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Abstract. This paper presents a new simulation methodology for quantitative
risk analysis of large multi-currency portfolios. The model discretizes the mul-
tivariate distribution of market variables into a limited number of scenarios.
This results in a high degree of computational e�ciency when there are many
sources of risk and numerical accuracy dictates a large Monte Carlo sample.
Both market and credit risk are incorporated. The model has broad applications
in �nancial risk management, including value at risk. Numerical examples are
provided to illustrate some of its practical applications.
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1. Introduction

In recent years, value-at-risk (VaR) has been considered as one of the best
market risk measures by banks and other �nancial institutions. VaR is de�ned
as the expected loss from an adverse market movement with a speci�ed prob-
ability over a period of time. For each �nancial institution, a certain amount
of capital must be set aside so that the probability that the institution will not
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survive adverse market conditions remains very small. In December 1995, the
Bank for International Settlement (BIS) �nalized its rules for allocating the
capital to market risk, allowing banks to use their internal model to measure
the market risk exposure, expressed in terms of value-at-risk.1

There are several commonly applied methods to calculate VaR. One sim-
plest method is “delta approximation”. It uses variance-covariance matrix of
market variables and the portfolio’s sensitivities with each of the market vari-
ables (delta) to approximate the potential loss of the portfolio value. This
method critically depends on two dubious assumptions: the normality assump-
tion of portfolio value, and the linearity assumption of the relationship between
transactions’ prices and market variables.
In general, however, �nancial transactions, derivatives in particular, have

non-linear price characteristics. Thus, Monte Carlo simulation is a more appro-
priate method to estimate their market exposures. A common implementation
is based on the joint lognormality assumption of market variables to generate
a large number of market scenarios using their historical variance-covariance
matrix. Then, transactions values for each scenario are calculated and aggre-
gated. From the obtained distribution of the portfolio value, VaR can be easily
estimated. The di�culty with the Monte Carlo approach is its computational
burden. In order to obtain a reliable estimation, the sample size has to be large.
In the case of large multi-currency portfolios, the required huge sample size
often makes the approach impractical. Choosing a smaller sample size would
result in a distorted distribution, defeating the purpose of adopting the Monte
Carlo approach.
The Scenario Simulation model described in this paper is a new approach

to estimate VaR. The model approximates a multidimensional lognormal distri-
bution of interest rates and exchange rates by a multinomial distribution of key
factors. While it allows very large samples, the number of portfolio evalua-
tions is limited. As a result, a great computational e�ciency has been obtained
in comparison with conventional Monte Carlo methods. In addition to the ef-
�ciency, it is our view that the Scenario Simulation model �ts the needs of
risk management better than conventional Monte Carlo method. In the next
two sections, we describe the basic assumptions and mathematical models of
the scenario simulation model under the single currency yield curve setting. In
Sect. 4, the model is extended into a multi-currency setting. We also describe
how to incorporate other market risk variables such as volatility and basis
risk.
The concept of value-at-risk is not restricted to the market risk. For the

risk management of a �nancial institution, it is important to examine not only
the market risk of the portfolio, but also its overall risk exposures. Section 5
discusses the model’s application in estimating a portfolio’s overall risk pro�le
of joint market risk, counterparty default and country risk events. Section 6 ap-
plies the model to analyze the risk pro�le of a multi-currency swap portfolio.
Section 7 concludes the paper.
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2. Yield curve modelling

We make the following assumptions:
a1. A yield curve is described by a vector of key zero coupon rates:

{r1 ; : : : ; ri ; : : : ; rn}(1)

a2. Each key rate is lognormally distributed:

dri
ri
= \i(t)dt + bi dzi(2)

where zi(t) ∼ N(0;√t); i = 1; : : : ; n. Equivalently, we have
ri(t) = ui(t) ebi zi (t)(3)

Note in (3) ui(t) depends on the expectation hypothesis. For example, we can
assume that

ui(t) = Fi (t)(4a)

where Fi(t) is the corresponding forward rate. Another possibility is to choose

ui(t) = Fi(t)e−
1
2 b

2
i t(4b)

so that the expected value of ri(t) equals the forward rate.2

a3. zi(t); i = 1; : : : ; n, are correlated in the following way:

〈dzi; dzj〉 = aijdt(5)

i; j=1; : : : ; n. Thus we shall have a n×n correlation matrix R={aij ; i; j=1; : : : ; n}.
Based on assumptions (a1) ∼ (a3), the distribution of yield curves at a

future time t is determined. To simulate the distribution, one method is to apply
the Monte Carlo method, which can be brie
y described as follows. First, a set
of random numbers {z1; : : : ; zn} is selected according to their joint distribution.
By applying Eq. (3), we can generate one future yield curve {r1(t); : : : ; rn(t)}.
In order to simulate the distribution, a large number of future yield curve have
to be generated.
Suppose that 12 key rates are used to describe the yield curve. In other

words, the yield curve model has 12 factors. For each random variable zi to
have three possible values, the total number of future curves we need would

Table 1. Cumulative percentage of variations explained by principal components

By correlation matrix By covariance matrix
No. of factors 1 2 3 4 5 1 2 3 4 5

DEM 67.7 83.9 93.7 97.1 98.5 71.5 84.8 92.9 96.7 98.4
JPY 75.8 91.2 94.3 96.6 98.1 69.7 90.7 95.6 97.7 99.2
USD 75.8 85.1 93.0 97.0 98.9 84.4 90.9 94.4 97.3 98.9
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be 312 = 531; 441, about half a million. If each random variable takes �ve
outcomes, the total number would be increased to above 200 million! Of course,
Monte Carlo simulation does not require all the permutations. A smaller number
of trials would be su�cient in order to obtain reasonable value of moments
and expectations such as mean and variance. Even then, the required number of
trials will still be very large, especially in the case of multi-currency portfolio
where the correlations among currencies and currency yield curves are usually
low. Obviously, even with a large sample, the coverage of all “extreme” cases
is not guaranteed in the Monte Carlo method.
Fortunately, to simulate the future yield curve movements, we do not have

to use the “brute-force” Monte Carlo method. It has been documented that
yield curve movements can be largely explained by two or three factors.3 These
studies show that the three factors can be interpreted as shift, twist, and butter
y
(bend) of yield curves. The principal component analysis is one of the common
methods to extract these key factors from yield curve movement data. Table
1 is an example of principal component analysis which shows the cumulative
percentage of variations explained by the �rst �ve principal components of
yield curves of Germany, Japan and United States.4

It can be seen that the �rst three principal components can explain about
93–95% of the variations. The principal component analysis can be preformed
to either the covariance matrix or the correlation matrix. When the volatilities
of all key interest rates are of the same order of magnitude, the results from the
two methods are very similar. For simplicity, we shall use the second method
in our discussion.
Suppose R = {aij}i; j=1;:::;n is the correlation matrix of the n key rates

