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1. Introduction 

 

The literature on risk is vast1. So is the literature on risk measures. This contribution concen-

trates2 on financial risks and on financial risk measures. We assume that the financial conse-

quences of economic activities can be quantified on the basis of a random variable X. This 

random variable may represent for instance the absolute or relative change (return) of the 

market or book value of an investment, the periodic profit or the return on capital of a com-

pany (bank, insurance, industry), the accumulated claims over a period for a collective of in-

sureds or the accumulated loss for a portfolio of credit risks. In general, we look at financial 

positions where the random variable X can have positive (gains) as well as negative (losses) 

realizations. Pure loss situations can be analysed by considering the random variable S := -X 

≥ 0. Usually only process risk is considered ([4, p. 207], speak of model-dependent measures 

of risk in this context), in some cases also parameter risk (model- free measures of risk)3. 

2. Risk as a Primitive4 

 

Measuring risk and measuring preferences is not the same. When ordering preferences, acitiv-

ities, e.g. alternatives A and B with financial consequences XA and XB, are compared with 

respect to preferability under conditions of risk. A preference order A f  B means that A is 

preferred to B. This order is represented by a preference function Φ with A f  B ⇔ Φ(XA) > 

Φ(XB). In contrast, a risk order A Rf  B means, that A is riskier than B and is represented by a 

function R with A Rf  B ⇔ R(XA) > R(XB). Every such function R is called a risk measure-

ment function or simply a risk measure. 
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A preference model can be developed without explicitely invoking a notion of risk. This, for 

instance, is the case for expected (or von Neumann/Morgenstern) utility theory. On the other 

hand, one can establish a preference order by combining a risk measure R with a measure of 

value V and specifying a (suitable) trade-off function H between risk and value, i.e. Φ(X) = 

H[R(X),V(X)]. The traditional example is Markowitz portfolio theory, where R(X) = Var(X), 

the variance of X, and V(X) = E(X), the expected value of X. For such a risk-value model5 

then it is an important question, whether it is consistent (implies the same preference order) 

with e.g. expected utility theory. As we focus on risk measures we will not discuss such con-

sistency results (e.g. whether Markowitz portfolio theory is consistent with expected utility 

theory) and refer to the relevant literature6. 

3. Two Types of Risk Measures 

 

The vast number of (financial) risk measures in the literature can be broadly subsumized to 

two categories: 

 

1) Risk as the magnitude of deviations from a target (risk of the first kind). 

2) Risk as necessary capital respectively necessary premium (risk of the second kind). 

 

In many central cases there is an intuitive correspondence between these two types of risk 

conception. Addition of E(X) to a risk measure of the second kind will induce a risk measure 

of the first kind and subtraction of E(X) from a risk measure of the first kind will induce a risk 

measure of the second kind (remember that we are considering profit positions, not claims 

positions). The formal aspects of this correspondence will be discussed in section 5.3 and 

some specific examples are given in sections 6 and 7. 
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4. Risk Measures and Utility Theory 

 

As expected utility theory is the standard theory for decisions under risk, one may ask the 

question, whether there are conceptions of risk which can be derived from utility theory. For-

mally, the corresponding preference function is of the form Φ(X) = E[u(X)], where u denotes 

the utility function (specific to every decision maker). The form of the preference function 

implies that there is no separate measurement of risk or value within utility theory, both as-

pects are considered simultaneously. However, is it possible to derive an explicit risk measure 

for a specified utility function? An answer is given by the contribution [23] of Jia and Dyer 

introducing the following standard measure of risk : 

 

 R(X) = - E[u(X-E(X))]  . (1) 

 

Risk therefore corresponds to the negative expected utility of the transformed random variable 

X – E(X), which makes risk measurement location-free. Specific risk measures are obtained 

for specific utility functions. Using for instance the utility function u(x) = ax – bx2, we obtain 

the variance  

 

