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Thesis Summary

In this thesis we use statistical physics techniques to study the typical performance of four families
of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes,
MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin sys-
tem with many-spins interactions. We then employ the replica method to calculate averages over
the quenched disorder represented by the code constructions, the arbitrary messages and the random
noise vectors. We find, as the noise level increases, a phase transition between successful decoding
and failure phases. This phase transition coincides with upper bounds derived in the information
theory literature in most of the cases. We connect the practical decoding algorithm known as prob-
ability propagation with the task of finding local minima of the related Bethe free-energy. We show
that the practical decoding thresholds correspond to noise levels where suboptimal minima of the
free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree
with theoretical predictions of the replica symmetric theory. The typical performance predicted by
the thermodynamic phase transitions is shown to be attainable in computation times that grow ex-
ponentially with the system size. We use the insights obtained to design a method to calculate the
performance and optimise parameters of the high performance codes proposed by Kanter and Saad.
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Chapter 1

Introduction

1.1 Error-correction

The way we communicate has been deeply transformed during the twentieth century. Telegraph,
telephone, radio and television technologies have brought to reality instantaneous long distance com-
munication. Satellite and digital technologies have made global high-fidelity communication possible.

Two obvious common features of modern digital communication systems are that usually the
messages to be transmitted (e.g. images, English text, computer programs) are redundant and the
media used for transmission (e.g. deep-space, atmosphere, optical fibres, etc...) are noisy. The key
issues are to save space and time by eliminating redundancies (source coding or compression) and to
make transmissions reliable by error correction (channel coding). Shannon was the first to identify
these key issues in his very influential 1948 papers [Sha48]. He did not solve the practical problems
but was able to prove general results showing the natural limits of compression and error-correction,
he also set up a new framework that gave birth to the information theory.

The surprising fact that error-free communication is possible if the message is encoded to include
a minimum amount of redundancy is the content of Shannon’s channel coding theorem. He proved
that a message encoded at rates R (message information content/code-word length) up to the channel
capacity Cchannel can be decoded with a probability of error that decays with the message length. His
proof was non-constructive and assumed encoding with unstructured random codes and impractical
(non-polynomial time) [CT91] decoding schemes. After Shannon’s papers the issue of finding practical
codes capable of reaching the theoretical limit became a central problem in coding theory.

To illustrate the difficulties that may arise when trying to construct high performance codes from
first principles we can use a simple geometric idea. On the top left of Fig. 1.1 we represent the space
of words (a message is a sequence of words), each circle represents one sequence of binary bits. The
word to be sent is represented by a black circle in the left side figure. Corruption by noise in the
channel is represented in the top right figure as a drift in the original word location. The circles

around each word represent spheres that provide a decision boundary for each particular word, any
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Figure 1.1: Geometry of error-correction. In the top figure we represent what happens with a word
transmitted without error-correction. White circles represent possible word vectors, the black circle
represent the word to be sent. The channel noise cause corruption of the original word that is
represented by a drift in the top right picture. The dashed circles indicate decision boundaries in the
receiver, in the case depicted, noise corruption leads to a transmission error. In the bottom figure we
show the action of an error-correcting code. The redundant information changes the space geometry,
increasing the distance between words. The same drift of the top figure is not sufficient to cause a
transmission error.

signal inside a particular decision region is recognised as representing the word in the center of the
sphere. In the case depicted in Fig. 1.1 the drift caused by noise places the received word within
the decision boundary of another word vector, causing a transmission error. Error-correction codes
are based on mapping the original space of words onto a higher dimension space in a way that the
typical distances between encoded words (codewords) increase. Note that the code rate R measures
the size of the codewords space. In the bottom figure we show what happens if the original space is
transformed. In this case the same drift by noise shown in the top of Fig. 1.1 is not sufficient to push
the received signal outside the decision boundary of the transmitted codeword.

Based on this geometrical picture we can formulate general designing criteria for good error-
correcting codes. Codewords must be short sequences of binary digits (for fast transmission), the
code must allow a large number of codewords (for a large variety of words) and decision spheres must
be as large as possible (for large error-correction capability). Therefore, the general coding problem
consists of optimising one of these conflicting requirements given the other two. So, for example, if
the dimension of the lattice and diameter of decision spheres are fixed, the problem is finding the
lattice geometry that allows the densest sphere packing. This sphere packing problem is part of the
famous list of problems created by Hilbert (it is actually part of the 18th problem). This problem
can be solved for a very limited number of dimensions [CS98], but it is very difficult in general. As a
consequence, there are constructive procedures only for a limited number of small codes.

For a long time the best practical codes were Reed-Solomon codes (RS) operating in combination
with convolutional codes (concatenated codes). RS codes, proposed in 1960, are the current techno-

logical standard being found almost everywhere, from compact disks to mobile phones and digital
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television. Concatenated codes are the present standard in deep-space scientific missions (e.g. Galileo
mission) [MS77, 0079]. Recently, Turbo codes [BGT93] have been proven to outperform concatenated
codes and are becoming increasingly more common. These codes are composed of two convolutional
codes working in parallel and show practical performance close to Shannon’s bound when decoded
with iterative methods known as probability propagation, first studied in the context of coding by
Wiberg [Wib96].

Despite the success of concatenated and Turbo codes the current practical performance record
is owned by the conceptually much simpler Gallager codes [Dav99, Dav98] that ironically are linear
block codes, the first family of codes ever proposed. More specifically, they are low-density parity-
check codes. Gallager codes were first proposed in 1962 [Gal62, Gal63] and then were all but forgotten
soon after due to computational limitations of the time and due to the success of convolutional codes.