{r1; : : : ; rn}. Let the j-th eigenvector of R be de�ned as
Rj = (Rij ; : : : ; Rnj)T(6)

From the de�nition of the eigenvector, we have

R Rj = [jRj j = 1; : : : ; n(7)

where [j is the j-th eigenvalue. Since R is a symmetric non-negative de�nite
matrix [j = 0, j = 1; : : : ; n; and the eigenvectors are orthogonal to each other.
We normalize all Rj such that

|Rj|2 =
n∑
i=1
R 2ij = [j

Assume that

[1 = [2 = · · ·= [n;(8)

then R1 is called the �rst principal component, R2 is the second principal com-
ponent, and Rj is the j-th principal component. As we discussed above, the
empirical analysis of the historical yield curve data demonstrates that all but
the �rst three principal components are small in magnitude. Now, de�ne the



Scenario Simulation 47

principal factors dwj by

dwj =
1
[j

n∑
k=1
Rkj dzk j = 1; : : : ; n(9a)

Then, it is easy to see that

dzi =
n∑
j=1
Rij dwj i = 1; : : : ; n(9b)

and 〈dwk; dwj〉 = 0 (k 6= j); and dwk · dwk = dt:5
If we assume that

[4; : : : ;[n � [1; [2; [3
then Eq. (9b) can be approximated by

dzi ≈ R i1 dw1 + Ri2 dw2 + Ri3 dw3
The residual should be very small. Based on this approximation, Eq. (2) can
be rewritten as

dri(t)
ri(t)

= \i(t)dt + Ti1dw1 + Ti2dw2 + Ti3dw3(10)

where
Tij = biRij; i = 1; : : : ; n; j = 1; 2; 3:

Similarly, in the integrated form, Eq. (3) becomes

ri(t) = ui(t)eTi1w1(t)+Ti2w2(t)+Ti3w3(t)(11)

The dimensionality of the problem is thus reduced from n to 3. Note also,
wi; i = 1; 2; 3, are now independent random variables.

3. Scenario simulation model

Equation (11) is a three-factor yield curve model. To simulate the future yield
curve movements, we can apply the Monte Carlo method. Say we select 100
possible outcome for each random variable wi; i = 1; 2; 3. The total number of
possible yield curve at one future point in time will be 106. This generates an
adequate distribution of the future yield curves, but it requires a large number of
portfolio evaluations. The question is how to reduce the computational burden
further, while achieving the objective of obtaining a satisfactory representation
of the distribution of a portfolio’s risk exposure.
Suppose W is a random variable with distribution P(w). In the Monte Carlo

method, hundreds of possible w are selected to simulate the random variable
W , and each w has the same probability. The number of w’s which fall in range
between wA and wB is proportional to the probability P(wA ¡ w 5 wB). For the
risk simulation, we can select a state wk which represents the region (wA; wB],
and assign the probability of the region to that state (scenario). Thus a limited
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number of states can be selected. With appropriately assigned probabilities,
these states (scenarios) provide a good representation of the distribution.
It is well known that the multinomial distribution constitutes a good ap-

proximation to a multinormal distribution.6 If m+ 1 states (ordered from 0 to
m) are selected, the probability of state i of a binomial distribution can be
expressed as

Probability(i) = 2−m · m!
i ! (m− i)! i = 0; : : : ; m(12)

The distance between two adjacent states is 2=
√
m standard deviations, and the

furthest state is
√
m standard deviation away from the center. For example, if

we select �ve states (m = 4) to describe w, the corresponding probabilities of
the �ve states are

1
16
;
1
4
;
3
8
;
1
4
;
1
16

In this case the furthest points is two standard deviations away from the center.
The distance between two adjacent states is one standard deviation. Similarly,
if we select seven states (m = 6), the corresponding probabilities are

1
64
;
3
32
;
15
64
;
5
16
;
15
64
;
3
32
;
1
64

The furthest state is 2.45 standard deviations away from the center. The distance
between the two adjacent states is 0.82 standard deviations.
This method allows us to discretize the three factor yield curve model (11).

We can select, say, seven states for the �rst factor, �ve states for the second
factor, and three states for the third factor. The states (w1 = i; w2 = j; w3 =
k) constitutes a scenario. Thus the total number of scenarios in the above
setting is 7 × 5 × 3 = 105.7 Since these factors are independent, their joint
probability is simply the products of the three marginal probabilities as given by
Eq. (12).

3.1 Comparison with traditional Monte Carlo simulation

The potential exposure of a security (or a portfolio) can be described by its
price distribution at a horizon date. The Scenario Simulation model has been
applied to calculate the potential exposures of derivative securities. The �rst
three examples in Table 2a shows the simulation results for interest rate swaps
in three di�erent currencies: German Mark, Japanese Yen, and U.S. dollar. All
three swaps are of 10 year maturity, and with one billion notional amount
in their original currencies. The other two examples are both in dollars. One
is a 4.75 year 3-month Libor 
oor with strike of 5%. The other is a 5-year
receiver’s swaption into a �ve-year swap (5×5 swaption). In all calculations we
use the swap curves as of 6=30=1995. The historical volatilities and correlation
matrices are from JPM RiskMetrics monthly data as of 5=30=1995. The results
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Table 2a. Comparison of scenario simulation vs Monte Carlo simulation

30-day Horizon value (in thousands)
Method Mean STD Maximum Minimum

(1) DEM 1 billion 10-year market rate swap
2-factor (5× 3) −8; 411 23; 295 49; 524 −64; 478
3-fac. (7× 5× 3) −8; 405 23; 527 71; 260 −84; 430
4-fac. (9× 7× 5× 3) −8; 406 23; 555 88; 735 −100; 104
5-fac. (11× 9× 7× 5× 3) −8; 406 23; 560 103; 704 −113; 233
Monte Carlo (20,000) −8; 408 23; 426 90; 042 −100; 056
(2) JPY 1 billion 10-year market rate swap
2-factor (5× 3) 956 27; 534 71; 526 −59; 797
3-fac. (7× 5× 3) 993 27; 669 97; 352 −76; 906
4-fac. (9× 7× 5× 3) 1; 043 28; 307 128; 198 −95; 210
5-fac. (11× 9× 7× 5× 3) 1; 047 28; 333 153; 160 −108; 487
Monte Carlo (20,000) 975 28; 234 138; 345 −100; 311
(3) USD 1 billion 10-year market rate swap
2-factor (5× 3) −25; 378 27; 233 37; 294 −85; 443
3-fac. (7× 5× 3) −25; 386 27; 273 55; 700 −101; 799
4-fac. (9× 7× 5× 3) −25; 389 27; 281 71; 038 −115; 210
5-fac. (11× 9× 7× 5× 3) −25; 386 27; 369 87; 359 −129; 098
Monte Carlo (20,000) −25; 378 27; 106 108; 494 −145; 155
(4) USD 20 million 4.75-year 
oor (strike=5%)
2-factor (5× 3) 179.84 66.77 351.09 78.19
3-fac. (7× 5× 3) 180.79 69.06 455.18 60.28
4-fac. (9× 7× 5× 3) 182.17 70.33 566.39 48.68
5-fac. (11× 9× 7× 5× 3) 187.49 71.59 672.67 36.85
Monte Carlo (20,000) 183.39 69.58 677.44 26.08