 Var(X) = E[(X - E(X))2] (2) 

 

as the corresponding risk measure. From a cubic utility function u(x) = ax – bx2 + cx3 we ob-

tain the risk measure 

 

 Var(X) - cM3(X)  , (3) 
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where the variance is corrected by the magnitude of the third central moment M3(X) = E[(X – 

E(X))3]. Applying the utility function u(x) = ax - |x|, we obtain the risk measure mean abso-

lute deviation 

 

 MAD(X) = E[|X - E(X)|]  . (4) 

 

In addition (under a condition of risk independence) the approach of Jia and Dyer is compati-

ble with risk-value-models. 

5. Axiomatic Characterizations of Risk Measures 

5.1 The System of Pedersen and Satchell (PS) 

 

In the literature there are a number of axiomatic systems for risk measures. We begin with the 

system of PS [31]. The axioms are: 

 

(PS 1) (nonnegativity) R(X) ≥ 0 

(PS 2) (positive homogeneity)  R(cX) = cR(X) for c ≥ 0 

(PS 3) (subadditivity)  R(X1 + X2) ≤ R(X1) + R(X2) 

(PS 4) (shift- invariance) R(X + c) ≤ R(X) for all c . 

 

PS understand risk as deviation from a location measure, so R(X) ≥ 0 is a natural requirement. 

Homogeneity (PS 2) implies that the risk of a certain multiple of a basic financial position is 

identical with the corresponding multiple of the risk of the basic position. Subadditivity (PS 

3) requires that the risk of a combined position is as a rule less than the sum of the risks of the 

separate positions 7. This allows for diversification effects in the investment context and for 
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pooling-of-risks-effects in the insurance context. Shift- invariance (PS 4) makes the measure 

invariant to the addition of a constant to the random variable, which corresponds to the loca-

tion-free conception of risk. (PS 2) and (PS 3) together imply that zero risk is assigned to con-

stant random variables. Also, (PS 2) and (PS 4) together imply that the risk measure is con-

vex, which assures for instance compatibility to second order stochastic dominance. As risk is 

understood to be location-free by PS, their system of axioms is ideally suited for examining 

risk measures of the first kind for attributes of goodness, cf. section 6.4. 

5.2 The System of Artzner/Delbaen/Eber/Heath (ADEH) 

 

The system of ADEH [4] has been a very influential approach. In addition to subadditivity 

(ADEH 1) and positive homogeneity (ADEH 2) they postulate the axioms8 (remember that 

profit positions, not claims positions, are considered): 

 

(ADEH 3) (translation invariance) R(X + c) = R(X) - c  for all c 

(ADEH 4) (monotonicity)  X ≤ Y  ⇒  R(Y) ≤ R(X). 

 

A risk measure satisfying these four axioms is called coherent. In case of R(X) ≥ 0 we can 

understand R(X) as (minimal) additional capital necessary to be added to the risky position X 

in order to establish a ”riskless position” (and to satisfy regulatory standards for instance). 

Indeed, (ADEH 3) results in R(X + R(X)) = 0. In case R(X) < 0 the amount |R(X)| can be 

withdrawn without endangering safety or violating the regulatory standards respectively. In 

general, (ADEH 3) implies that adding a sure amount to the initial position decreases risk to 

that amount. Monotonicity means that if X(ω) ≤  Y(ω) for every state of nature then X is risk-

ier because of the higher loss potential. 
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[4] do not only consider9 the distribution-based case, but also the situation of uncertainty, 

where no probability measure is given a priori. They are able to provide a representation theo-

rem10 for coherent risk measures in this case. 

 

Obviously the system of axioms of ADEH is ideally suited for examining risk measures of the 

second kind for attributes of goodness. In general, the risk measures R(X) = E(-X) and R(X) = 

max(-X), the maximal loss, are coherent risk measures. This implies that even if the coher-

ency conditions may11 impose relevant conditions for “reasonable” risk measures, not all co-

herent risk measures must be reasonable 12. 