To give a first idea of how parity-check codes operate, we exemplify with the simplest code of this
type known as Hamming code [Hamb0] . A (7,4) Hamming code, where (7,4) stands for the number
of bits in the output and input respectively, operates by adding 3 extra bits for each 4 message bits,

this is done by a linear transformation G, called the generator matrix, represented by:

I
_= = O O O O =

0
1
0
0
1
0
1

S = = O = OO O

0
0
0
1] (1.1)
1
1
1

When the generator matrix G is applied to a digital message s = (s1, s2, 53, 54), we get an encoded
message defined by ¢ = G's composed of 4 message bits plus redundant information (parity-check)
contained in 3 extra bits t5 = s2 ® s3 ® s4, tg = 51 D 53 D s4 and t7 = s1 B s2 @ 54 (@ indicates binary
sums). One interesting point to note is that the transmitted message is such that t5 ® s2 Ds3Pss =0
and similarly for tg and t7, what allows direct check of single corrupted bits. The decoding procedure
relies in a second operator, known as parity-check matrix, with the property HG = 0. For the

generator (1.1) code the parity check matrix has the following form:

0001
H=|0110 (1.2)
1010

- O

1
1
0

T O Y

The decoding procedure follows from the observation that the received message is corrupted by noise
as r = Gs ® n. By applying the parity-check matrix we get the syndrome Hr = Hn = z. In the
(7,4) Hamming code the syndrome vector gives the binary representation for the position of the bit
where an error has occurred (e.g. if n = (0,0,1,0,0,0,0), z = (0,1,1)). Due to this property decoding

is trivial and this code is known as a perfect single-error-correcting code [Hil86].
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Codes in the low-density parity-check family work along the same principles as the simple Hamming
code above, the differences are that they are much larger, the parity-check matrix is very sparse and
more than a single error can be corrected. As they are not perfect codes, the decoding problem is
much more difficult, but the sparseness of the matrix allows decoding by probability propagation
methods similar to those employed in Turbo codes. In this thesis we will concentrate in low-density
parity-check codes (LDPC) that are state-of-the art-codes in terms of their performance and, at the
same time, operate along simple principles. We will study four variations of LDPCs known as Sourlas

codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes.

1.2 Statistical physics of coding

The history of application of statistical physics to error-correcting codes started in 1989 with a paper
in Nature by Sourlas relating error-correcting codes to spin glass models [Sou89]. He showed that
the Random Energy model [Der81b, Saa98, DW99] can be thought of as an ideal code capable of
saturating Shannon’s bound at vanishing code rates. He also showed that the SK model [KS78] could
operate as a practical code.

In 1995 convolutional codes were analysed by employing the transfer-matrix formalism and power
series expansions [AL95].

In 1998 Sourlas work was extended for the case of finite code rates [KS99a, VSK99] by employing
the replica method. Recently also Turbo codes were analysed using the replica method [MS99, Mon00].

In this thesis we present the extension of Sourlas work together with analysis of other codes in
the low-density parity-check family. We rely on replica calculations [KMS00, MKSV00, VSK00c] as
well as mean-field methods [KS98, VSK00a]. The main idea is to develop the application of statistical
physics tools to analyse error-correcting codes. Many of the results obtained are rederivations of well
known results of information theory, while others put known results into a new perspective.

The main differences between statistical physics analysis and traditional results in coding theory
are: the emphasis on very large systems from the start (thermodynamic limit) and the calculation of
ensemble typical performances instead of worst case bounds. In this sense statistical physics techniques
are complementary to traditional methods. As a byproduct of our analysis we are able to connect
the iterative decoding methods of probability propagation with well known mean-field techniques,

presenting a framework that might allow a systematic improvement of decoding techniques.

1.3 Outline

In the next chapter we provide an overview of results and ideas from information theory that are
relevant for the understanding of the forthcoming chapters. We also discuss more deeply linear en-
coding and parity-check decoding. We present the probability propagation algorithm for computing

approximate marginal probabilities efficiently and finish by introducing the statistical physics point
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of view of the decoding problem.

In chapter 3, we investigate the performance of error-correcting codes based on sparse generator
matrices proposed by Sourlas. We employ replica calculations to present the phase diagram for the
system at finite code rates. We then discuss the decoding dynamics of the probability propagation
algorithm. We regard Sourlas codes as a first step towards developing techniques to analyse other
more practical codes.

Chapter 4 provides a statistical physics analysis for Gallager codes. This codes use a dense genera-
tor and a sparse parity-check matrix. The code is mapped onto a K-body interaction spin system and
the typical performance is obtained using the replica method. A mean-field solution is also provided
by mapping the problem onto a Bethe-like lattice (Husimi cactus), recovering, in the thermodynamic
limit, the replica symmetric results and providing a very good approximation for finite systems of
moderate size. We show that the probability propagation decoding algorithm emerges naturally from
the analysis and its performance can be predicted by studying the free-energy landscape. A simple
technique is introduced to provide upper bounds for the practical performance.

In Chapter 5 we investigate MacKay-Neal codes that are a variation of Gallager codes. In these
codes, decoding involves two very sparse parity-check matrices, one for the signal with K non-zero
elements in each row and a second for the noise with L non-zero elements. We map MN codes onto
a spin system with K + L interacting spins. The typical performance is again obtained by using a
replica symmetric theory.