(5) USD 100 million 5× 5 receiver swaption (strike=5%)
2-factor (5× 3) 2; 349 859 4; 397 893
3-fac. (7× 5× 3) 2; 349 861 5; 060 662
4-fac. (9× 7× 5× 3) 2; 350 865 5; 773 473
5-fac. (11× 9× 7× 5× 3) 2; 354 877 6; 627 309
Monte Carlo (20,000) 2; 366 872 7; 896 164

Note: Yield curves are as of 6/30/1995, JPM RiskMetrics as of 5/30/1995.

Table 2b. 30-day value-at-risk of three swaps

Con�dence level
97.5% 99.0%

(1) DEM 70mm 10-year swap (6.9% �xed vs libor)
3-fac. (7× 5× 3) 4; 087; 572 4; 807; 697
Monte Carlo (20,000) 4; 077; 033 4; 793; 734

(2) JPY 5 billion 10-year swap (3.10% �xed vs libor)
3-fac. (7× 5× 3) 336; 153; 389 382; 393; 775
Monte Carlo (20,000) 336; 625; 614 388; 177; 770

(3) USD 100mm 10-year swap (6.50% �xed vs libor)
3-fac. (7× 5× 3) 6; 763; 594 9; 020; 414
Monte Carlo (20,000) 7; 153; 692 8; 682; 214

Note: Yield curves are as of 10/06/1995, JPM RiskMetrics as of 9/15/1995.
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from the Scenario Simulation model are compared with Monte Carlo simulation
with 20,000 trials using the same input data.
These examples demonstrate that the Scenario Simulation model with a

modest number of scenarios, generates exposure estimation very similar to that
of Monte Carlo simulation. If we use three factors and 105 scenarios, the dif-
ferences in mean and standard deviations of the 30-day horizon values are less
than 1% for DEM and USD swaps. In all other examples, the di�erences are
less than 2%.8 The computational e�ciency, on the other hand, was increased
dramatically.
Table 2a illustrates another di�erence between Monte Carlo simulation and

Scenario Simulation. As we discussed above, in Monte Carlo, each trial is
selected randomly (according to a given distribution), thus one has little con-
trol over the maximum and minimum values of the simulation outcomes. For
example, when simulating the 30-day horizon value of the JPY swap, the max-
imum value (138,345) was reached within the �rst 13,000 trials, while the
minimum (−100; 311) was reached within the �rst 3,000 trials. In contrast,
we can have a much better control over these extreme values in the Scenario
Simulation. The range between the maximum and minimum increases with the
number of factors and number of scenarios in each factor. This is a desirable
feature which allows risk managers to conduct “what if ” analyses under a more
controllable environment.
After obtaining the distribution of a transaction’s horizon value, the value-

at-risk for a given con�dence level can be easily calculated. Table 2b shows
that in calculating VaR, the results from the Scenario Simulation method and
the Monte Carlo method are very similar. To calculate VaR of a portfolio
containing all three swaps, an extension of the model into a multi-currency
setting is required, which will be discussed later in the paper.

3.2 Mean reversion of interest rates

In the above discussion, yield curves are assumed to follow lognormal distri-
bution as expressed in Eq. (2). It produces reasonable results when simulating
derivative transaction’s price distribution over a short period of time. The as-
sumption’s de�ciency becomes apparent, however, when the model is extended
to estimate potential exposures over a long time horizon. Based on the assump-
tion of geometric Brownian motion, the interest rate variance is increasing over
time by the factor t, where t is the time to a horizon date. For example, the
Japanese three-year interest rate monthly volatility in June-July of 1995 was
extremely high, at around 18% (annualized volatility of 62%). The geometric
Brownian motion model implies that, at 10-year horizon, the standard devia-
tion of 3-year interest rate would become 18%×√(10× 12) = 197:2%. If the
3-year forward rate is 3.86%, one standard deviation away from the forward
rate would be 3:86 × exp(1:972) = 28%, two standard deviation away would
be 3:86 × exp(2 × 1:972) = 199%, and three standard deviation away would
be as high as 1,431%.
A more reasonable model of describing the evolution of yield curve over

a long period of time should incorporate mean reversion of interest rates. In-
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Table 3. The e�ects of mean reversion factor k
Assumptions: b = 18% (monthly); 5-year forward 3-year rate= 4.17%; 10-year forward
3-year rate = 3.86%

k = 0:00 0.10 0.20 0.30 0.40 0.50

Three-year JPY interest rate at 5-year horizon (%)
STD 139.43 110.85 91.68 78.47 69.07 62.14
@1 STD 16.81 12.64 10.43 9.13 8.34 7.76
@2 STD 67.80 38.28 26.10 20.02 16.60 14.43
@3 STD 273.34 116.01 65.26 43.91 33.10 26.90

Three-year JPY interest rate at 10-year horizon (%)
STD 197.18 129.65 97.68 80.40 69.70 62.35
@1 STD 27.73 14.11 10.25 8.62 7.75 7.20
@2 STD 199.19 51.61 27.23 19.27 15.56 13.43
@3 STD 1430.92 188.70 72.32 43.06 31.24 25.06

Notes:
1. STD: Standard deviation of log of 3-year interest rate at a horizon date.
2. @i STD: The simulated 3-year interest rate i (i = 1; 2; 3) standard deviations away from
the forward rate.

stead of assuming that each key rate follows a geometric Brownian motion, we
assume that

dri
ri = \i(t)dt + bidzi

dzi = −kzi(t)dt + dBi
(13)

where k = 0, and Bi(t) is a Brownian motion. zi(t) is called Orestein–
Uhlenbeck process.9 If k = 0; dzi = dBi, (13) reduces to the same equation
as (2). If k ¿ 0, then the distribution of zi(t) is no longer N (0;

√
t). Rather,

its distribution is

N

(
0;

√
1− e−2kt
2k

)
(14)