5.3 The System of Rockafellar/Uryasev/Zabarankin (RUZ) for Expectation-Bounded 

Risk Measures 

 

RUZ [34] develop a second system of axioms for risks of the second kind. They impose the 

conditions (ADEH 1-3) and the additional condition 

 

(RUZ) (expectation-boundedness) R(X) > E(-X) for all non-constant X and R(X) = E(-X) 

for all constant X. 

 

Risk measures satisfying these conditions are called expectation-bounded. If, in addition 

monotonicity (ADEH 4) is satisfied, then we have an expectation-bounded coherent risk 

measure. 
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The basic idea of RUZ is, that applying a risk measure of the second kind not to X, but to X – 

E(X) will induce13 a risk measure of the first kind and vice versa. Formally there is a one-to-

one correspondence between expectation-bounded risk measures and risk measures (of the 

first kind) satisfying a slightly sharper version of the PS-system of axioms. A standard exam-

ple14 for this correspondence15 is RI(X) = bσ(X) for b > 0 and RII(X) = bσ(X) – E(X). 

5.4 Axioms for Premium Principles and the System of Wang/Young/Panjer (WYP) 

 

In the following we concentrate on the insurance context (disregarding operative expenses 

and investment income). Two central tasks of insurance risk management are the calculation 

of risk premiums π  and the calculation of the risk capital C (solvency). In contrast to the 

banking or investment case respectively, both premiums and capital can be used to finance the 

accumulated claims S ≥ 0. So we have to consider two cases. If we assume that the premium 

π  is given (e.g. determined by market forces) we only have to determine the (additional) risk 

capital necessary and we are in the situation of section 5.3 when we look at X := C0 + π  - S, 

where C0 is an initial capital. 

 

A second application is the calculation of the risk premium. Here the capital available is typ i-

cally not taken into consideration. This leads to the topic of premium principles π , which as-

sign a risk premium π(S) ≥ 0 to every claim variable S ≥ 0. Considering risk of the first kind, 

especially deviations from E(S), then one systematically obtains premium princ iples of the 

form π(S) : = E(S) + aR(S), where aR(S) is the risk loading. Considering on the other hand 

risk of the second kind and interpreting R(X) as the (minimal) premium necessary to cover 

the risk X := -S, then one systematically obtains premium principles of the form π(S) : = R(-

S). 
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In mathematical risk theory a number of requirements (axioms) for reasonable premium prin-

ciples exist16. Elementary requirements are π(S) > E(S) and π(S) < max(S), the no-ripoff con-

diton. Translation invariance is treated as well as positive homogeneity. Finally, subadditivity 

is regarded, although with the important difference17, that subadditivity is required only for 

independent risks. 

 

A closed system of axioms for premiums in a competitive insurance market is introduced by 

WYP [45]. They require monotonicity, certain continuity properties and finally 

 

(WYP) (comonotone additivity) X, Y comonotone 18 ⇒ π(X + Y) = π(X) + π(Y). 

 

Under certain additional conditions WYP are able to prove the validity of the following repre-

sentation for π  : 

 

  dxxFgX ))(1()(
0
∫
∞

−=π  . (5) 

 

Here F is the distribution function of X and g is an increasing function (distortion function) 

with g(0) = 0 and g(1) = 1. 

 

Another central result is, that for any concave function the resulting premium principle π(X) 

will be a coherent risk measure19. This means that in addition we have obtained an explicit 

method of constructing coherent risk measures20. 
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6. Risk as the Magnitude of Deviation from a Target 

6.1 Two-Sided Risk Measures 

 

In the following the expected value will be considered as the relevant target. Two-sided risk 

measures measure the magnitude of the distance (in both directions) from the realizations of 

X to E(X). Different functions of distance lead to different risk measures. Looking for in-

stance at quadratic deviations (volatility) this leads to the risk measure variance according to 

(2) or to the risk measure standard deviation respectively by taking the root, i.e. 

