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Critical number in scattering and escaping problems in classical mechanics

Salvador Addas-Zanata* and Clodoaldo Grotta-Ragazzo†
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Scattering and escaping problems for Hamiltonian systems with two degrees of freedom of the type kinetic
plus potential energy arise in many applications. Under some discrete symmetry assumptions, it is shown that
important quantities in these problems are determined by a relation between two canonical invariant numbers
that can be explicitly computed.
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I. INTRODUCTION

Invariant tori are very important in the global dynamics
two degree of freedom Hamiltonian systems. They split
phase space in unconnected components. For several p
cally relevant systems, the existence of such invariant t
and therefore the understanding of the phase-space struc
can only be achieved through numerical investigation. In t
paper, an analytic criterion for the existence of certain fa
lies of invariant tori is presented. These families are imp
tant in some problems of escaping from and scattering o
potential well.

The class of systems such that our results apply can
described as follows. The Hamiltonian function is of the ty
kinetic plus potential energy,

H5 1
2 ~px

21py
2!1V~x,y!, ~1!

whereV has two critical points: a minimumPm and a saddle-
point Ps . The energy of the saddle point, which will b
called critical energy and will be denotedEcr , is V(Ps)
5Ecr . For energy values belowEcr the corresponding
energy-level sets have two distinct components, one boun
and one unbounded. The bounded component projects to
configuration space (x,y) inside what will be called the po
tential well ~see Fig. 1 for a topological representation of t
level curves ofV!. For H5Ecr , these two components touc
at the equilibrium corresponding toPs and forH.Ecr , the
two components merge into a single unbounded compon
Notice thatEcr plays an important role in the dynamics. F
energy values belowEcr, there is always a large quantity~in
a measure sense! of bounded orbits trapped inside the pote
tial well, while for energy values aboveEcr , this may not
occur.

An important example that belongs to the above clas
the Hamiltonian system for the motion of a charged parti
in the field of a magnetic dipole~see, for instance@1#!, also
called the Stormer system. Due to the rotation symmetry
the magnetic field, this system can be reduced to two deg
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of freedom. For a given value of angular momentum and
convenient time and length scales, its Hamiltonian funct
is

H5
1

2
~px

21py
2!1V~x,y!, V~x,y!5

1

2 S 1

x
2

x

~x21y2!3/2D 2

,

~2!

wherex is the radial coordinate andy is the coordinate along
the dipole axis. It is well known thatV satisfies the above
properties, so the level curves of the Stormer potentialV are
topologically as in Fig. 1:V has two critical points, a mini-
mum Pm and a saddle-pointPs , such thatV(Ps)5Ecr
51/32 and for energy values belowEcr , the corresponding
energy-level sets have two distinct components, one boun
and one unbounded. ForH5Ecr , these two component
touch at the equilibrium corresponding toPs and for H
.Ecr , the two components merge into a single unbound
component.

In this paper, two different problems will be considere
for systems similar to the Stormer system, contained in
class defined below expression~1!. The first is the so-called
‘‘escaping problem’’ or ‘‘escaping from a potential well,’
that is: for a given distribution of initial conditions inside th
potential well with fixed energyE.Ecr to determine the
amount of solutions that remain inside the potential well
ter time t.0. This type of escaping problem had been

r-
il

FIG. 1. Topological representation of the level sets of a typi
potential function for the class we are considering. The shaded
gion corresponds to an energy level set below the energy of
saddle pointPs .
©2001 The American Physical Society16-1
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cently considered by Contopouluset al. @2# and Kandrup
et al. @3# in a series of papers that were the main motivat
for the present paper. Escaping problems appear in sev
branches of physics and chemistry~see, for instance,@3,4#
and references therein!. The second problem addressed
this paper is the so-called ‘‘scattering problem.’’ For i
stance, consider the Stormer system and a family of in
conditions parametrized by an ‘‘impact-parameter’’b with
constant energyE.Ecr, see Fig. 1. Most of these initia
conditions will be scattered off the potential well and w
become asymptotically free ast tends to infinity. These scat
tered solutions can be characterized by their asympt
anglef(b) as shown in Fig. 1. In this case, the scatteri
problem consists in determining the anglef(b) as a function
of the impact-parameterb. The scattering problem for othe
systems~or even for this one! can be defined in terms o
other input-output variables instead ofb→f(b). Scattering
problems have been extensively studied, in particular in
context of chaotic systems. The reader can find many re
ences on the subject in the special volume, Chaos 3, iss
~1993! ~in particular, see@5# for a review! and also@6#. The
scattering problem for the Stormer system has been con
ered, for instance, in@7#.

From a theoretical point of view, escaping and scatter
problems are better understood for systems that either
integrable or have fully hyperbolic recurrent sets. The s
tems considered here are mostly in between these two
treme cases. In the context of the Stormer system, our m
result for the escaping problem can be summarized in
following way. ForE larger than but close toEcr solutions
initially in the potential well can escape to infinity. This ce
tainly happens for solutions on thex axis with initial velocity
parallel to it. Nevertheless, escape may not occur for m
solutions, if there exists a torus that projects to the confi
ration space like the one shown in Fig. 4~a!. This torus
blocks the ‘‘exit’’ from the potential well for ‘‘most’’ solu-
tions. To be more precise about what we mean by ‘‘m
solutions,’’ it is necessary to consider the limitE→Ecr and
to introduce the concept of a family of blocking tori. Afam-
ily of blocking tori is a set of invariant tori, one torus TE for

each EP(Ecr ,Ē), for some Ē.Ecr sufficiently close to Ecr ,
such that each TE splits the phase space into one bound
component and one unbounded component and such thaE
tends to a curve Cas E→Ecr . Each torus TE is called a
blocking torus. By TE→C asE→Ecr we mean convergenc
with respect to the Hausdorff metric, namely,

max$dist~z,C!: zPTE%1max$dist~z,TE!: zPC%→0

as E→Ecr .