It can be seen that at a given time t; zi is normally distributed, equivalently,
ri(t) is lognormally distributed. Therefore, all previous analyses of the Scenario
Simulation model hold without modi�cation. In particular, the principal factors
wi(t) de�ned in Eq. (9a) are also Orestein–Uhlenbeck processes with the same
mean reversion parameter k. Over time, the mean reversion factor k reduces
the variance of wi(t). But, since wi(t) is still normal, it can be discretized by
the same method as before.
Table 3 uses the aforementioned example of Japanese interest rates to

demonstrate the e�ect of the mean reversion factor k. It seems that a mean
reversion factor of 0:30 ∼ 0:50 is warranted for this very volatile case. If k is
0.50, the standard deviation of 3-year interest rate would be reduced by about
half for a 5-year horizon, and by 2/3 for a 10-year horizon. This results in much
more reasonable simulated interest rates, even though they are still quite high.
An interesting issue is how to select the mean reversion factor k for each

currency yield curve. Empirical estimation based on historical data is one pos-
sible method. Another more practical approach is to select k such that the
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mean reversion will be “kicked in” only if volatilities are much higher than
the historical norms for that currency yield curve.

4. Joint probability model of Scenario Simulation

For a single currency, the principal factors of the yield curve are independent,
and their joint probability density is simply the product of the individual den-
sities. This furnishes the mean, standard deviation, histogram, and percentiles
of future portfolio value for each currency. However, in order to aggregate
the portfolios and obtain similar statistics for the U.S. dollar value of the to-
tal portfolio, we need a discrete joint probability model for the totality of the
principal factors of all countries as well as all the exchange rates.
One approach would be to perform the principal component factorization

of the international economy, i.e., of the combined correlation matrix of all
key rates and exchange rates, and choose a su�ciently high number of factors
(say 10) that explain most of the total variation. Then, the principal factors are
independent and the joint probability is again a simple product. However, these
principal factors are di�cult to interpret intuitively. Moreover, this approach
breaks the symmetry and strati�cation of the single currency models, which
carry important information for risk management, and dramatically increases
computational time.
We seek an approach that is consistent with the single currency model in the

sense that the marginal distribution for each currency’s yield curve has the same
scenarios (with the same probabilities) as those constructed for that currency
separately. To this end, we de�ne a discretization of the multivariate normal
distribution such that each coordinate is discretized into a binomial distribution
exactly as in the one-dimensional case. To our knowledge, this construction
has not appeared in the literature before. We will show that the multivariate
discretization converges with probability one to the original multivariate normal
variate. Further, we will describe a procedure for Monte Carlo simulation of
the discrete distribution.
To proceed, for each integer m ¿ 0, we de�ne an increasing sequence

numbers of ai by a0 = −∞, am+1 =∞, and the relations,
1√
2�

∫ ai+1

ai
exp

(
−x

2

2

)
dx =

2−mm!
i!(m− i)! ; i = 0; : : : ; m:(15)

Thus, ai are the points on the real line such that the area under the normal
curve on the segment [ai; ai+1] equals the binomial probability of state i. For
example, for 3, 5, and 7 states, one computes:

m = 2 : a1 = −0:67449; a2 = 0:67449:
m = 4 : a1 = −1:53412; a2 = −0:48878; a3 = 0:48878; a4 = 1:53412:
m = 6 : a1 = −2:15387; a2 = −1:22986; a3 = −0:40225; a4 = 0:40225;

a5 = 1:22986; a6 = 2:15387:
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Now de�ne the function B(m) on the real line with values in the set {0; : : : ; m}
as follows:

B(m)(z) = i if ai 5 z ¡ ai+1:

By construction the function B(m) is so designed that if Z is a normally dis-
tributed random variable with mean zero and variance 1, then B(m)(Z) is bino-
mially distributed with m + 1 state.
If X is a k-dimensional normal variate with correlation matrix Q,

X = (X1; : : : ; Xk) ∼ N (0; Q);
each Xi having mean zero and variance 1, we de�ne its discretization to be the
multivariate discrete variate

B = B(m) = (B(m)(X1); : : : ;B(m)(Xk)):(16)

Note, each coordinate of B is binomially distributed and equals the discretiza-
tion of the corresponding component of X. It is in this sense that we say this
discretization preserves the strati�cation.
From this de�nition, we see that it is easy to generate random samples

of the multidimensional discrete variate B. We simply generate a multivariate
N (0; Q) normal deviate x = (x1; : : : ; xk), then simply �nd between which ai
and ai+1 each xj lies, and thus form (B(m)(x1); : : : ; B(m)(xk)).
The joint probability density of B is clearly given by

prob[B = (i1; : : : ; ik)] =
∫ ai1+1

ai1

· · ·
∫ aik+1

aik

p(x1; : : : ; xk)dx1 · · ·dxk ;(17)

where

p(x) = p(x1; : : : ; xk) = (2�)−k=2det(Q)−1=2exp
(
−1
2
xtQ−1x

)
is the multivariate normal density function of X .
We now show that the standardized B(m) converges to X with probability

one. In particular, it follows that the correlation matrix of B(m) approaches Q
for large m. But even for small values m, it is close enough to Q for practical
purposes.
De�ne R(m)(z) = (2B(m)(z)− m)=√m. Since the mean of the binomial distri-

bution is m=2 and its variance is m=4, the standardized B(m) equals (R(m)(X1); : : : ;
R(m)(Xk)). We claim that for each number z, R(m)(z) approaches z. Then it fol-
lows at once that each R(m)(Xi) approaches Xi with probability one, and with
this, that (R(m)(X1); : : : ; R(m)(Xk)) approaches (X 1; : : : ; Xk) with probability one.
To show R(m)(z) approaches z, let � and F denote respectively the nor-

mal and binomial cumulative distribution functions, and set i = B(m)(z).
Then R(m)(z) = (2i − m)=

√
m, and it follows from the deMoivre–Laplace

theorem that F(i) ∼ �(R(m)(z)).10 But by Eq. (15), �(ai) = F(i). Hence,
�(ai) ∼ �(R(m)(z)). But, z lies between ai and ai+1, and ai+1 − ai → 0, im-
plying ai → z, and so �(ai)→ �(z). Thus �(R(m)(z))→ �(z), which implies
R(m)(z)→ z, as claimed.
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We mention in passing that the above technique can also be used to de�ne
a multivariate version of any continuous distribution F . Indeed, if Z is normal
N (0; 1), then F−1(�(Z)) has distribution function equal F . The multivariate
version can be de�ned as (F−1(�(X1)); : : : ; F−1(�(Xk))), where X is N (0; Q)
as before.