A statistical description for the typical PP decoding process for the codes proposed by Kanter and
Saad is provided in chapter 6. We use this description to optimise the construction parameters of a
simple code of this type.

Conclusions and perspectives for future work are discussed in chapter 7.

Five appendices with technical details on the material presented are provided in the end of this

thesis.
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Chapter 2

Coding and Statistical Physics

In this chapter we provide an overview of results and ideas from information theory that are relevant
for the following chapters. We introduce linear encoding and parity-check decoding. We present the
probability propagation algorithm for efficiently computing approrimate marginal posterior probabilities

and discuss the relationship between statistical physics and the decoding problem.

2.1 Mathematical model for a communication system

In his 1948 papers [Sha48] Shannon introduced a mathematical model (pictorially represented in Fig.
2.1) describing the common features present in communication systems, he also identified key problems
and proved general results about them. Among Shannon’s most celebrated results are the source and
channel coding theorems. In the following subsections we will introduce the components of Shannon’s

communication model as well as the mathematical objects and related general theorems.

2.1.1 Data source and sink

A data source can be discrete or continuous. A discrete source is defined by the pair (S, 7), where
S is a set of m symbols (alphabet) and 7 is a probability measure over the space of sequences of
symbols with any length (messages). For example, a discrete source transmitting texts in Portuguese
can be described by an alphabet containing about 76 symbols with a probability measure defined
by the Portuguese semantics and grammatical rules. Genomes can be described as discrete sources
with alphabet {4, G, C, T} and probability measure defined by biochemical functions. In general any
discrete alphabet can be mapped onto sequences of [logm] Boolean digits {0,1}. Continuous sources
can always be made discrete at the expense of introducing some distortion to the signal [CT91]. A
source is memoryless if each symbol in the sequence is independent of the preceding and succeeding

symbols. The data sink is simply the receiver of decoded messages.
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DATA DATA
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/
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Figure 2.1: Mathematical model for a communication system. The role of each of the components is
discussed in the text.

2.1.2 Source encoder and decoder

Data sources usually generate redundant messages that can be compressed to vectors of shorter average
length. Source encoding, also known as data compression, is the process of mapping sequences of
symbols from an alphabet S onto a more economical representation 4.

In his seminal 1948 paper, Claude Shannon borrowed the idea of entropy from statistical physics
and defined a quantity that can measure the essential information content of a message. As enunciated

by Khinchin [Khi57], the entropy of Shannon is defined by:

Definition 1 (Entropy) Let

al a2 .o a,m
P P2 - Pm

be a finite scheme, where a; are mutually exclusive events and p; are associated probabilities with

Yo i=1pj = 1. The entropy of the scheme in bits (or shannons) is defined as

Hy(A) = - pj log, p;- (2.1)
j=1

The entropy is usually interpreted as the amount of information gained by removing the uncertainty
and determining which event actually occurs.

Shannon [Sha48] was able to pose and prove a theorem that establishes what is the maximal
shortening of a message by compression as a function of the entropy. The compression coefficient can
be defined as p = limy_,o0(Ly)/N, where N is the original message length and (Ly) is the average

length of compressed messages. As presented by Khinchin [Khi57] the theorem states:
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Theorem 1 (Source compression) Given a discrete source with m symbols and entropy of H bits,
for any possible compression code the compression coefficient is such that

H
log,m —

and there exists a code such that

H+e
log, m’

p<
for arbitrarily small e.

A compression scheme that yields a coefficient y within this bound, given that the statistical
structure 7 of the source is known, was found in 1952 by Huffman [Huf52]. Several practical algorithms
are currently known and the design of more efficient and robust schemes still is a very active area

[NGO5).

2.1.3 Noisy channels

Message corruption during transmission can be described by a probabilistic model defined by the
conditional probability P(r | t) where t and r represent transmitted and received messages respec-
tively. One can assume that in each channel use only one component ¢;, j = 1,---, M of the original
message is sent, if there is no interference effects between different components, the channel is called
memoryless and the conditional factorises as P(r | t) = H]Ail P(rj | t;).

A memoryless channel model is specified by (7, P(r | t),R), where 7 and R are input and output
alphabets and P(r | t) transition probabilities. The information needed to specify ¢ given the received
signal r is the conditional entropy:

Hy(T |R)=>_ P(r)

reR

ZPt|rlog2( tIT))] (2.2)

teT

The information on the original signal ¢ conveyed by the received signal r is given by the mutual
information I(T; R) = Hz(T) — H2(T' | R), where H3(T) is defined in (2.1). The maximal information
that the channel can retain defines the channel capacity [CT91].

Definition 2 (Channel capacity)
channel = I(T; R),
Cchannel max (T; R)
where I(T; R) is understood as a functional of the transmitted bits distribution P(t). Thus, for exam-

ple, if Cehannet = 1/2, in the best case, 2 bits must be transmitted for each bit sent.

In this thesis we will be interested in the following channel models (see [Mac99, Mac00a]):

Definition 3 (Binary symmetric channel) The memoryless binary symmetric channel (BSC) is

defined by binary input and output alphabets T =R = {0,1} and by the conditional

Pir#£t|t)=p Pir=t|t)=1—p. (2.3)
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The channel capacity of a BSC is given by

Csc = 1— Hy(p)

1+ p log (p) + (1 —p) log (1 —p) (2.4)

Definition 4 (Gaussian channel) Input and output alphabets are the real numbers T = R = R

and the channel is described by

1 —(r—1t)?
P(r|t) = . 2.5
1) = s eap [0 25)
The channel capacity is
1
CGaussian = 5 109 (1 + %) s (26)

where S/N = (t)/o? is the signal to noise ratio and (t*) = [ dt P(t) t>.