 

  σ(X) = + )(XVar   . (6) 

 

Variance or standard deviation respectively have been the traditional risk measures in eco-

nomics and finance since the pioneering work of Markowitz [28], [29]. These risk measures 

exhibit a number of nice technical properties. For instance, the variance of a portfolio return is 

the sum of the variances and covariances of the individual returns. Furthermore, the variance 

is used as a standard optimization function (quadratic optimization). Finally, there is a well 

established statistical toolkit for estimating variance and the variance/covariance-matrix re-

spectively. 

 

On the other hand, a two-sided measure contradicts the intuitive notion of risk that only nega-

tive deviations are dangerous, it is downside risk that matters. In addition, variance does not 

account for fat tails of the underlying distribution and for the corresponding tail risk. This 

leads to the proposition21 to include higher (normalized) central moments as e.g. skewness 

and kurtosis into the analysis to assess risk more properly. An example is the risk measure (3) 

considered by Jia and Dyer. 
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Considering the absolute deviation as a measure of distance, we obtain the MAD-measure 

according to (4) or the more general risk measures 

 

 ( ) ( )[ ]kXEXEXR || −=         resp.   (7a) 

 ( ) ( )[ ] kkXEXEXR
1

|| −=   . (7b) 

 

The latter risk measure is considered by Kijima and Ohnishi [25]. 

 

More generally, RUZ [34] define a function f(x) = ax for x ≥ 0 and f(x) = b |x| for x ≤ 0 re-

spectively with coefficients a, b ≥ 0 and consider the risk measure22 (k ≥ 1) 

 

 R(X) = E[f(X – E(X))k]1/k  . (8) 

 

This risk measure of the first kind allows for a different weighting of positive and negative 

deviations from the expected value and was already considered by Kijima and Ohnishi [25], 

too. 

6.2 Measures of Shortfall Risk 

 

Measures of shortfall risk are one-sided risk measures and measure the shortfall risk (down-

side risk) relative to a target variable. This may be the expected value, but in general it is an 

arbitrary deterministic target z (target gain, target return, minimal acceptable return) or even a 

stochastic benchmark23. 
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A general class of risk measures is the class of lower partial moments of degree k (k = 0, 1, 2, 

…) 

 

 ( ) ( )[ ]k
k XzEXzLPM 0,max:; −=   , (9a) 

 

or, in normalized form (k ≥ 2) 

 

 ( ) ( ) .;
1

k
k XzLPMXR =  (9b) 

 

Risk measures of type (9a) are studied by Fishburn [12]. 

 

Basic cases, playing an important role in applications, are obtained for k = 0, 1 and 2. These 

are the shortfall probability 

 

 ( ) ( ) ( )zFzXPXSPz =≤= , (10) 

 

the shortfall expectation 

 

 ( ) ( )[ ]0,max XzEXSEz −=  (11) 

 

and the shortfall variance 

 

 ( ) ( )[ ]20,max XzEXSVz −=  (12a) 

 

as well as the shortfall standard deviation 
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 ( ) ( )[ ] 2
1

20,max XzEXSSDz −= . (12b) 

 

Variations are obtained for z = E(X), for example lower-semi-absolute deviation (LSAD), as 

considered by Ogryczak and Ruszczynski [30] and Gotoh and Konno [19], i.e. 

 

 ( ) ( ){ }[ ]0,XXEmaxEXR −= , (13) 

 

the semivariance 

 

 ( ) ( ){ }[ ]20,max XXEEXR −=  (14) 

 

and the semi-standard deviation 

 

 ( ) ( ){ }[ ] 2/120,max XXEEXR −=   . (15) 

 

Another variation of interest is to consider conditional measures of shortfall risk. An impor-

tant example is the mean excess loss (conditional shortfall expectation) 

 

 ( ) ( ) ( )
( )XSP
XSE

zXXzEXMEL
z

z
z =≤−=   , (16) 

 

the average shortfall under the condition, that a shortfall occurs. The MEL can be consi-

dered24 as a kind of worst-case risk measure. 
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In an insurance context the MEL is considered in the form MELz(S) = E[S – z | S ≥ z] for an 

accumulated claim variable S := - X ≥ 0 to obtain an appropriate measure of right-tail risk25. 