The main result in this paper is to give a computable cr
rion for the existence of blocking tori in a class of syste
that include the Stormer system. The implications of the
istence of blocking tori for scattering problems is the follo
ing. A blocking torus restrict the access of all incoming s
lutions to a small phase-space region inside the poten
well. Since most of the recurrent dynamics happens ins
the potential well and recurrence is the main source of
04621
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gularities in scattering functions, one expects that the re
larity of these functions may strongly depend on the ex
tence or not of a family of blocking tori.

Our criterion for the existence of blocking tori is a co
sequence of some previous mathematical and numerica
vestigations on systems with ‘‘saddle-center loops’’@8–11#.
Part of this work is presented in Sec. II. In Sec. III the resu
presented in Sec. II are applied to the Stormer systems an
three other systems that were studied in@3,2,12#. Section IV
is a conclusion where we point out the main ideas in t
paper.

II. THE CRITICAL NUMBER

In order to simplify the presentation, this section is d
vided in several subsections.

A. Hypotheses and the saddle-center loop map

Although the results described here are valid for a wid
class of systems~see references below! in this section, we
only consider Hamiltonian systems with two degrees of fr
dom of the form kinetic plus potential energy:

H5 1
2 @p1

21p2
2#1U~q1 ,q2!, ~3!

where,

~a! U is analytic,

~b! U~q1 ,q2!5 1
2 @2n2q1

21v2q2
2#1O„~q1

21q2
2!3/2

…,

with v.0,n.0,

~c!]q2U~q1,0!50, for any value ofq1 ,

~d! equationU~q1,0!50 has a nontrivial nondegenerate
solution q1c and no solutions in~0,q1c!.

The potential of the Stormer system~2! satisfies these
hypotheses withq15x, q25y, and with (q1 ,q2)5(0,0) re-
placed byPs . The above systems have two important pro
erties

~1! the origin is an equilibrium point of saddle-cent
type, namely, it is associated to a pair of real6n and a pair
of imaginary6 iv eigenvalues,

~2! the phase-space plane$q1 ,p1 ,q25p250% is invariant
and it contains an orbitG homoclinic to the originp15p2
5q15q250.

The invariant set given by the saddle-center equilibriu
and the homoclinic orbitG will be calledsaddle-center loop.
From a topological point of view, a saddle-center loop
similar to a periodic orbit~of ‘‘infinite period’’ ! in phase
space. Moreover, for system~3!, the saddle-center loop i
placed exactly where one can expect a possible family
blocking tori to accumulate~think about the Stormer sys
tem!. These facts suggest two things: first, one can use P
caré sections to study the saddle-center loop and seco
families of blocking tori may be related to invariant circle
6-2
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on the induced Poincare´ map. However, some difficultie
appear when one tries to define a Poincare´ map for a saddle-
center loop due to the presence of the unstable equilibrium
the loop. In order to overcome this difficulty, a Poincare´ map
for the saddle-center loop will be defined by the composit
of two distinct maps: one related to the passage of solut
near the saddle-center equilibrium denoted byL and another
related to the traveling of solutions nearG denoted byG. In
order to define these mappings, it is first necessary to s
the dynamics near the saddle-center equilibrium. The q
dratic part ofH is given by

HL5 1
2 @p1

21p2
2#1 1

2 @2n2q1
21v2q2

2#. ~4!

This implies that the origin has a one-dimensional sta
manifold Ws, a one-dimensional unstable manifoldWu, and
a two-dimensional center manifoldWc. Within the linear
approximation, these manifolds are given byWs5$p15
2nq1 ,p25q250%, Wu5$p15nq1 ,p25q250%, Wc5$p1
5q150,p2 ,q2%. The part ofWs with q1.0 (q1,0) will be
denoted asW1

s (W2
s ) and the part ofWu with q1.0 (q1

,0) will be denoted asW1
u (W2

u ). Notice thatG coincides
either with W1

s and W1
u or with W2

s and W2
u ~this follows

from a simple analysis in the invariant$q1 ,p1% plane!. To
simplify the presentation, it is assumed thatG coincides with
W1

s and W1
u . Now, let S1 , S2 , and S3 be three planar

Poincare´ sections ~three-dimensional! transversal toW1
s ,

W1
u , and W2

u , respectively, as shown in Fig. 2. Sectio
S1 , S2 , andS3 , are locally parametrized byq2 , p2 , andE,
whereE is again the energy. In order to simplify the comp
tations, it is convenient to define canonical variab
Q1 ,P1 ,Q2 ,P2

q15~P11Q1!
1

A2n
, p15~P12Q1!

An

&
,

q25~P21Q2!
1

A2v
, p25~P22Q2!

Av

&
,

in such a way thatHL becomes

HL52nP1Q11vI ,

where I 5 1
2 @v21p2

21vq2
2#5 1

2 @P2
21Q2

2#.

FIG. 2. Diagram showing the Poincare´ sectionsS1 , S2 , andS3

used to define mappingsL andG.
04621
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Using these coordinates and the approximationHL to H,
one can parametrizeS1 as

Q15d5const.0, P15
vI 2E

nd
.

Similarly, one gets explicit expressions forS2 andS3 . The
integration of the linearized vector field near the origin giv
the linear flow

S Q1~ t !
P1~ t !
Q2~ t !
P2~ t !

D 5S e2nt 0 0 0

0 e1nt 0 0

0 0 cos~vt ! sin~vt !

0 0 2sin~vt ! cos~vt !

D
3S Q1~0!

P1~0!

Q2~0!

P2~0!

D . ~5!

This flow induces a discontinuous Poincare´ map L: S1
→S2øS3 given by the following relations~see Fig. 2!.