4.1 The distribution of a multi-currency portfolio

Consider a portfolio containing interest-rate instruments in several currencies.
We wish to determine the distribution of the portfolio value at a given hori-
zon date. We take the US dollar (USD) as the base currency. Transactions
denominated in other currencies are to be converted into USD and aggregated.
We assume that key interest rates of all countries are jointly lognormally

distributed, and perform a principal component decomposition of each and dis-
cretize them as discussed before. In addition, we assume a joint lognormal
distribution with all exchange rates. Each exchange rate X = X(t) is lognor-
mally distributed as

X (t) = f(t)ebxwx(t);(18)

where f(t) is the forward exchange rate for the horizon t. As before, we
can incorporate mean reversion if appropriate, or choose the mean, rather than
median, of X (t) to be f(t).
We discretize wx(t), and with it X (t), by a binomial variate as before. If,

for example, seven states are used to describe X , combining with the assumed
105 yield curve scenarios, we have 105 × 7 = 735 USD equivalent scenarios
for that currency. If the exchange rate X and interest rates are uncorrelated,
the 735 joint probabilities are simply given by

prob (X = x; YCV = y) = prob (X = x) · prob (YCV = y):

(Above, YCV stands for yield curve.) The two items on the right hand side are
computed by the binomial probabilities of Eq. (12). In general, in case of non-
zero correlations, we can use the joint probability formula given in equation
(17).
Assume there are a total of k currencies, including USD. Then, there will be

a total of 105×735k−1 scenarios. Equation (17) again provides the probability
of each state. The calculation of the portfolio mean and variance, however,
does not require all these states. Let

Vi = the i-th currency portfolio value;

Xi = the exchange rate of the i-th currency:

Thus, the total value of the multi-currency portfolio is equal to

V = X1V1 + X2V2 + · · ·+ XkVk(19)
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The computation of expected value only requires joint probabilities of Xi and
Vi. To calculate the variance, by de�nition, we have

Var [V ] = E[V 2]− [E V ]2:

Since

V 2 =
k∑
i=1

k∑
j=1
Xi Xj Vi Vj;

E[V 2] =
k∑
i=1

k∑
j=1
E[Xi Xj Vi Vj]:

The above equation indicates that joint probabilities of {Xi; Xj; Vi; Vj} are re-
quired to calculate E[V 2]. Generally, this is a non-trivial computation. However,
if it is assumed that exchange rates and interest are uncorrelated and, yields
of di�erent countries are correlated only through, say, their �rst principal fac-
tors, then the above expression factors into expectations of several bivariate
distributions, which can be easily computed using Eq. (17).
In some applications, it is plausible to assume that, for a diversi�ed port-

folio, V is normally distributed, so that the risk exposure can be determined
just by the expected value E[V ] and the variance Var [V ]. In general, however,
the normality assumption of portfolio value V is not plausible. For example,
the portfolio may contain a disproportionate number of options, or, skewness
may result from truncations brought by considerations of counterparty default.
In this case, we need the entire distribution which requires all possible states.
If the number of currencies k equals 2 or 3, this may well be computationally
manageable. But, for k = 6 for instance, the number of scenarios (105×735k−1)
is more than 1016, i.e., 10,000 trillion. We therefore use Eq. (16) to Monte
Carlo simulate the discrete distribution.
In this regard, it cannot be over-emphasized that our approach to simulation

fundamentally di�ers from the usual Monte Carlo approach applied in risk
management. The usual approach does not employ strati�ed discretization as
in our theory. If N is the number of Monte Carlo trials, it generates N yield
curves and exchange rates for each currency. This means that each transaction
must be evaluated in N states. For the computation to be feasible with a large
portfolio, then of necessity N must be rather small. On the other hand, the high
dimensionality of the problem dictates a large N for an adequately accurate
sample.
By contrast, in our approach each transaction (like an interest-rate swap or a

swaption) is only calculated in the 105 scenarios of the corresponding currency
yield curve. Transactions in each currency i are then simply aggregated for each
of the 105 scenarios, yielding Vi. At this stage, N joint scenarios are randomly
generated using Eq. (16). Then, all that needs be done is the addition in Eq.
(19) for each of the N samples.
In short, our approach requires only 105 evaluation of each transaction

regardless of the number trials N . For this reason, even for very large portfolios,



56 F. Jamshidian, Yu Zhu

Table 4. Correlation matrices of yield curve principal
factors (Based on 9/15/1995 JPM RiskMetrics monthly
data)

CHF DEM GBP JPY USD

First principal factor
CHF 1.000 0.809 0.666 0.101 0.322
DEM 0.809 1.000 0.721 0.133 0.379
GBP 0.666 0.721 1.000 0.020 0.412
JPY 0.101 0.133 0.020 1.000 0.017
USD 0.322 0.379 0.412 0.017 1.000

Second principal factor
CHF 1.000 0.286 0.121 0.074 0.067
DEM 0.286 1.000 0.273 0.228 0.190
GBP 0.121 0.273 1.000 −0.062 0.050
JPY 0.074 0.228 −0.062 1.000 0.023
USD 0.067 0.190 0.050 0.023 1.000

Third principal factor
CHF 1.000 0.130 0.081 0.048 0.220
DEM 0.130 1.000 0.136 0.033 0.003
GBP 0.081 0.136 1.000 0.123 0.228
JPY 0.048 0.033 0.123 1.000 −0.144
USD 0.220 0.003 0.228 −0.144 1.000

we can comfortably take N to be as large as, say, a million, and thereby
achieve stable and accurate results.
We should also mention that the scenario simulation methodology does take

account of rare events and tails of the distribution. For example, although the
single currency yield curve has only 105 scenarios, some of them occur with
a probability of 0.024%, well below the 1% threshold commonly considered
as the probability of a rare event. These low probabilities compound for joint
scenarios.

4.2 Further details of model implementation

Although by no means required, certain reasonable assumptions can be made
to further exploit the symmetries of the model and increase its computational
e�ciency. Namely, we assume:

a4. Exchange rates and interest rates are uncorrelated. In fact, the historical
correlations of interest rates and exchange rates are generally low, and empirical
evidence suggests that their signs are often unstable and depend on the time
period and the length of the sample period.

a5. The �rst principal factor of one country’s yield curve can be correlated
with the �rst principal factor of another country, and the second principal
factors can be correlated, and so on, but the �rst principal factors are not
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Table 5. Correlation matrix and volatilities of ex-
change rates (Based on 9/15/1995 JPM RiskMetrics
monthly data)

CHF DEM GBP JPY Volatility%

CHF 1.000 0.978 0.768 0.771 6.995
DEM 0.978 1.000 0.783 0.777 6.215
GBP 0.768 0.783 1.000 0.552 3.884
JPY 0.771 0.777 0.552 1.000 7.830

correlated with the second or third principal factors, etc. We argue that it
seems unlikely that, say, parallel shift and yield curve twist within the same
country be independent, yet across di�erent countries be dependent. The data
for the �ve major currency yield curves in Table 4 show that the correlation
between interest rate levels (�rst principal factor) accounts for most of correla-
tion between yield curve of di�erent countries.11 Coupled with the fact that the
�rst principal components have the largest magnitude and contribute greatest to
the variance, it seems that assumption (a5) is very innocuous. Table 5 shows
the correlation matrix and volatilities of the four exchange rates.