Another measure of right-tail risk can be obtained in the context of section 5.5 when applying 

the distortion function xxg =)(  (and subsequently subtracting E(S) to obtain a risk measure 

of the first kind): 

 

 )()(1)(
0

SEdssFSR −−= ∫
∞

  . (17) 

 

This is the right-tail deviation considered by Wang [43]. 

 

Despite the advantage of corresponding closer to an intuitive notion of risk, shortfall measures 

have the disadvantage that they lead to greater technical problems with respect to the disag-

gregation of portfolio risk, optimization and statistical identification. 

6.3 Classes of Risk Measures 

 

Stone (1993) defines a general three-parameter class of risk measures of the form 

 

 ( ) ( ) ( )
kz

k dxxfcxxR

1

|| 







−= ∫

∞−

 (18) 

 

with the parameters z, k and c. The class of Stone contains for example the standard devia-

tion, the semi-standard deviation, the mean absolute deviation as well as Kijima and Ohni-

shi’s risk measure (7b). 
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More generally, Pedersen and Satchell [31] consider the following five-parameter class of risk 

measures 

 

 ( ) ( ) ( )[ ] ( )
bz

a dyyfyFwcxXR 







−= ∫

∞−

||   , (19) 

 

containing Stone’s class as well as the variance, the semi-variance, the lower partial moments 

(9a) and (9b) and additional risk measures from literature as well. 

6.4 Properties of Goodness 

 

The following risk measures of the first kind satisfy the axioms of Pedersen and Satchell as 

considered in section 5.1: standard deviation, MAD, LPMk (z,X)1/k for z=E(X), semi-standard 

deviation and Kijima/Ohnishi’s risk measures (7b) and (8). In addition, Pedersen and Satchell 

give a complete characterization of their family of risk measures according to section 6.3 with 

respect to their system of axioms. 

7. Risk as Necessary Capital or Necessary Premium 

7.1 Value-at-Risk 

 

Perhaps the most popular risk measure of the second kind is value-at-risk26. In the following 

we concentrate on the management of market risks27. If we define Vt as the market value of a 

financial position at time t, L := vt – Vt+h is the potential periodic loss of the financial position 
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over the time interval [t, t+h]. We then define the value-at-risk VaRα = VaR(α; h) at confi-

dence level 0 < α < 1 by the requirement 

 

  P(L > VaRα) = α  . (20) 

 

An intuitive interpretation of the value-at-risk is that of a probable maximum loss (PML) ore 

more concrete, a 100(1-α)% maximal loss, because P(L ≤ VaRα) = 1 - α, which means that in 

100(1-α)% of the cases the loss is smaller or equal to VaRα. Interpreting the value-at-risk as 

necessary underlying capital to bear risk, relation (20) implies that this capital will on average 

not be exhausted in 100(1-α)% of the cases. Obviously the value-at-risk is identical to the (1-

α)-quantile of the loss distribution, i.e. VaRα =F-1(1-α), where F is the distribution of L. In 

addition, one can apply28 the VaR-concept to L – E(L) instead of L, which results in a risk 

measure of type I. 

 

Value-at-risk satisfies a number of goodness criteria. With respect to the axioms of Artzner et 

al. it satisfies monotonicity, positive homogeneity and translation invariance. In addition, it 

possesses the properties of law invariance and comonotone additivity29. 