~i! If ( Q2 ,P2 ,E)PS1 is such thatvI .E ~namely, P1

.0! then L(Q2 ,P2 ,E)5(Q28 ,P28 ,E8)PS2 is given by @Z
and Z8 denote the column vectors (Q2 ,P2) and (Q28 ,P28),
respectively,#

E85E, Z85R~u!Z,

whereR(u) is the rotation matrix of angleu

R~u!5S cosu 2sinu

sinu cosu D ~6!

andu5u(I ,E) is given by

u~ I ,E!52
v

n
lnS d

P1
D5

v

n
ln~vI 2E!2

v

n
ln~d2n!.

~ii ! If ( Q2 ,P2 ,E)PS1 is such thatvI ,E ~namely, E
.0 and P1,0! then L(Q2 ,P2 ,E)5(Q28 ,P28 ,E8)PS3 is
given by the same expressions as in item~i!

E85E, Z85R~u!Z,

except thatu is given by

u~ I ,E!52
v

n
lnS 2d

P1
D5

v

n
ln~E2vI !2

v

n
ln~d2n!.

~iii ! If ( Q2 ,P2 ,E)PS1 is such thatvI 5E ~namely,E
>0 and P150! then the solution that leavesS1 is in the
stable manifold of either a periodic orbit inWc (E.0) or the
saddle-center equilibrium (E50). So the flow does not de
fine the Poincare´ map. In this case, L(Q2 ,P2 ,E)
5(Q28 ,P28 ,E8) is defined to be inS2 with coordinates given
by (Q28 ,P28 ,E8)5(Q2 ,P2 ,E).
6-3
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A Poincarémap G: S2→S1 is defined in the usual way
by the flow nearG. If ( Q2 ,P2 ,E)PS2 then G(Q2 ,P2 ,E)
5(Q28 ,P28 ,E8)PS1 is given by

E5E8, Z85C~d!Z1Eu~d!1O~E21iZi2!, ~7!

where C(d) is a two-by-two matrix@the (Q2 ,P2) compo-
nents of the derivative ofG with respect to (Q2 ,P2) at
(Q2 ,P2 ,E)5(0,0,0)# and u(d) is a vector @the (Q2 ,P2)
components of the derivative ofG with respect toE at
(Q2 ,P2 ,E)5(0,0,0)#. The invariance of the plane
$q1 ,p1 ,q250,p250% by the flow implies thatG(0,0,E)
5(0,0,E) and therefore in this caseu(d)50. The flow ex-
pression~5! implies that if d5d01D varies, whered0 is
some fixed positive number, thenC(d) changes asC(d0
1D)5R(K8)C(d0)R(K8) where K8P(0,2p# can assume
any value depending onD. Writing C(d0)5A0R(K0) where
A0 is symmetric@polar decomposition ofC(d0)# and choos-
ing D conveniently, one concludes thatC(d) can be written
as C(d)5AR(K) whereA is a diagonal matrix. Using the
simplectic property of the flow, one gets that the determin
of A is one. Therefore, the expression for the (Q2 ,P2) com-
ponents ofG, denoted asĜ, within the linear approximation
and with a convenient choice ofd is given by

Z85Ĝ~Z!5AR~K !Z, where A5S a 0

0 1/a D , a>1.

~8!

Let S1E andS2E be the restrictions ofS1 andS2 , respec-
tively, to the energy level setH5E, for E close to zero.
Since the dynamics preserves energy, it is convenient to
strict mapsL andG to S1E andS2E , respectively. The above
expressions forL imply that the (Q2 ,P2) components ofL,
denoted byL̂, restricted toS1E are given by

Z85L̂~Z,E!5R~u!Z,

where u~ I ,E!5g lni I 2v21Ei1K8, ~9!

whereg5v/n, K8P@0,2p) is some fixed number that de
pends ond, andZ8 belongs to eitherS2E or S3E depending
on vI 2E>0 or vI 2E,0, respectively~if vI 1E thenZ8

5Z!. Notice that forE50, L̂: S10→S20, Ĝ: S20→S10, and
the compositionF5G+L: S10→S10 is well-defined. In this
case,Z85F(Z)5AR(2g lniZi2g ln 21K81K)Z and with a
simple rescalingZ→bZ, Z8→bZ8, where 2g ln b5g ln 2
2K2K8, one can writeF in the simple form

Z85F~Z!5AR~2g lniZi !Z, ~10!

that will be calledsaddle-center loop map. Several approxi-
mations were made in the derivation ofF. In particular, the
linearized flow was used to describe the dynamics near
equilibrium. So,d.0 must be chosen small. It can be show
@9,10# that the real Poincare´ map fromS10→S10 differs from
the one above by a term bounded byKiZi2, where K is
some positive constant.
04621
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The results presented in this section are due to sev
authors, especially Lerman@13# and Mielke, Holmes, and
O’Reilly @14#. The normal form theorem used to study th
integrable nonlinear dynamics near the saddle-center loo
due to Moser@15# with a supplement of Ru¨ssmann@16# ~see
also @17#, Appendix 8!. Some early ideas related to the d
namics in systems with saddle-center equilibria us
Moser’s theorem can be found in Conley@18,19#, Churchill,
Pecelli, and Rod@12# and Churchhill and Rod@20# ~see, also
earlier work by the same authors cited in these referenc!,
and Llibre, Martinez, and Simo´ @21#. MappingsG, L, and the
saddle-center loop mapF as presented here are due to Le
man @13# and Mielke, Holmes, and O’Reilly@14#, indepen-
dently.