Definition 5 (Binary Gaussian channel) The input alphabet is binary T = {—to,to} and the

output alphabet are the real numbers R = R.

1 —(r—1t)2

P(r|t) = o exp [ 552 ] . (2.7)

The channel capacity is
CBinary = —/dr P(r) log P(r) + /dr P(r |t =to) log P(r | t=tg), (2.8)

where
]. 1 2 2 2 2
P - = (r—t0)®/(207) 4 o(r+t0)*/(20%)| 9.

(r) 2 o3 [e +é€ ] (2.9)

2.1.4 Channel encoder and decoder

Shannon was the first to show the surprising fact that highly reliable communication is possible even
through noisy channels. He showed that it is possible to protect a message by adding redundant

information into the transmission, the operation is carried out by the channel encoder defined as:

Definition 6 ((2V, M) Code) A code of rate R = N/M is an indexed list (codebook) of 2V code-
words t(i) € T each of length M that are inputs of the noisy channel. Each index i in the coodbook

corresponds to a possible sequence of message bits.

In a digital system, a code can be regarded as a map of N bits Boolean representations of 2%V symbols
onto Boolean sequences of M bits. In fig. 2.2 we show the codebook for the Hamming code defined
by (1.1) that is (2%,7) code. Each sequence of N = 4 message bits is indexed and converted in a
codeword with M = 7 bits.

A decoding function g is a map of a channel output r € R back into a codeword. The probability

that a symbol i is decoded incorrectly is given by the probability of block error:

pBlock = P{g(r) # 1|t =1t()}. (2.10)
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message index codeword | message index codeword

bits bits

0000 0 0000000 1000 8 1000011
0001 1 0001111 1001 9 1001100
0010 2 0010110 1010 10 1010101
0011 3 0011001 1011 11 1011010
0100 4 0100101 1100 12 1100110
0101 5 0101010 1101 13 1101101
0110 6 0110011 1110 14 1110010
0111 7 0111100 1111 15 1111111

Figure 2.2: Codebook for the (7,4) Hamming code defined by (1.1).

The average probability that a decoded bit 5; = g;(r) fails to reproduce the original message bits

is the probability of bit error:
| X
Pe = ZIP{%’ # 8j}- (2.11)
J:
Shannon’s coding theorem can be enunciated as follows [CT91, Mac00al:

Theorem 2 (Channel coding) The affirmative part of the theorem states:

For every rate R < Cchannei, there exists a sequence of (2M%, M) codes with mazimum probability
of block error p&i‘f{ — 0. Conversely, any sequence of (2ME M) codes with pg\fz — 0 must have
R < Cehanne-

The negative part of the theorem is actually a corollary of the affirmative part and states:

Error free communication above the capacity Cchanner 15 tmpossible. It is not possible to achieve a

rate R with probability of bit error smaller than

pe(R) = Hy (1 —~ 70“‘1“%""6‘) : (2.12)

This theorem is non-constructive, it is obtained by assuming ensembles of random codes and non-
practical decoding schemes. No practical coding scheme (i.e. that can be encoded and decoded in
polynomial time) that saturates the channel capacity is known to date. In fact, as Shannon’s proof

does not deal with complexity issues, there is no guarantee that such practical scheme exists at all.

2.2 Linear error-correcting codes and the decoding problem

Digital linear error-correction codes operate by adding redundancy to the original message s € {0, 1}V
through a linear map like:

t = Gs (mod 2), (2.13)

where G is an M x N Boolean matrix. The received message r = t + n is corrupted by a noise vector
n. In the simplest form, optimal decoding consists of finding an optimal estimate 3(r) assuming a

model for the noisy channel P(r | t) and a prior distribution for the message source P(s).
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The definition of the optimal estimator depends on the particular task and loss function assumed.

An optimal estimator is defined in general as follows (see [Iba99] and references therein):

Definition 7 (Optimal estimator) An optimal estimator 8(r) for a loss function L(s,3(r)) is an

estimator that minimises the average of L in relation to the posterior distribution P(s | r).

A posterior probability of messages, given the corrupted received message can be easily found by

applying Bayes theorem:

P(r | ) 8 (t; Gs) P(s)
S, P(r | £) 4 (tGs) P(s)’ 214

where §(z;y) =1 if 2 = y and é(z;y) = 0, otherwise.

P(s|r) =

If in our task we only can accept totally correct messages (i.e. we are interested in minimising the
probability of block error priock) we have to assume a loss function that indicates single bit mismatches

as an error measure:

M

L(s,8(r))=1- H 5(sj;85)- (2.15)

Jj=1

An optimal estimator for this loss function must minimise the following:

(L(s,3(r))psiry = Pls|7)L(s,3(r))

s
M
= 1—2 s|7'H (85555)
S j=1
= 1-P(E|r). (2.16)

Clearly, the optimal estimator in this case is § = argmaxgP(s | 7). This estimator is often called the
Mazimum a Posteriori estimator or simply MAP.
If we can tolerate a certain degree of error in the decoded message (i.e. we are instead interested

in minimising the probability of bit error p.), the loss function has to be an error counter like:
M
—Z Sj:S\j, (2.17)
=1

where we assume for simplicity the binary alphabet s € {£1}". The optimal estimator must minimise

the following:

M
<L(57§(r))>P(s|r) = Z (s T)S] (218)

j=1

An obvious choice for the estimator is

s _(8i)pein)
! | {s;)p(si) |
= Sgn(<5j>P(3|r))
= argmax, P(s; | r), (2-19)
8; J
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where P(s; | 7) = > ¢, .x2;; P(s | 7) is the marginal posterior distribution. As it is suggested by Eq.
(2.19), this estimator is often called the Marginal Posterior Mazimiser or MPM for short.

