, ~ Example 1 and that in Examples 2 and 3, after some rescal-
u(t)—1 ast— *«. As above, the coefficientgand|B| can  ing, can be identified with the energipn fact, what they do is
be computed explicitly. For =1, the potential is symmetric to fix an energy and vary this parameter; after the rescaling,
with respect to rotations of23 radians, which implies that this is equivalent to fix the parameter and vary the energy
y and|B| are the same for the three homoclinic saddle-centeB0, below, the reader can think efas if it were the energy.
loops. These saddle-center loops are related to an escapihiy particular, theire, is equivalent to the energl,, of the

problem that will be discussed after the next two examplessaddle-center equilibrium. In their own words, one of their
main conclusions wadthe following paragraph was taken

B. Example 2 from the abstract of3]):

In this example, the Hamiltonian function is “For e below a critical valuesy, escapes are impossible
energetically. For somewhat higher values, escape is allowed
1o o Lo ) energetically but still many orbits never escape. The escape
H=3 (pxt PRy TV(XY), V(Xy)=3 (X"+y)—xy~. probability P computed for an arbitrary orbit ensemble de-
o ) _ cays toward zero exponentially. At or near a critical value
This is Eq.(8.1) of [12] and after some rescaling of coordi- ¢, > ¢, there is a rather abrupt qualitative change in the be-
nates and time, this is Eq2) of [3]. The potentiaV has a  havior. Abovee,,...,. Thetransitional behavior observed

pair of saddle pointsx,y) = (1/2)(1=v?2) at energy 1/8. The neare, is attributed to the breakdown of some specially sig-
saddle-center equilibria related to these saddle points havficant KAM tori or cantori....”

eigenvalues-1 and*iv2. There is one homoclinic solution

to each saddle-center equilibrium. Introducing coordinates In principle, it is not easy to relate the results[B] to

those in here. They studied the escaping problem for a range
of energies that include values far from the endggyof the

R 1 R V3 saddle-center equilibrium, while here, all results concern en-
X= ‘/_g(ql_‘/j%)’ y= ‘/_3(‘/2q1+q2)' 1=% 01 ergies neaE.,. However, there is an interesting fact in their
results that makes it possible to establish a connection be-

one gets a system satisfying the hypotheses in Sec. Il C. THween their criticale; and the concept of a family of block-
same reasoning as in the previous example givesi, o ing tori introduced here. For Examples 2 and 3 above, the

=v2, y=v2, |B|~0.259,c=27|B|~0.807>v2. This im- value of E is 0.125 and 0.5, respectively, and the values of
' | e . ’ i i 0.006
plies that there are no families of blocking tori accumulating€1 they found are equivalent to energiés-=0.165 ,and

at the saddle-center loops. E;=1.176+0.0024, respectively. For Example 1, they fixed
the energy of the initial conditions=0.167, which implies
that escape is energetically possible far>u,=1, and

C. Example 3 .
. o o found a critical value ofu; (or €;) of 1.1+0.5. Under these
In this example, the Hamiltonian function is circumstances, the saddle-center loops that are relevant for
the escaping problem are those presented at the end of Sec.
H=3 (pZ+p2)+V(XYy), V(XY)=3 (x*+y?) —3 x?y?, A, Their energy is E,,=0.1350013 depending onu,

=1.1+0.5. Since u;~1, these saddle-center loops have
This is Eq.(8.2) of [12] and after some rescaling of coordi- numbersy and|B| “close to” those computed for the saddle-
nates and time, this is E{{l) of [3]. The potentiaV has four  center loop on the axis for u=1. Therefore they are un-
saddle-points X,y)=(*1,+1) at energy 1/2. The saddle- stable. Notice that in Examples 1 and 2, there is no family of
center equilibria related to these saddle points have eigenvablocking tori accumulating on those saddle-center loops that
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are relevant for the escaping problem. In both cases, Kartori around the saddle-center loop. This seems to be in agree-
drup et al. found a “critical energyE,” close to the energy ment with the scattering results [i@], which shows a pre-

E., of the saddle-center loops. In Example 3, there are famidominance of hyperbolicity and with other numerical results
lies of blocking tori accumulating on the heteroclinic saddle-on the chaotic dynamics of the Stormer problesee, for
center loops and Kandrugt al. found a value of, more instance[1]).

than twice as large &s;,. So, our conclusion is that systems

with unstable saddle-center loops, and therefore with no fam- IV. CONCLUSION

lly of p_locklng tori, may have "fl, valuci &, (equn_/alent to In this paper, the concept of a family of blocking tori is
the critical e, of Kandrupet al) “close” to E, while those  jniqquced. For systems satisfying the hypotheses in Sec.
systems having families of blocking tori may have a value ofy| 5 5 family of blocking tori is a set of invariant tori, one for

E,; far from Ecr. It is not easy to give a more quantitative o energyE>E,,, such that the limit of the set a&
meaning for this last statement. The question is complex and, g s 5 saddle-center loop. In Sec. Il we presented a cri-
even the definition oE, that is based on numerical investi- oo for the existence of families of blocking tori that uses
gation is not quantitatively clear and sharp. two invariant numbersy and « related to the saddle-center

The dynamics of the mappings in Examples 1, 2, and 3o45 These numbers can be computed in several interesting
for E nearE,, is also related to the parametersand y. For  gyamples; as for instance, those presented in Sec. IIl.

Example 1, this idea was discussed 23]. It is well known In Sec. Il E we presented a pair of “universal” mappings
[26] that for =1, the dynamics of the system in Example 1 5 gnq | depending on the parametessand y that may

is mostly stochastic inside each energy levellSet=, for E  gescribe the scattering off a potential well near the critical
near E. In this case, the saddle-center loop is U“StableenergyEcr provided the system has a family of blocking tori.

(there is no family of invariant tori accumulating on.iOn ¢ would be interesting to numerically check the energy range
the other hand, it was reported j@6] that the system of ¢ validity of this claim.

example 3 has no observable large scale stochasticCit for  The mechanism for breaking up families of blocking tori
<E andE neark,,. In this case the saddle-center l00p is giscussed here consists in the creation of an infinite hetero-

stable and there are invariant tori accumulating on it. Thigjinic chain [10,11. The critical parameter for this chain
indicates that the stability or instability of the saddle-centercreation may be related to some tangencies between invari-

loop is related to the existence or not, respectively, of larggnt manifolds of different hyperbolic periodic orbits. Tan-

stochastic regions at energy-level sEtslose toE;. gencies between invariant manifolds were found bydtal.
[27] as a mechanism for “chaotic scattering enhancement”
E. The Stormer system that they called “crisis in chaotic scattering.”

The Stormer syster{?) also has a saddle-center loop con-
tained in the plangx,p,,y=p,=0}. The scattering problem
associated to i{13)—(14) cannot be solved analytically as  C.G.R. is partially supported by CNRBrazil) Grant No.
above but can be solved numerically. In this case, one findg01817/96-0. S.A.Z. was supported by FAPES@HRazil)
the saddle-center loop parametes$=3/64, 1*=1/32, y  Grant No. 96/08981-3, and is under support by CNPq Grant
= \/3/2 anda~5.8, which implies that there are no invariant No. 200564/00-5.
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