B. The invariants a and g

The dynamics of the saddle-center loop map depends
the two parametersg and a. The parameterg5v/n is the
ratio between the modulus of two eigenvaluesv and n and
therefore is invariant under any change of coordinates~it is
invariant even under time reparametrization!. The parameter
a is harder to compute and is related to the flow linearized
the orbit G. Let q̄1(t) be theq1 component ofG(t). The
(q2 ,p2) components of the vector field linearized atG are

q̇25p2 ,

ṗ252@v21S$q̄1~ t !%#q2 , ~11!

where

v21S~q1!5v21O~q1!5]q2 ,q2
V~q1,0!.

In the variables (Q2 ,P2) these equations become

Q̇25vP2 ,

Ṗ252@v1v21S$q̄1~ t !%#Q2 . ~12!

For a givend.0, let t2(d) and t1(d) be two time values
such that the (Q1 ,P1) coordinates ofG@ t2(d)# are~0, d! and
the (Q1 ,P1) coordinates ofG@ t1(d)# are~d, 0!. Let c(t2 ,t)
be a fundamental system of solutions of Eq.~12! such that
c(t2 ,t2) is the identity matrix. Then, matrixC(d) appear-
ing in Eq. ~7! is given byc(t2 ,t1) and a~d! is the square
root of the largest eigenvalue ofC(d)C(d)†, whereC(d)†

denotes the transpose ofC(d) @geometrically,a~d! is the
largest semiaxis of an ellipsis that is the image of a u
circle by C(d)#. In principle, the value ofa~d! depends not
only on d but also on the coordinates used near the sad
center equilibrium. However, a computation using Moser
ordinates@or assuming as true the linear flow approximati
~5!# shows thata~d! does not depend ond. Still, this property
depends on this special system of coordinates. In orde
present a characterization ofa that does not depend on
special coordinate system, one definesd5d0 and dn
5d0e22pn/g. Then, one takes the limit asn→` to get: dn
→0, t6→6`, andc(t2 ,t1)→c(2`,1`): TWc→TWc,
whereTWc is the tangent manifold toWc at the origin~this
6-4
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CRITICAL NUMBER IN SCATTERING AND ESCAPING . . . PHYSICAL REVIEW E64 046216
limit is explained in detail in@8#, Theorem 3!. The trace of
c~2`, 1`! does not depend on coordinate systems a
more, but depends on the choice ofd0 . Nevertheless, one
can prove~as in@8#, Theorems 3 and 4! that the maximum of
the trace ofc~2`, 1`! for d0 varying in the interval
@de22p/g,g# is equal toa1a21 and it does not depen
either ond or on the coordinate system. This constructi
gives an invariant definition fora. In order to computea, it
is necessary to take a special limitc~2`, 1`! of the funda-
mental solution of Eq.~12!. For the particular systems in thi
paper, this limit gets a very familiar form. Notice that bo
equations~11! and ~12! are equivalent to second-order di
ferential equations forq2 and Q2 , respectively. Moreover
both equations forq2 andQ2 are the same and are given b

q̈252@v21S$q̄1~ t !%#q2 , ~13!

where S@ q̄1(t)# decays exponentially fast to zero ast
→6`. Equation ~13! is a one-dimensional Schro¨dinger
equation similar to those appearing in one-dimensional qu
tum scattering problems. It has a complex-valued solutiof
with the following asymptotic behavior:

f~ t !→Âeivt1Be2 ivt as t→2`,

f~ t !→eivt as t→`, Â,B complex. ~14!

Â and B are the usual scattering coefficients of quant
mechanics. In@8# ~Theorem 4! it is shown that the maximum
with respect tod0 of the trace of the limitc~2`, 1`! ~as
discussed above!, which is equal toa1a21, is also equal to
2AuBu211. Therefore, one gets thata>1 is given by

a5uBu1AuBu211, ~15!

where uBu is determined by the one-dimensional scatter
problem~13!–~14!.

The numbera can be also understood in a different a
more geometric way. The center manifold of the sadd
center equilibrium is foliated by periodic orbitszE , one for
each energyE.0. In the linear flow approximation~5! zE is
a circle of radius A2E/v in the plane $Q15P1
50,Q1 ,P2%. The stable~unstable! manifold ofzE is a cylin-
der that intersectsS1E (S2E) at a circleC1E (C2E) with the
same radius. The global mappingG mapsC2EPS2E to a
closed curveC1E8 PS1E that is approximately an ellipsis i
E.0 is small. In general,C1E8 intersects the circleC1E trans-
versally. Letb8 denote the area outsideC1E and insideC1E8
and letb be the area insideC1E . SinceG restricted toS2E
preserves area, then 0<b8/b,1. Let b* be the limit of
b8(E)/b(E) asE→0. Then one gets

cosS b*
p

2 D5
2

a1a21 . ~16!

Notice that if the unstable and stable manifolds ofzE coin-
cide thena51. This is a necessary condition for integrabili
obtained in@13# and@14#. Notice that in terms of the scatte
ing coefficientB, a necessary condition for integrability
04621
-

n-

g

-

B50, namely, a resonance in the ‘‘quantum scattering pr
lem’’ ~13!–~14!. The numbera first appeared in@13# and
@14#. An invariant characterization of it was given in@8# that
was the source for most of the presentation above.

C. A class of examples wherea can be easily computed

In general, it is not easy to solve the scattering equat
~13!. In most cases this can only be done numerically. N
ertheless, there is an important class of potentials where
problem can be solved analytically@8#. This class is de-
scribed in the following. Suppose that the potentialV in Eq.
~3! satisfies the following additional hypotheses:

V~q1,0!52 1
2 n2q1

21
d

n11
q1

n11,

]q2,q2V~q1,0!5v21bq1
n21. ~17!

This implies that the solution homoclinic to the origin sat
fies q25p250 and

q̈151n2q12dq1
n .

It can be checked that theq1 component ofG is given by

q1~ t !5C sech2/~n21!S tn~n21!