By enriching the structure of the model, these assumptions actually increase
the complexity of programming. But the result is well worth it in terms of
gained e�ciency. The primary bene�t is that the problem basically reduces from
one of dimensionality 4k, as it were, to 4 problems, each with dimensionality
k. Thus, we deal with the k×k correlation matrix of the �rst factors, and those
of the second and third factors, and the (k − 1) × (k − 1) correlation matrix
of exchange rates. This reduces by a factor of 4 certain calculations needed
to form a 4k-dimensional random vector. It also enables use of antithetical
symmetry for each of the four groups, e�ectively reducing the total number of
random vector generations by a factor of 16.

The Scenario Simulation model can also be extended to cover other market
risks, such as volatility or basis spread. Consider for example the risk associ-
ated to caps, 
oors and swaptions as a result of a change in the overall level of
implied volatilities employed for the valuation of these options.12 Let us denote
dvi as the change in the level of implied volatility for currency i; i = 1; : : : ; k:
For currency i, we can introduce dvi as the fourth independent factor, assuming
for example it takes three values, 0;+1% and −1% with probabilities 1/2, 1/4
and 1/4 respectively. Then, there will be a total of 105∗3 =405 joint yield-
curve/implied-volatility scenarios for each currency, with given probabilities.
Thus, securities that depend on volatility have to be evaluated 405 times, while
105 evaluations still su�ces for swaps or cross-currency swaps. The joint inter-
national distribution of yield-curve/implied-volatility is discretized and Monte-
Carlo sampled as before, one million times. Moreover, we can incorporate given
correlations between implied volatility factors dvi of di�erent currencies i, in
the same manner as we have allowed for correlation between exchange rates,
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or between the �rst principal factors, etc. In short, implied volatility simply
enters as another factor for each currency.
For the Monte Carlo sampling of the scenarios, we use L’Ecuyer algorithm

for uniform (0,1) deviates, supplemented by “shu�ing”. By combining two
linear congruential generators, it results in a very long period, as desired for
this problem, and induces practically no serial correlation. From two or more
uniform deviates, we generate a single Gaussian deviate, using the Box-Muller
method combined with acceptance/rejection within the unit disk. To generate a
k-dimensional N (0; Q) deviate, we �rst generate k i.i.d Gaussian deviates, put
them in a k-vector Y , and pre-multiply Y by some matrix A satisfying AAt =
Q:13 For the choice of A, we can take the principal component factorization of
Q, the symmetric square root of Q, or the Cholesky factor of Q. We choose
the latter, because A is then a triangular matrix and multiplying it by a vector
can be made more e�cient. Finally, we invoke the discretization function B(m);
i.e., form B(m)(AY ). The entire sequence is generated by a single seed.14

It is instructive to point out what happens if, instead of �rst multiplying
Y by the Cholesky factor A and then descretizing, we �rst discretize and then
multiply by A. In the latter case, the resulting deviate A(B(m)(Y )) will have cor-
relation matrix exactly Q. However, the strati�cation is destroyed: whereas each
component of B(m)(AY ) has only m+ 1 states, each component of A(B(m)(Y ))
has in general mk states. So, we revert to the case of the usual Monte Carlo
where an extortionate number of portfolio valuations is required. Another tech-
nique known as rank correlation also preserves the strati�cation. But, we regard
our approach to be more appropriate and theoretically complete.

4.3 Example of simulation on a �ve currency portfolio

As an example, we construct a portfolio with �ve interest rate swaps in �ve
di�erent currencies. For simplicity, the tensor is 10 years, and the pay and
receive frequencies are semi-annual for all swaps in the portfolio. The total
portfolio value as of the valuation date (9/15/1995) is −$315; 637: The details
of these swaps are listed below:

Currency Notional Receive Pay Market value

CHF sfr 90 mm 4.8% Libor sfr −502; 430
DEM DM 70 mm Libor 6.90% DM −719; 400
GBP $ 50 mm Libor 8.42% $ 386; 582
JPY Y= 5 bil Libor 3.10% Y= −23; 863; 598
USD $ 100 mm 6.5% Libor $ 256; 980

We ran the Scenario Simulation model for this �ve currency portfolio to
estimate the portfolio value distribution for a 30-day horizon. The historical
volatility and correlation information of the yield curve and exchange rates are
based on 9/15/1995 JPM RiskMetrics monthly data.
The simulation takes two steps. First, we simulate each transaction in its

own currency within the framework of single currency Scenario Simulation
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Table 6. 30-day portfolio horizon value
Portfolio statistics and percentiles ($1,000)

No. of Mean STD 1% 2% 98% 99% Maxi- Minimum
trials mum

1,000,000 −319 5,013 −11; 918 −10; 630 9; 809 11,055 20,784 −21; 366
2,000,000 −319 5,028 −11; 971 −10; 665 9; 838 11,096 22,148 −23; 156
3,000,000 −319 5,027 −11; 974 −10; 665 9; 836 11,096 22,185 −23; 156
4,000,000 −319 5,028 −11; 972 −10; 668 9; 838 11,092 22,185 −23; 156

Fig. 1. Five currency portfolio horizon value (Histogram of 1,000,000 trials)

model described in Sect. 3. As before, we apply three principal factors and
7× 5× 3 = 105 scenarios for each currency yield curve. For this portfolio, the
single currency simulation generates 105 prices at the horizon date for each
swap. That is, the swap valuation model would be called 105× 5 = 525 times.
In the second step, we perform Monte Carlo to simulate the distribution of the
portfolio’s horizon value. The simulation results are shown in Table 6. Clearly,
the sample statistics become quite stable with one million trials. Comparing the
histogram of the simulated potential horizon values to the normal distribution
with the same mean and standard deviation, it can be seen that the sample
distribution is well behaved and has a fatter tail (Fig. 1).