Decoding, namely, the computation of estimators, in general becomes a hard task very quickly as
the message size increases. The MAP estimator requires finding a global maximum of the posterior
over a space with 2V possible solutions and the MPM estimator requires to compute long summations
of 2V~ terms for finding the two valued marginal posterior. The exponential scaling makes the task
quickly impractical, at least in a naive brute force evaluation. An alternative is to use approximate
methods to evaluate posteriors, popular methods are Monte-Carlo sampling and the computationally

more efficient probability propagation. In the sequence we will discuss the latter.

2.3 Probability propagation algorithm

The probabilistic dependencies existing in a code can be graphically represented as a bipartite graph
[Lau96] where nodes in one layer correspond to the M received bits r, and nodes in the other layer
to the N message bits s;. The connections between the two layers are specified by the generator
matrix G. Decoding requires evaluation of posterior probabilities when the received bits are known r
(evidence).

The evaluation of the MPM estimator requires the computation of the following marginal joint

distribution:

P(sjr) = Y, P(s|r)P(r)

{si:i#5}
= Y P(r|s)P(s)
{sii#j}
M N
= Z H P(TN | Sip * 'six) H P(Sj)a (220)
{si:i#j} u=1 Jj=1

where s;, - - - s;, are message bits composing the transmitted bit ¢, = (Gs), = si;, ®--- D i, and r is
the evidence. Equation (2.20) shows a complex partial factorisation that depends on the structure of
the generator matrix G. We can encode this complex partial factorisation on a directed graph known
as a Bayesian network [Pea88, CGH97, Jen96, KF98, AMO00, Fre98, KFL98]. As an example, we show
in Fig. 2.3 a simple directed graph encoding the following joint distribution:

P(s1, -+ ,84,71,-+,r6) = P(r1|s1,52,53)P(ra2 | s3)P(rs | s1,82)P(rs | s3,54)

X P(’I‘5 | S3)P(T‘6 | S3)P(81)P(32)P(53)P(84) (221)
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Figure 2.3: Bayesian Network representing a linear code of rate 2/3.

The generator matrix specifying the code in Fig. 2.3 is:

(2.22)

I
©c o o ©o Rk O =

1
0
0
1
1
1
1

O O O O = o= o=
o O O = O o ©

Pearl [Pea88] proposed an iterative algorithm that requires O(N) time to calculate approximate
marginal probabilities using Bayesian networks. This algorithm is known as belief propagation [Pea88],
probability propagation [KF98], generalised distributive law [AMO0] or sum-product algorithm [Fre98,
KFL98] (see also [De00]).

To introduce the probability propagation algorithm we first need some definitions. Defining two
vertices s; and r, adjacent if there is a line connecting then. If there is an arrow from s; to r,, s;
is said to be a parent and r, a child. The children of s; are denoted by M(j) and the parents of
T, are L(p). Linear codes are specified by bipartite graphs (like in Fig. 2.3) where all parents are
in one layer and all children in the other layer. A message in this method is a probability vector
Q = (Q° Q') with Q° 4+ Q' = 1. The probability propagation algorithm in a bipartite graph operates
by passing messages between the two layers through the connection edges, first forwards from the top
layer (parents) to the bottom layer (children), then backwards, and so on iteratively. Child-to-parent
messages (backward messages in Fig. 2.3) are denoted R,,;, while parent-to-child messages (forward
messages) are denoted by Q.

The forward messages between parents s; and children r, represent the belief the parent j has

that it is in the state a according to all children but g, in this way [Dav99]:

fu = Plsi=al{r,:veM@)\u})
P({r,:ve M(§) \ u}|sj =a) P(s; = a)
P({ry : v e M(j)) ’

(2.23)

applying Bayes theorem to find the last line.
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If we assume no small cycles in the equivalent undirected graph (graph obtained by removing all

arrows) the following factorisation holds:

P({ro:ve MGQ)\u}|s;=a) = [[ Plruls;=a). (2.24)
veM(@G)\p

The distribution P(r, | s; = a) corresponds to the probability of obtaining r, (evidence) when the
parent (message bit) j is set to s; = a, this probability is the backward message that a child y should

send to a parent j. We, therefore define:

R, = P(ruls;j=a)
= Trpuiccu\ Pl si=a{sizie Lw\j}) [ @i, (2.25)
i€L(W)\g
where @7}, is understood as an updated belief for the parent (message bit) 1.

Plugging Eqgs. (2.24) and (2.25) into Eq. (2.23) we obtain:

Q, =aju P(s;=a) [[ RY- (2.26)
veEM(i)\p

An approximation for the marginal posterior can be obtained by iterating Egs. (2.25) and (2.26)
until convergence or some stopping criteria is attained, and fusing all incoming information to a parent
node by calculating:

Q} = aj P(sj = a) H R}, (2-27)
veM(j)
where 77 is an approximation for the marginal posterior P(s; | 7). Initial conditions can be set to the
prior probabilities @3, = P(s).