 

As a main disadvantage, however, the VaR is lacking subadditivity and therefore is not a co-

herent risk measure in the general case. This was the main motivation for establishing the 

postulate of coherent risk measures. However, for special classes of distributions, the VaR is 

coherent, for instance30 for the class of normal distributions (as long as α < 0.5). Moreover, 

the VaR does not take the severity of potential losses in the 100α% worst cases into account. 

Beyond this, a number of additional criticisms are to be found in the literature31. 
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7.2 Conditional Value at Risk 

 

The risk measure conditional value-at-risk at the confidence level α is defined32 by 

 

  CVaRα(L) = E[L | L > VaRα]  . (21) 

 

Based on the interpretation of the VaR as a 100(1-α)%-maximum loss, the CVaR can be in-

terpreted as the average maximal loss in the worst 100α% cases. The CvaR as defined in (21) 

is a coherent risk measure in case of the existence of a density function, but not in general33. 

In the general case therefore one has to consider alternative risk measures like the expected 

shortfall or equivalent risk measures34, when coherency is to be ensured.  

 

The CVaR satisfies the decomposition 

 

  CVaRα(L) = VaRα(L) + E[L - VaRα | L > VaRα]  , (22) 

 

i.e., the CVaR is the sum of the VaR and the mean excess over the VaR in case there will be 

such an excess. This implies that the CVaR always will lead to a risk- level that is at least as 

high as measured with the VaR.  

 

The CVaR is not lacking criticism, either. For instance, Hürlimann [22, pp. 245 ff.], on the 

basis of extensive numerical comparisons comes to the conclusion that the CVaR is not con-

sistent with increasing tail-thickness. 
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7.3 Lower Partial Moments 

 

Fischer [13] proves the fact that the following risk measures are coherent for 0 ≤ a ≤ 1, k ≥1: 

 

  R(X) = -E(X) + aLPMk (E(X); X)1/k  . (23) 

 

This again is an example for the one-to-one correspondence between risk measures of the first 

and the second kind according to RUZ [34]. 

7.4 Distorted Risk Measures 

 

We refer to the system of axioms of Wang/Young/Panjer in section 5.4, but now are looking 

at general gain/loss-distributions. In case g: [0,1] → [0,1] is an increasing distortion function 

with g(0) = 0 and g(1) = 1 the transformation F*(x) = g(F(x)) defines a distorted distribution 

function. We now consider the following risk measure for a random variable X with distribu-

tion function F: 

 

  ∫∫
∞

∞−

−+−=
0

0

.))]((1[))(()(* dxxFgdxxFgXE  (24) 

 

The risk measure therefore is the expected value of X under the transformed distribution F*. 

The TCE corresponds to the distortion function g(u) = 0 for u < α and g(u) = (u - α)/(1-α) for 

u ≥ α, which is continuous but non-differentiable in u = α. Generally, the TCE and as well the 

VaR only consider information from the distribution function for u ≥ α, the information in the 

distribution function for u < α are lost. This is the criticism of Wang [44], who proposes the 
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use of alternative distortion functions, e.g. the Beta family of distortion functions 35 or the 

Wang transform36. 

8. Selected Additional Approaches 

8.1 Capital Market Related Approaches 

 

In the framework of the CAPM the beta factor 

 

 
)(

)(),(
)(

),(
),(

M

M

M

M
M R

RRR
RVar

RRCov
RR

σ
σρ

β ==   , (25) 

 

where RM is the return of the market portfolio and R the return of an arbitrary portfolio, is 

considered to be the central risk measure, as only the systematic risk and not the entire portfo-

lio risk is valued by the market. 