2 D ,

where C5S ~n11!n2

2d D 1/~n21!

.

This implies that Eq.~13! becomes

q̈252Fv21
b~n11!n2

2d
sech2S tn~n21!

2 D Gq2 . ~18!

This is a well-known one-dimensional Schro¨dinger equation
problem that can be solved using hyper geometric functio
The modulus ofB is given in @22#, Sec. 25, Eq. 4, as

uBu25
cos2@~p/2!Ah#

sinh2~pe!
, if h.0,

uBu25
cosh2@~p/2!A2h#

sinh2~pe!
, if h,0, ~19!

where

e5
2v

~n21!n
, h5

b

d

8~n11!

~n21!2 11.

Then, a follows from these expressions and froma5uBu
1AuBu211 @Eq. ~15!#.

D. Families of blocking tori and the critical number

In the introduction, a family of blocking tori was define
using the topology of the energy-level sets of the Storm
system as a model. That definition can be easily general
6-5
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to systems that satisfy the hypotheses of Sec. II A. In
case, a blocking torus splits the phase space into two c
nected components but none of them has to be necess
bounded. For these systems, the existence of a family
blocking tori accumulating atG is implied by the existence
of a family of invariant curves accumulating at the trivi
fixed point of the saddle-center mapF, Eq. ~10!. Before ex-
plaining this claim, it is necessary to study the dynamics
F. The following two paragraphs were essentially taken fr
@11#.

Map F has among other symmetries a remarkable one
is invariant under discrete dilationZ→ep/gZ @namely,
F(ep/gZ)5ep/gF(Z)#. In particular, this symmetry implies
that the fixed pointZ5(0,0)50I is stable whena is suffi-
ciently close toa51. In fact, fora51, F leaves all circles
centered at 0I invariant~F is just a rotation in each circle!. Far
from the origin,F is analytic and the KAM~Kolmogorov,
Arnold, and Moser! theorem can be used to prove that,
ua21u is sufficiently small, then invariant closed curves su
rounding 0I exist. Since there is one such a curve there
infinitely many, due to the dilation symmetry, and the
curves accumulate at 0I ~whereF is not differentiable!.

The dilation symmetry also suggests a beautiful mec
nism for the instability of 0I whena is large. Fora.1, if F
has a fixed pointp distinct from 0I , then it has an infinite
family of fixed points given byekp/gp, kPZ. Indeed, an ex-
plicit computation shows thatF has four families of fixed
points. The first family is denoted byzk , kPZ, where zk
5epk/gz0 . The elements of the second family are given
2zk . The elementz0 has coordinates

P25expS d

g
2

p

4g D cosd, Q25expS d

g
2

p

4g D sind,

where d5arctan(1/a)P(0,p/4). The linearization of F
aroundzk and2zk , for all k, is associated to the same pa
of eigenvalues (l,l21), determined byl1l215212g(a
2a21). This implies that all6zk are hyperbolic. Now, sup
pose the unstable manifold ofz0 intersects transversally th
stable manifold ofz1 . Then, the dilation symmetry ofF
implies that the unstable manifold ofzk intersects transver
sally the stable manifold ofzk11 for all kPZ. The same is
valid for the family2zk , kPZ. So, due to the discrete sym
metry, the existence of a transversal heteroclinic orbit c
nectingz0 to z1 implies the existence of two infinite hetero
clinic chains, or ‘‘Arnold’s transition chains’’@24#, which
implies ~besides a lot of ‘‘chaos’’! the instability of 0I . In
order to show that this scenario indeed occurs, it is still n
essary to show that the unstable manifold ofz0 intersects the
stable manifold ofz1 transversally. This is related to th
nonexistence of homotopically nontrivial invariant curves
the saddle-center loop map. It was proved in@10# that the
above transition chain exists ifg(a2a21).1. For the real
saddle-center loop map, that takes into account the hig
order corrections toF, it was proved@10# the existence of a
semi-infinite heteroclinic chain connecting points arbitrar
close to the saddle-center loop to points at finite distanc
it.
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In @11#, a numerical study ofF was done in order to
estimate the region in the parameter spaceg.0, a>1,
where invariant circles surrounding 0I exists. Very curiously
the following simple criterion was obtained.

Stability criterion. Let c be the number~stability number!:

c5g~a2a21!. ~20!

There is a critical value ofc, denoted ascc and called
critical number, such that

• If c,cc , then there are invariant circles surroundingI ,
so all orbits ofF are bounded and 0I is a stable fixed point.

• If c.cc then there are no invariant circles surroundingI
and F has an infinite heteroclinic chain connecting 0I to in-
finity.

An approximated value ofcc , probably overestimated, i
cc51/&.

Remark:The above criterion was obtained numerical
Both the form of the critical curve and the critical numb
cc51/& are only approximations. The computation near t
breakup of the last invariant curve is delicate. For instan
for some particular values ofg, it was numerically verified a
stability-instability transition atcc50.55 @23#.

Notice that the appearance of the above heteroclinic ch
reminds us of~and it is very similar to! the so-called ‘‘reso-
nance overlap criterion’’ of Chirikov@24#. This idea of reso-
nances overlap when applied to the standard map also
duces infinite heteroclinic chains. A remarkable property
the saddle-center loop mapF is that this infinite heteroclinic
chain ofF implies a semi-infinite heteroclinic chain for th
original Hamiltonian system~3! @10#.