Pearl showed in [Pea88] that the probability propagation (PP) algorithm is exact if the subjacent
graph is a tree and that the convergence for the exact marginal posterior occurs within a number
of iterations equivalent to the diameter of the tree. However, graphs defining error-correcting codes
always have cycles and it is observed empirically that decoding with the PP algorithm also yields
good results [FM98, Che97] in spite of that.

There are a limited number of studies of probability propagation in loopy graphs with a single
cycle [Wei97] and describing Gaussian joint distributions [Fre99] but no definite explanation for its

good performance in this case is know to date.

2.4 Low-density parity check codes

Marginal posteriors can be calculated in O(NK) steps, where K is the average connectivity of a
child node, by using probability propagation. Therefore, the use of very sparse generator matrices
(3°,j Guj = O(N)) seems favourable. Moreover, it is possible to prove that the probability of a
cycle-free path of length [ in a random graph decays with O(K!/N) (see Appendix E) what indicates

that small cycles are harder to find if the generator matrix is very sparse and PP decoding is expected
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to provide better approximates for the marginal posterior (no proof is known for this statement) .
Encoding is also faster if very sparse matrices are used, requiring O(N) operations. Despite the advan-
tages, the use of very sparse matrices for encoding has the serious drawback of producing codewords
that differ in only O(K) bits from each other, what leads to a high probability of undetectable errors.
Codes with sparse generator matrices are known as Sourlas codes and will be our first object of study
in Chapter 3.

A solution for the bad distance properties of sparse generator codes is to use a dense matrix
for encoding (providing a minimum distance between codewords of O(N)), while decoding is done
in a very sparse graph, allowing efficient use of PP decoding. The method known as parity-check
decoding [Hil86, OOT9] is suitable in this situation, as encoding is performed by a generator matrix
G, while decoding is done by transforming the corrupted received vector r = G's + n (mod 2) with
a suitable parity check matrix H with the property HG (mod 2) = 0, yielding the syndrome vector
z=Hn (mod 2) .

Decoding reduces to finding n when the syndrome vector z is known, namely, MPM estimates
involve the calculation of the marginal posterior P(n; | z). In [Mac99] MacKay was able to prove
that this decoding method can attain vanishing block error probabilities up to the channel capacity
if optimally decoded (not necessarily practical decoding).

This type of decoding is the basis for the three families of codes (Gallager, MacKay-Neal and
Kanter-Saad) we study in Chapters 4, 5 and 6.

2.5 Decoding and statistical physics

The connection between spin systems in statistical physics and digital error correcting codes was first
noted by Sourlas [Sou89]. This connection is based on the existence of a simple isomorphism between

the additive Boolean group ({0, 1}, ®) and the multiplicative binary group ({41, —1},-) defined by:
S-X = (—1)"97, (2.28)

where S, X € {+1,—1} and s,z € {0,1}. Trough this isomorphism every addition on the Boolean
group corresponds to an unique product on the binary group and wice-versa. A parity-check bit in a
linear code is usually formed by a Boolean sum of K bits of the form @;il s; what can be mapped
onto a K-spin coupling Hle S;. The same type of mapping can be applied to other error-correcting
codes as convolutional codes [Sou94b, AL95] and turbo codes [MS99, Mon00].

The decoding problem depends on posteriors like P(S | J), where J is the evidence (received
message or syndrome vector). By applying Bayes’ theorem this posterior can in general be written in

the form:

P, (S|J)= exp[ln Py(J | S) +In P,(S)], (2.29)

1
Z(J)

where o and 7 are hyper-parameters assumed to describe features like the encoding scheme, source
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distribution and noise level. This form suggests the following family of Gibbs measures:

Pagr(S 1) = exp[~BFHoy(S; ) (2.30)

Hoy(S;TJ) = —In Py(J|S)—1n P,(S), (2.31)
where J can be regarded as quenched disorder in the system. It is not difficult to see that the MAP
estimator is represented by the ground state of the Hamiltonian (2.30), i.e. by the sign of thermal
averages gMAP = sgn((S;)s—o00) at zero temperature. On the other hand the MPM estimator is

provided by the sign of thermal averages §MPM

= sgn((S;)p=1) at temperature one. We have seen
in Section 2.2 that if we are concerned with the probability of bit error p. the optimal choice for an
estimator is MPM, that is equivalent to decoding at finite temperature 8 = 1, known as Nishimori
temperature [Nis80, Nis93, Nis00, Ruj93].

The evaluation of typical quantities involves the calculation of averages over the quenched disorder

(evidence) J, namely, averages over:
=" Par(J | S)Py(S), (2.32)
s

where a* and v* represent the “real” hyper-parameters, in other words, the hyper-parameters actually
used for generating the evidence J. Those “real” hyper-parameters are, in general, not known by the
receiver, but can be estimated from the data. To calculate these estimates we can start by writing

free-energy like negative log-likelihoods for the hyper-parameters:

(Fla,M)p,.,. =—(In Py (D))p, . - (2.33)

aty
This log-likelihood can be regarded as measuring the typical plausibility of o and ~, given the data J
[Ber93]. This function can be minimised to find the most plausible hyper-parameters (known as type
IT mazimum likelihood hyper-parameters or just ML-II hyper-parameters) [Ber93].