8.2 Tracking Error and Active Risk 

 

In the context of passive (tracking) or active portfolio management with respect to a bench-

mark portfolio with return RB the quantity σ(R - RB) is defined37 as tracking error or as active 

risk of an arbitrary portfolio with return R. Therefore, the risk measure considered is the stan-

dard deviation, however, in a specific context. 
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8.3 Ruin Probability 

 

In an insurance context the risk reserve process of an insurance company is given by Rt = R0 

+ Pt - St, where R0 denotes the initial reserve, Pt the accumulated premium over [0,t] and St 

the accumulated claims over [0,t]. The ruin probability is defined as the probability that dur-

ing a specific (finite or infinite) time horizon the risk reserve process becomes negative, i.e. 

the company is (technically) ruined. Therefore, the ruin probability is a dynamic variant of the 

shortfall probability (relative to target zero). 
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Endnotes 

1  The academic disciplines involved are for instance investment and finance, economics, operations re-
search, management science, decision theory and psychology. 

2  This excludes the literature on perceived risk (the riskiness of lotteries perceived by subjects), cf. e.g. 
[7], the literature dealing with the psychology of risk judgements, cf. e.g. [37] and as well the literature 
on inequality measurement, cf. e.g. [31, section 2.2]. 

3  For model risk in general cf. e.g. [8, chapter 15]. 

4  Cf. [7] for this terminology. 

5  Cf. for this terminology e.g. [36]. 

6  For a survey cf. [36]. 

7  Cf. [4, p. 209] for a number of additional arguments for the validity of subadditivity. 

8  In contrast to [4], we assume a risk-free interest rate r = 0, to simplify notation. 

9  [4] suppose that the underlying probability space is finite, extensions to general probability measures 
are given in [9]. 

10  Giving up the requirement of homogeneity [14] and [15] introduce convex measures of risk and are able 
to obtain an extended representation theorem. 

11  Cf. [17, 18], which are very critical about the uncritical use of coherent risk measures disregarding the 
concrete practical situation. 

12  E.g., in the context of insurance premiums, cf. section 5.4. 

13  Only R(X) ≥ E(-X) then guarantees (PS 1). 

14  RII(X), however, is not coherent, cf. [4, p. 210]. This is the main motivation for RUZ for their distinc-
tion between coherent and non-coherent expectation bounded risk measures. 

15  In case of pure loss variables S := -X ≥ 0 this correspondency is RII(S) = E(S) + aσ(S) which is more 
intuitive. 

16  Cf. [16]. 

17  [17, 18] stress this point. 

18  I.e., there is a random variable Z and monotone functions f and g, with X = f(Z) and Y = g(Z). 

19  Cf. [47, p. 339] and [9, p. 15]. 

20  For gain/loss-positions X a corresponding result is existing, cf. section 7.4 

21  Cf. e.g. [5, p. 56]. 

22  R(X – E(X)) is (only) coherent for a = 0 and b ≥ 1 as well as for k = 1, cf. [34]. 

23  Cf. [5, p. 51]. 

24  For an application to the worst case risk of a stock investment cf. [2]. 
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25  Cf. [46, p. 110]. 

26  Cf. e.g. [10] and [24]. 

27  In the context of credit risks cf. [10, chapter 9] and [24, chapter 13]. 

28  Partially VaR is directly defined this way, e.g. [50, p. 252]. [10, pp. 40 - 41] speaks of VaR “relative to 
the mean” as opposed to VaR in “absolute dollar terms”. 

29  Cf. [41, p. 1521]. 

30  For the general case of elliptical distributions cf. [11, p. 190]. 

31  Cf. e.g. [40, p. 1260]. 

32  We define the risk measure in terms of L for a better comparison to VaR. 

33  Cf. [1]. 

34  In the literature, a number of closely related risk measures like expected shortfall, conditional tail ex-
pectation, tail mean and expected regret have been developed, satisfying in addition a number of diffe r-
ent characterisations. We refer to [1], [21], [22], [27], [32], [33], [40], [41], [48] and [49]. 

35  Cf. [47, p. 341]. 

36  A more complex distortion function is considered by [42], leading to risk measures giving different 
weight to “upside” and “downside” risk. 

37  Cf. [20, p. 39]. 
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