Now, we turn back to the question of the existence
families of blocking tori. All the discussion above suppos
the energyE to be zero. Nevertheless, the concept of famil
of blocking tori requires the existence of invariant tori f
E.0. In fact, using the KAM theorem~as, for instance, in
@10#! it can be shown that the existence of sufficien
smooth invariant circles surrounding 0I for E50 imply the
existence of perturbed invariant circles forEÞ0, uEu small.
The statement is as follows. If the above invariant circles
E50 exist, then given ane.0 there existsd.0 such that
for uEu,d the mappingG+L restricted toS1E has an invari-
ant circle with a radius less thane. This conclusion clearly
implies the existence of a family of blocking tori associat
to the saddle-center equilibrium at the origin of system~3!.
So, the stability criterion above can also be used as a c
rion for the existence of families of blocking tori. More in
formation about invariant curves forE.0 can be found in
@10# ~in particular, in Fig. 4 of@10# one can find a diagram
that motivated the definition of a family of blocking tori!.

E. The saddle-center scattering map

In Sec. II A we presented mapsL and G to describe the
dynamics near a saddle-center loop of a system satisf
certain hypotheses. In this section, the dynamics gener
by these maps will be studied for a fixed small value ofE
.0. For simplicity, the indexE will be omitted fromS1E ,
6-6
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S2E , andS3E , and the restriction of the (Q2 ,P2) compo-
nents ofL and G to the energy-level setE will be denoted
also by L and G, respectively. So, the dynamics near t
saddle-center loop in this case is determined by the pai
mappings@see Eqs.~9! and ~8!#

L: S1→S2øS3 ,

Z85L~Z!5R~g lnuiZi222v21Eu1K8!Z,

and

G: S2→S1 , Z85G~Z!5AR~K !,

whereK and K8 are two constant phases in~0,2p! and the
image ofL is in S2 if iZi222v21E>0 otherwise it is inS3
~see Fig. 2!. For a system satisfying the hypotheses of S
II A, a typical scattering problem, similar to the one for th
Stormer system mentioned in the introduction and illustra
in Fig. 1, is the following. The incoming particles are give
by a line of initial conditions with fixed energyE.0 at q1

50 with p15q̇15v.0, v constant satisfying 0,v,A2E.
For E small, from the linearized HamiltonianHL ~4!, one
gets that this set of initial conditions corresponds to a cir
in phase space given by

Q152
v

A2n
, P15

v

A2n
, Q2

21P2
25

2

v S E2
v2

2 D .

The linearized flow~5! maps this circle to another circleS in
S2 with the same radius. So one can considerSPS2 as the
input of the scattering process. It is clear that if the only e
from the potential well is over the saddle-center equilibriu
at the origin, then any scattered solution must hitS3 . There-
fore, a suitable output for the scattering problem is
(Q2 ,P2) components~or any function of them! of the inter-
section of an exiting solution withS3 .

Under some circumstances, as discussed below, the
tering problem presented above is approximately determ
by the dynamics ofL andG in the following way. The initial
condition for the scattering process is given by the circleS
PS2 . This circle is mapped byG to an ellipsis G(S)
PS1 , see Fig. 3. The points inG(S) have two possible
ways. If they are outside the circleiZi252v21E ~repre-
sented by a dotted circle in Fig. 3! then they are mappe
back toS2 by L. If they are inside this circle, then they a
mapped toS3 by L. The scattering process for the points
S3 is finished and the corresponding output value are th
(Q2 ,P2) components. Moreover, the scattering time in t
case may be taken as one, because they were scattered
one cycle of iteration ofG and L. Then the pointsL+G(S)
PS2 are mapped again toS2 and so on, see Fig. 3. Th
result is that from this iteration scheme~which we call
‘‘saddle-center scattering map’’! one can get all scatterin
functions.

The procedure described in the above paragraph app
mates well the real scattering process under two circu
04621
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stances. At first,E.0 has to be sufficiently small. At sec
ond, the stability numberc of the previous section must b
less than the critical onecc'1/&, namely, the system mus
have a family of blocking tori. If this last condition is no
verified, then points initially close toZ5(Q2 ,P2)5(0,0)
can escape to infinity under iterations ofL+G. Therefore,
they will never hit S3 . Moreover, mappingsG and L ap-
proximate the real dynamics only wheniZi is not large.
Even whenc is large, the scattering results obtained w
mappingsG andL may be a good approximation to the re
scattering in its first few iterates.

We point out that the scattering map defined in@25#,
which consists of reinjecting the scattered solutions, may
easily obtained in the context of the saddle-center scatte
map. This is done through the identification ofS3 andS2 .
The result is a mapping fromF̂: S1→S1 given by

Z85F̂~Z!5AR~g lnuiZi222v21Eu1K81K !Z,

whereK andK8 are constants in@0,2p! and the mapping is
the identity if iZi222v21E50.

III. APPLICATIONS

The goal in this section is to apply the results presente
the previous one to four examples. The first three are ta
from @3,2,12#.

A. Example 1

In this example, the Hamiltonian function is

H5 1
2 ~px

21py
2!1V~x,y!,

V~x,y!5 1
2 ~x21y2!2 1

3 y31mx2y.

This is Eq.~3! of @3#. Form51, it is the well-studied He´non-
Heiles system@26,12#. For any value ofm>0, the potential

FIG. 3. Diagram showing the sequence of mappings used
define the saddle-center scattering map. Notice that points ou
the dotted circle inS1 are mapped toS2 and then mapped back t
S1 by G. Those points inside the dotted circle inS2 are mapped
outside the potential well toS3 . For them the scattering process
over.
6-7
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function has a saddle point at (x,y)5(0,1) with an associ-
ated critical energyEcr51/6. With the change of variable
y512q1 , x5q2 , one gets

V~x,y!5 1
2 @2qt

21~112m!q2
2#1 1

3 q1
32mq1q2

2.