The ML-II hyper-parameters correspond in this case to & = o* and v = 7*, i.e. the “real” hyper-
parameters must be used in the posterior for decoding. This fact is a consequence of the following

inequality:

(F(a*, 7"V, < (FlasM)p,... - (2.34)

The proof of (2.34) follows directly from the information inequality [Iba99, CT91], i.e. the non-
negativity of the KL-divergence :

Poeye|Pay) > 0
(o (5 )>PH > 0
<m&7ufh < (I Pay(D)p. . - (2.35)

When “real” and assumed hyper-parameters agree, we say that we are at the Nishimori condition
[Iba99, Nis00]. At the Nishimori condition many calculations simplify and can be done exactly (see
Appendix B.3 for an example). Through this thesis we will be, most of the time, assuming the

Nishimori condition.
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Chapter 3

Sourlas Codes

In this chapter we investigate the performance of error-correcting codes based on sparse generator
matrices using the mapping onto Ising spin systems proposed by Sourlas. We study codes where each
parity-check comprises products of K bits selected from the original digital message with exactly C
checks per message bit. We show, using the replica method, that these codes saturate Shannon’s coding
bound for K — oo when the code rate K/C is finite. We then examine the finite temperature case
to assess the use of simulated annealing methods for decoding, we study the performance of the finite
K case and extend the analysis to accommodate different types of noisy channels. The connection
between statistical physics and probability propagation decoders is discussed and the dynamics of the
decoding itself is analysed. Further insight into new approaches for improving the code performance is

giwen. The content of this chapter appeared in [VSK99]

3.1 Introduction

The code of Sourlas is based on the simple idea of using a linear operation G (generator matriz)
to transform a message vector s € {0,1}" onto a higher dimensional vector ¢ € {0,1}™. The
encoded vector is then ¢ = G's (mod 2), each bit ¢; being the Boolean sum of K message bits (parity
check). This vector is then corrupted when transmitted through a noisy channel and a corrupted M
dimensional vector r is received.

Decoding consists of producing an estimate § of the original message. This estimate can be
generated by considering a probabilistic model for the encoding/corruption/decoding system. Reduced
(order N) time/space requirements for the encoding process and the existence of fast (polynomial time)
decoding algorithms are guaranteed by choosing sparse generator matrices, namely, a matrix G with
exactly K nonzero elements per row and C nonzero elements per column, where K and C' are of order
1. The rate of such a code is evidently R = N/M, as the total number of nonzero elements in G is
MK = NC the rate is also R = K/C.

In 1989 Sourlas [Sou89, Sou94a] proposed that, due to the equivalence between addition over the
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field {0, 1} and multiplication over {£1}, many error-correcting codes can be mapped onto many-body
spin-glasses with appropriately defined couplings. This observation opened the possibility of applying
techniques from statistical physics to study coding systems.

In the mapping proposed by Sourlas, a message is represented by a binary vector £ € {+1}V

encoded to a higher dimensional vector J° € {£1}M defined as J =&, &y .- -Eix, where M

(i1,i2...ix )
sets of K indices are randomly chosen. A corrupted version J of the encoded message J° has to
be decoded for retrieving the original message. The decoding process can be viewed as a statistical
process [Iba99] (see Fig.3.1), where an estimate € to the original message that minimises a given
expected loss ((L(¢, 2)) P(J|¢))p(¢) averaged over the indicated probability distributions is produced.
The definition of the loss depends on the particular task; the overlap £(¢, E) =3 j gjf,- can be used
for decoding binary messages. As discussed in Sec. 2.2, an optimal estimator for this particular
loss function is EJ = sign(S;) p(s;|7) [Iba99], where S is an N dimensional binary vector representing
the dynamical variables of the decoding process and P(S; | J) = }°5, ;. P(S | J) is the marginal

posterior probability. Using Bayes theorem, the posterior probability can be written as:
In P(S|J)=1n P(J|S)+In P(S) + const. (3.1)
The likelihood P(J | S) has the form:

P18 = ]] > PJpiyein) | Ihyminey) PI0 iy | S)- (3.2)

chosen sets jO.
(igeerige)

The term P(J?z'1~~~ix) | §) models the deterministic encoding process being:
P(J0 vy | 8) = 8(J0sy oipeyi Sia =+ - Sie)- (3.3)

The noisy channel is modelled by the term P(Ji;,...ip) | J?Z.l_.iﬂ). For the simple case of a
memoryless binary symmetric channel (BSC), J is a corrupted version of the transmitted message J°

where each bit is independently flipped with probability p during transmission, in this case [Sou94a]:

1
P(J iy mige) | J?z'l---ix)) = S(1+ J?z'l---ix)) In P(Jiy iy | +1)

— N

+ - Ty eminey) 10 P(Jy iy | —1)
= constant + % In (%) (iy-ix) J?il---z'K)' (3.4)
Putting everything together one obtains a Hamiltonian for the code of Sourlas as:
In P(S|J) = —BnH(S) (3.5)

N
= B Y Ay I Si+8xD S, (3.6)
Iz Jj=1

i€L (k)

where a set of indices is denoted L(u) = (i1,...ix) and A is a tensor with the properties A, €
{0,1} and 3. (,)\;Ax = C Vi, which determines the M components of the codeword J°. The

temperature of the interaction term used here is Sy = 1ln (1_Tp), known as Nishimori temperature
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§ ENCODER NOISY CHANNEL DECODER g
P(J 13°)
P(X [€) P(S1J)

Figure 3.1: The encoding, message corruption in the noisy channel and decoding can be represented
as a Markovian process. The aim is to obtain a good estimate &€ for the original message &.