Even though the number of trials in our example is signi�cantly larger
than that in the usual Monte Carlo simulation applied in risk management, our
approach does not take too much computation time due to the e�ciency of the
methodology as well as its implementations. In fact, running on a Sun SPARC
Station 20, the second step takes 54; 96; 140 and 180 seconds to complete one,
two, three and four million trials, respectively.
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5. Estimating credit exposures with Scenario Simulation model

The credit exposure re
ects the potential loss one transacting party may incur if
its counterparty defaults. The credit risk is related to but di�erent from the mar-
ket risk. When a counterparty defaults, all transactions with that counterparty
will be terminated, and the transactions’ value by the end of the termination
period is called the termination value (or replacement value).
For a given market scenario s, let V (s) be the net potential termination value

of a counterparty’s portfolio at the end of one period. If p(s) is the probability
of the market scenario, then the distribution of the termination value can be
described by

(V (s); p(s); s = 1; : : : ; n)

where n is the total number of market scenarios. If the counterparty defaults, the
transacting party will su�er a loss only if the transactions with the counterparty
have net gains. Otherwise, the credit loss would be zero. Thus, the distribution
of the potential credit loss amount with respect to the counterparty is

(max[V (s); 0]; p(s); s = 1; : : : ; n)

In order to apply the Scenario Simulation model to estimate the credit exposure,
additional assumptions are required. We assume:

a6. The default incident of a counterparty is independent of the market vari-
ables by which a market scenario is de�ned, and it is also independent of
other counterparties. This is a strong assumption as adverse market conditions
and �nancial situations of related counterparties inevitably a�ect counterparties’
economic well being. However, it is a convenient assumption because not only
it simpli�es the analysis considerably, but there is hardly any data available to
deduct their correlations.

a7. The default probability of a counterparty is solely determined by its credit
ratings.

a8. The loss ratio (0¡ L 5 1) of a defaulting party is assumed to be one.
Though this assumption is for simplicity and by no means necessary, it results
in a more conservative estimation of credit risk as empirical evidence shows
that, depending on the seniority of a transaction, the actual loss amount can be
a fraction of total default amount.15

Assume q is a counterparty’s marginal default probability for one period.
Several one period credit risk measures can be readily calculated using the
Scenario Simulation model. For example, the expected credit loss for the period
can be de�ned as

E[D] =
n∑
s=1
max[V (s); 0] · p(s) · q(20)
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One can also de�ne the maximum average credit loss with probability � as
follows:

D� = min[V = 0 : prob:(V (s)¿ v)5 �] · q(21)

D� could be interpreted as the average credit loss among a group of coun-
terparties with the same ratings under certain unfavorable market conditions.
Even though the economic meaning is not as clear, D� can be used for some
practical applications such as credit risk control and allocation. These one pe-
riod average credit exposure measures can be easily extended to measure credit
exposures in a multiperiod setting.16

In many risk management applications, however, the above average credit
exposure measurement is inadequate. Instead, we need to model default inci-
dents directly in the Scenario Simulation model.
Let dj be the default random variable for counterparty j:

dj = 1 counterparty j defaults with probability qj
= 0 no default; probability 1− qj; j = 1; : : : ; J:

Recall we use k binomial random variables to describe one market scenario
(see Eq. (17)). At each trial, we randomly generate a market scenario s =
(i1; i2; : : : ; ik), and J independent Bernoulli random variables dj (j = 1; : : : ; J )
according to their respective default probabilities. Thus the joint market and
default scenario becomes

s∗ = (i1; i2; : : : ; ik ;d1; d2; : : : ; dJ )

For counterparty j, if netting is enforceable, the scenario value with respect
to the counterparty can be obtained by aggregating all transactions with the
counterparty. Assume there are g = 1; : : : ; G transactions with counterparty j
and let Vj (s) be the scenario value without default. Then,

Vj(s) =
G∑
g=1
Vj; g(s)

where Vj; g is the market value of transaction g with counterparty j. The joint
scenario value becomes

Vj(s∗) = min[Vj(s); Vj(s)(1− dj)](22)

Equation (22) means that if dj = 0, i.e., no default, then the joint scenario value
is equal to the market value at scenario s : Vj(s∗) = Vj(s). If the counterparty
j defaults, dj = 1, then Vj(s∗) = min[Vj(s); 0].

If netting is not enforceable, then

Vj(s∗) =
G∑
g=1
min[Vj; g(s); Vj; g(s)(1− dj)](23)
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It is easy to see that if the counterparty does not default, the joint scenario
value Vj(s∗) is simply the summation of all transactions’ market values. If
the counterparty defaults, none of the transaction gains with respect to the
counterparty can be used to o�set the losses with the same counterparty, i.e.,
Vj(s∗) =

∑
gmin[Vj; g(s); 0].

The portfolio value Vp at the joint scenario s∗ is

Vp(s∗) =
J∑
j=1
Vj(s∗)(24)

Using the Monte Carlo method with a large number of joint scenarios, we
can simulate the distribution of the termination values of each counterparty as
well as the whole portfolio, taking into account both market risk and credit
risk.
We can also incorporate the country risk event (e.g., a country defaults or it

imposes foreign exchange control) into the Scenario Simulation model. When
such a risk event happens in a country, we assume that all counterparties in
that country default simultaneously and the transacting party’s exposure is the
netted amount of these counterparties.17

Let c1; : : : ; cH , be H independent Bernoulli random variables, represent-
ing country risk events for H countries we are dealing with. Assume that ch
equals one (zero) when the country does (not) default. The joint scenario of
market variables, counterparty default event and country risk event now be-
comes

s∗∗ = (i1; i2; : : : ; ik ;d1; d2; : : : ; dJ ; c1; : : : ; cH )

The portfolio value with respect to all counterparties in country h under sce-
nario s∗∗ is

Vh(s∗∗) = min

[∑
j
Vj; h(s∗);

∑
j
Vj; h(s∗) · (1− ch)

]
(25)

where Vj; h(s∗) is the joint scenario (market and counterparty default) value of
counterparty j within country h. If country risk events are incorporated, the
portfolio value at the joint scenario s∗∗ is

Vp(s∗∗) =
H∑
h=1
Vh(s∗∗)(26)

6. Joint exposure distribution of a swap portfolio

We construct a swap sample portfolio to illustrate the methodology. The port-
folio consists of 305 interest rate swaps and cross currency swaps with 71
counterparties. The credit ratings of all counterparties are investment grade.
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These transactions are in �ve di�erent currencies and the total notional amount
is $11.8 billion, among which 16% is cross currency swaps. The average re-
maining tenor is 2.5 years. The basis statistics of the portfolio are listed below:

Ratings Number of counterparties Currency Proportion (%)