This system satisfies the hypotheses in Sec. II C withn
51, n52, d51, v5A112m, b522m. So, e
52A112m, h5248m11, and the values ofuBu follow
from Eq. ~19!. For instance, form50, m50.43, m50.49,
andm51, one obtainsuBu50, uBu'0.25, anduBu'0.89, re-
spectively. Using Eq.~15!, the stability number can be writ
ten in terms ofuBu as

c52guBu,

which implies c50, c'0.55, c'1/&, and c'3.1, for m
50, m50.43,m50.49, andm51, respectively. In this case
the criterion for the nonexistence of invariant tori around
saddle-center loop using the critical numbercc51/& gives
for m the critical valuem50.49. A more careful numerica
analysis of the dynamics of the saddle-center loop mapF for
the particular parameter values of this problem showed, h
ever, that the breaking up of the last invariant tori ofF hap-
pens form50.43 that corresponds to acc50.55@23#. This is
in agreement with numerical simulations of the real flo
@23#. So, in this example, the critical value ofm is taken as
0.43.

It is interesting to visualize projections of blocking tori
the configuration space. Consider the sequence of Figs.
different parameter valuesm and for a fixed value of energ
equal to 0.17~aboveEcr51/6!. In Figs. 4~a! (m50) and 4~b!
(m50.4), we show projections of invariant tori on the co
figuration space that block the escaping channel over
saddle-center equilibrium. In Fig. 4c (m50.7) we exhibit a
single solution starting near the boundary of the poten
well that escapes from it. This shows that there is no var
torus near the saddle-center loop blocking the exit of
potential well.

In order to illustrate the dependence of a scattering pr
lem for this system on the parameterm, consider a scattering
function c defined in the following way. For a givenE.0,
let $x5b, y51.1, px50, py,0% be a one parameter famil
of input initial conditions wherepy is determined byH5E
5const and the impact-parameterb is defined in a maxima
interval whereV(b,1.1)<E. Consider the solution generate
by the initial condition associated tob and suppose that fo
some timeT(b) this solution hits the phase-space hypers
face $y51% with py.0 and x5c(b). The functionsb
→T(b) andb→c(b) will be called as time delay and sca
tering return map, respectively. It seems from a sequenc
graphs of the scattering return map, obtained through
variation ofm for E50.17 fixed, that nearm50.43 the rate
~with respect tom! of loss of regularity ofb→c(b) is en-
hanced. Nevertheless, the transition that occurs neam
50.43 can be much easily seen through a plot of an avera
time delay functionT̄(m) as shown in Fig. 5. This functionT̄
is obtained taking the average ofT(b) over many equally
spaced values ofb for a fixed value ofm.
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ed The potentialV above has two more saddle pointsx
56(1/2mAm)A112m56 x̄, y521/(2m)5 ȳ, at energy
E5(113m)/(24m3). There is a homoclinic solution to eac
saddle-center equilibrium corresponding to each of th

FIG. 4. Projections on the configuration space of orbits of
Hénon-Heiles family with energy equal to 0.17 and initial cond
tions y(0)50, px(0)50, py(0).0, and: ~a! for m50, x(0)
50.12; ~b! for m50.4, x(0)50.12; ~c! for m50.7, x(0)50.58.
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saddle points. These homoclinic solutions are given byx(t)
56 x̄u(t), y(t)5 ȳu(t), where u satisfies ü52u1u2,
u(t)→1 ast→6`. As above, the coefficientsg anduBu can
be computed explicitly. Form51, the potential is symmetric
with respect to rotations of 2p/3 radians, which implies tha
g anduBu are the same for the three homoclinic saddle-cen
loops. These saddle-center loops are related to an esca
problem that will be discussed after the next two exampl

B. Example 2

In this example, the Hamiltonian function is

H5 1
2 ~px

21py
2!1V~x,y!, V~x,y!5 1

2 ~x21y2!2xy2.

This is Eq.~8.1! of @12# and after some rescaling of coord
nates and time, this is Eq.~2! of @3#. The potentialV has a
pair of saddle points (x,y)5(1/2)(16&) at energy 1/8. The
saddle-center equilibria related to these saddle points h
eigenvalues61 and6 i&. There is one homoclinic solution
to each saddle-center equilibrium. Introducing coordinate

x5
1

)
~ q̂12&q2!, y5

1

)
~&q̂11q2!, q̂15

)

2
2q1 ,

one gets a system satisfying the hypotheses in Sec. II C.
same reasoning as in the previous example gives:n51, v
5&, g5&, uBu'0.259,c52guBu'0.807.&. This im-
plies that there are no families of blocking tori accumulati
at the saddle-center loops.

C. Example 3

In this example, the Hamiltonian function is

H5 1
2 ~px

21py
2!1V~x,y!, V~x,y!5 1

2 ~x21y2!2 1
2 x2y2.

This is Eq.~8.2! of @12# and after some rescaling of coord
nates and time, this is Eq.~1! of @3#. The potentialV has four
saddle-points (x,y)5(61,61) at energy 1/2. The saddle
center equilibria related to these saddle points have eigen

FIG. 5. Graph of the averaged time delay functionT̄(m).
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ues6& and6 i&(g51). There is one pair of heteroclini
orbits connecting the equilibria at (x,y)5(1,1) and (x,y)
5(21,21), and one pair of heteroclinic orbits connectin
the equilibria at (x,y)5(1,21) and (x,y)5(21,1). In prin-
ciple, the results in Sec. II A, for homoclinic orbits to saddl
center equilibria do not apply. Nevertheless, there is a sim
adaptation@9,10# of the above-presented results to the case
heteroclinic loops. Again, the scattering problem for the d
termination of a is explicitly solvable and gives:uBu
'0.119,c52guBu'0.238,1/&. This implies that there are
invariant tori accumulating at the saddle-center heterocl
loop, and therefore, a family of blocking tori forE.Ecr ,
E→Ecr .