AAA 6 ( 8.4%) CHF 11.2
AA 19 (26.8%) DEM 5.4
A 40 (56.4%) GBP 4.1
BBB 6 ( 8.4%) JPY 43.3

USD 36.0

The Scenario Simulation model uses JPM RiskMetrics monthly data as
of 10/20/1995. The simulation is to calculate the potential exposure 30 days
from 11/10/1995, the valuation date. The total number of trials is one mil-
lion.
For illustration purposes, we apply the following extremely stressed one-

month default probabilities: for AAA, 1.3524%; Aa/AA, 1.7294%; A/A,
2.6866%; and Baa/BBB, 5.3596%.18 The simulation results are shown in Table
7 and Figs. 2–4.
It is interesting to observe that while the market exposure of the swap port-

folio (Fig. 2) looks like “bell-shaped” or approximately normally distributed,
the joint distribution of market risk and credit risk shown in Fig.3 is noticeably
skewed because of the possibilities of counterparty defaults. Figure 4 shows
that there is a possibility of very large losses due to counterparty default. But
for diversi�ed portfolios and counterparties, the probability of these losses is
very small.
In this example, if the market risk is the only concern, the portfolio’s

30-day VaR would be $34 mm at 99% con�dence level. On the other hand,
the potential loss due to counterparty default is $55 mm at the same con�-
dence level. Such a large potential credit loss is a result of using exagger-
ated default probabilities. However, the probability that in 30-days, the “true”
potential loss due to adverse market movements and/or counterparty default
exceeds $66 mm is less than 1%. In other words, VaR calculated by the
joint distribution is not the simple summation of the potential market loss
and the default loss, and it is perhaps a better measure of portfolio’s overall
risk.

Table 7. Portfolio 30-day exposure distribution ($1,000) using stressed default probabilities

Portfolio exposure Maxi- Mini- Potential loss percentile
Type Mean Std mum mum 0.1% 0.5% 1.0% 2.5% 5.0%

Market 30,825 13,139 86,262 −21; 905 −42; 322 −36; 842 −34; 120 −29; 766 −26; 055
Credit −8;756 12,537 0 −143; 981 −79; 616 −62; 469 −55; 113 −45; 541 −38; 132
Joint 22,079 17,893 85,264 −119; 565 −90; 148 −73; 522 −65; 903 −55; 120 −45; 549
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Fig. 2. 30-day market exposure distribution of swap portfolio

Fig. 3. Joint exposure distribution of both market risk and credit risk (Sample portfolio of
swaps)
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Fig. 4. Histogram of default losses for a sample portfolio (Sample portfolio of swaps)

7. Concluding remarks

The Scenario Simulation model provides a rigorous yet practical framework
for quantitative analysis of multi-currency portfolio risk. The model is highly
e�cient computationally, and can be applied to a wide range of risk manage-
ment tasks such as estimation of portfolio market risk and credit exposure, and
calculation of value-at-risk for a �nancial institution.
The basic idea is to discretize the multivariate distribution of market vari-

ables into a manageable number of scenarios, e.g., 105 yield curve scenarios for
each currency. When there are several currencies, we can take a large Monte
Carlo sample, e.g., of size one million, to achieve numerical stability; yet, we
only have to evaluate each transaction in the portfolio 105 times.

1Value-at-risk was �rst introduced by G30 in 1993. See Global Derivative Study Group
(1993). BIS formally adopted the concept in 1995 as the determinant of market risk capital
requirement. For various methods to estimate VaR, see “Value-At-Risk”, Risk Magazine
Special Supplement, June 1996.
2We emphasize that in this model, all distributions, Brownian motions, etc., are with respect
to the actual measure, rather than the risk-neutral measure. As such, the model is not intended
for valuation of derivatives, rather, it generates yield curve scenarios for future dates to be
used as input to appropriate valuation models. The model is nevertheless arbitrage free, as
the uncertainty of each key rate carries its own market price of risk. The latter are implicitly
determined by either of the two expectation hypotheses (4a) or (4b). In this connection, we
view the later reduction to three factors as an approximation of the covariance structure,
rather than exact modelling with three factors.
3See, e.g., Murphy et al. (1995) and Kahn (1989).
4The historical covariance data are from J.P. Morgan RiskMetrics (5/30/1995 monthly data)
which is a trademark of J.P. Morgan. For its estimation method, see J.P. Morgan’s technical
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document (1995). It should be noted that the Scenario Simulation model does not depend
on a particular data source.
5For these derivations, it is useful to note that if R denotes the matrix (Rij); then, RRt =
R; RtR = diag([); and R−1 = diag(1=[)Rt .
6For example, Cox and Rubinstein (1985).
7To determine the appropriate number of scenarios is of course an empirical issue.
8In Table 2, we use 7 × 5 × 3 to represent 7, 5, and 3 scenarios for the �rst, second and
third factor respectively. The total number of scenarios is equal to 7× 5× 3 = 105. Though
not reported here, the comparison of percentiles of the two methods gives similar results.
9See, e.g., Karlin and Taylor (1981).
10See, e.g., Billingsley (1986). Note here the symbol “∼” means “asymptotic to”.
11The correlation between two principal factors of two di�erent countries is obtained from
Eq. (9a) applied to both countries.
12These implied volatilities are distinct from the volatilities in Eq. (2) that drive the key
rates.
13This is because if Y is a k-dimensional variate with an identity covariance matrix, then
X = AY will have correlation matrix Q.
14A good reference for the numerical methods mentioned in this paragraph is Press et al.
(1992).
15Moody’s estimated that the average recovery rate (i.e., 1− L) for senior secured bonds is
as high as 53.05%, and for senior unsecured bonds is 45.88%. For senior surbordinated and
subordinated debt the recovery rates become 37.02% and 29.57%, respectively. For junior
subordinated debt, it is merely 16.40% (see Carty and Lieberman, 1996).
16The expected credit loss for time period t, E[Dt ], can be calculated as

∑
s max [Vt(s); 0]·pt(s)· qt , where Vt(s) is a counterparty’s termination value at time t in scenario s, pt(s) is

the probability of scenario s, and qt is the marginal default probability of the counterparty.
If P(t) is the discount bond price maturing in t, then the total expected credit loss can be
expressed as E[D] =

∑
t P(t)E[Dt ], which can be interpreted as the fair insurance cost of

the counterpart default.
17For detailed discussion, see Gluck and Clarkson (1993).
18These are in fact Standard & Poor’s 5-year cumulative stressed default probabilities but
used for 1-month period. By taking the 12-th root of S&P’s yearly probability transition
matrix we can obtain one-month default probabilities, which are respectively 0.0202, 0.0243,
0.0354, and 0.0978% for the above rating categories. In other words, the default probabilities
used in Table 7 are more than 50 times larger than S&P’s stressed one-month default prob-
abilities. S&P emphasizes that stressed probabilities are advisable particularly for estimation
of potential credit losses over a short period of time (see Bahar and Gold 1995).
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