D. The escaping problem and the dynamics
for examples 1, 2, and 3

The escaping problem for the systems in Examples 1
and 3 was studied by Kandrupet al. @3#. They have a param
etere in their systems that coincides with the parameterm in
Example 1 and that in Examples 2 and 3, after some res
ing, can be identified with the energy~in fact, what they do is
to fix an energy and vary this parameter; after the rescal
this is equivalent to fix the parameter and vary the energ!.
So, below, the reader can think ofe as if it were the energy.
In particular, theire0 is equivalent to the energyEcr of the
saddle-center equilibrium. In their own words, one of th
main conclusions was:~the following paragraph was take
from the abstract of@3#!:

‘‘For e below a critical valuee0 , escapes are impossibl
energetically. For somewhat higher values, escape is allo
energetically but still many orbits never escape. The esc
probability P computed for an arbitrary orbit ensemble d
cays toward zero exponentially. At or near a critical val
e1.e0 there is a rather abrupt qualitative change in the
havior. Abovee1 ,...,. The transitional behavior observe
neare1 is attributed to the breakdown of some specially s
nificant KAM tori or cantori... .’’

In principle, it is not easy to relate the results in@3# to
those in here. They studied the escaping problem for a ra
of energies that include values far from the energyEcr of the
saddle-center equilibrium, while here, all results concern
ergies nearEcr . However, there is an interesting fact in the
results that makes it possible to establish a connection
tween their criticale1 and the concept of a family of block
ing tori introduced here. For Examples 2 and 3 above,
value ofEcr is 0.125 and 0.5, respectively, and the values
e1 they found are equivalent to energiesE50.16520.014

10.006 and
E151.17660.0024, respectively. For Example 1, they fixe
the energy of the initial conditionsE50.167, which implies
that escape is energetically possible form.m051, and
found a critical value ofm1 ~or e1! of 1.160.5. Under these
circumstances, the saddle-center loops that are relevan
the escaping problem are those presented at the end of
III A. Their energy is Ecr50.13520.013

10.015 depending onm1

51.160.5. Since m1'1, these saddle-center loops ha
numbersg anduBu ‘‘close to’’ those computed for the saddle
center loop on thex axis for m51. Therefore they are un
stable. Notice that in Examples 1 and 2, there is no family
blocking tori accumulating on those saddle-center loops
6-9
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are relevant for the escaping problem. In both cases, K
drup et al. found a ‘‘critical energyE1’’ close to the energy
Ecr of the saddle-center loops. In Example 3, there are fa
lies of blocking tori accumulating on the heteroclinic sadd
center loops and Kandrupet al. found a value ofE1 more
than twice as large asEcr . So, our conclusion is that system
with unstable saddle-center loops, and therefore with no f
ily of blocking tori, may have a value ofE1 ~equivalent to
the criticale1 of Kandrupet al.! ‘‘close’’ to Ecr while those
systems having families of blocking tori may have a value
E1 ‘‘far’’ from Ecr . It is not easy to give a more quantitativ
meaning for this last statement. The question is complex
even the definition ofE1 that is based on numerical invest
gation is not quantitatively clear and sharp.

The dynamics of the mappings in Examples 1, 2, an
for E nearEcr is also related to the parametersa andg. For
Example 1, this idea was discussed in@23#. It is well known
@26# that form51, the dynamics of the system in Example
is mostly stochastic inside each energy level setE,Ecr for E
near Ecr . In this case, the saddle-center loop is unsta
~there is no family of invariant tori accumulating on it!. On
the other hand, it was reported in@26# that the system of
example 3 has no observable large scale stochasticity foE
,Ecr andE nearEcr . In this case the saddle-center loop
stable and there are invariant tori accumulating on it. T
indicates that the stability or instability of the saddle-cen
loop is related to the existence or not, respectively, of la
stochastic regions at energy-level setsE close toEcr .

E. The Stormer system

The Stormer system~2! also has a saddle-center loop co
tained in the plane$x,px ,y5py50%. The scattering problem
associated to it~13!–~14! cannot be solved analytically a
above but can be solved numerically. In this case, one fi
the saddle-center loop parametersv253/64, n251/32, g
5A3/2 anda'5.8, which implies that there are no invaria
ic
.

k

.

tt.
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tori around the saddle-center loop. This seems to be in ag
ment with the scattering results in@7#, which shows a pre-
dominance of hyperbolicity and with other numerical resu
on the chaotic dynamics of the Stormer problem~see, for
instance,@1#!.

IV. CONCLUSION

In this paper, the concept of a family of blocking tori
introduced. For systems satisfying the hypotheses in S
II A a family of blocking tori is a set of invariant tori, one fo
each energyE.Ecr , such that the limit of the set asE
→Ecr is a saddle-center loop. In Sec. II we presented a
terion for the existence of families of blocking tori that us
two invariant numbersg and a related to the saddle-cente
loop. These numbers can be computed in several interes
examples, as for instance, those presented in Sec. III.

In Sec. II E we presented a pair of ‘‘universal’’ mapping
G and L depending on the parametersa and g that may
describe the scattering off a potential well near the criti
energyEcr provided the system has a family of blocking to
It would be interesting to numerically check the energy ran
of validity of this claim.

The mechanism for breaking up families of blocking to
discussed here consists in the creation of an infinite het
clinic chain @10,11#. The critical parameter for this chai
creation may be related to some tangencies between in
ant manifolds of different hyperbolic periodic orbits. Ta
gencies between invariant manifolds were found by Laiet al.
@27# as a mechanism for ‘‘chaotic scattering enhanceme
that they called ‘‘crisis in chaotic scattering.’’
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@26# M. Hénon and C. Heiles, Astron. J.69, 73 ~1964!.
@27# Y-C. Lai, C. Grebogi, R. Blumel, and I. Kan, Phys. Rev. Le

71, 2212~1993!.
6-11