[Nis80, Iba99, Ruj93, Nis93], and By = iln (1_75{) is the message prior temperature, namely, the prior
distribution of message bits is assumed to be P(S; = +1) =1 — p¢ and P(S; = —1) = p¢.

The decoding procedure translates to finding the thermodynamic spin averages for the system
defined by the Hamiltonian (3.5) at a certain temperature (Nishimori temperature for optimal de-
coding); as the original message is binary, the retrieved message bits are given by the signs of the
corresponding averages.

In the statistical physics framework the performance of the error-correcting process can be mea-
sured by the overlap between actual message and estimate for a given scenario characterised by a code
rate, corruption process and information content of the message. To assess the typical properties we
average this overlap over all possible codes A and noise realisations (possible corrupted vectors J)

given the message & and then over all possible messages:

p= % <Z & <Sign<Si>>A,J|g> (3.7)

£
Here sign(S;) is the sign of the spins thermal average corresponding to the Bayesian optimal decoding.
The average error per bit is then given by p. = (1 — p)/2.

From the statistical physics point of view, the number of checks per bit is analogous to the spin
system connectivity and the number of bits in each check is analogous to the number of spins per
interaction. The code of Sourlas has been studied in the case of extensive connectivity, where the
number of bonds C ~ Z : 1) scales with the system size. In this case it can be mapped onto known
problems in statistical physics such as the SK [KS78] (K=2) and Random Energy (REM) [Der81a]
(K —00) models. It has been shown that the REM saturates Shannon’s bound [Sou89]. However,
it has a rather limited practical relevance as the choice of extensive connectivity corresponds to a
vanishingly small code rate.

Here we present the analysis for the code of Sourlas in the case of finite connectivity where the
code rate is finite, extending the analysis in [KS98, KS99a]. We show that Shannon’s bound can also
be attained at finite code rates. We study the decoding dynamics and discuss the connections between
statistical physics and the methods of probability propagation.

This chapter is organised as follows: in Section 3.2 we present a lower bound for the probability
of bit error, in Section 3.3 we discuss a naive mean field approximation that yields unphysical results.
Section 3.4 describes the statistical physics treatment of the code of Sourlas showing that Shannon’s

bound can be attained for finite code rates if K — oo. The finite K case and the Gaussian noise are
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also discussed in Section 3.4. The decoding dynamics is analysed in Section 3.5. Concluding remarks

are given in Section 3.6. Appendices with the detailed calculations are also provided.

3.2 Lower bound for the probability of bit error

It was observed in [MS99] that a sparse generator code can only attain vanishing probability of bit
error if K — 0o. This fact alone does not rule out the practical use of such codes as they can still be
used if a controlled probability of error is allowed or as part of a concatenated code.

Before engaging in a relatively complex analysis it is of theoretical interest to establish a detailed
picture of how the minimum bit error attainable decays with K. This can be done in quite a simple
manner suggested in [MS99]. Let us suppose that messages are unbiased and random and that the
channel is a BSC of noise level p. Assume, without loss of generality, that the message &; = 1 for all j
is sent. The bit error probability can be expressed as the sum p, = 211\;1 pe(l), where pe(I) represents
the probability of decoding incorrectly any [ bits. Clearly pe > pe(1).

The probability of decoding incorrectly a single bit can be easily evaluated. A bit j engages
in exactly C interactions with different groups of K bits in a way that their contribution to the

Hamiltonian is:

7{]’ = _Sj Z ApJp, H Sz'a (38)

REM()) 1€Lp
where M(j) is the set of all index sets that contain j. If all bits but j are set to S; = 1, an error in j
only can be detected if its contribution to the Hamiltonian is positive; if > HEM() A,J, <0 the error

is undetectable. The probability of error in a single bit is therefore

pe(l) = P{ Z AuJu < 0}, (3'9)

BEM(3)
where A,, =1 for exactly C' terms and J, can be simply regarded as a random variable taking values
+1 and —1 with probabilities 1 — p and p respectively. Regarding the sequence (Ji,---,J¢) as a
random walk we find:

i<c

> - (3.10)

IEN,C—21<0

v

Pe

A lower bound for for p. in the large C' regime can be obtained by using the DeMoivre-Laplace

limit theorem [Fel50], writing:

De > %erfc <(1 —p)C s w) , (3.11)

8p ) S A -pc P <_ 64p?
where erfc(z) = % f;o du exp(—u?) and the asymptotic behaviour is given in [GR94] (page 940).
This bound implies that K — oo is a necessary condition for a vanishing bit error probability in

sparse generator codes at finite rates R = K/C.
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3.3 Weiss mean field

As a very simple start, we consider a message £ = 1 for all j (so m = 1 corresponds to perfect
decoding and we can identify the overlap p with the magnetisation m ), and use Weiss mean field
theory as a first (naive) approximation.

The local field experienced by a spin is given by (for unbiased messages with 85 = 0):

hi= > Ady [ mi+ D Al ] Si- I mi|» (3.12)

BEM(3) €L\ BEM(3) €L\ i€L(1)\J
reminding that M(j) represents the set of C' index sets containing j and L£(u) represents K indices
in the index set .

The Weiss mean field is based on ignoring the fluctuation term [Gol92]:

oo A T si— I mel- (3.13)

HEM(H) i€L(1)\J i€L(u)\J

Local magnetisations can then be obtained by solving a set of self-consistent equations:

m; = tanh(Bh;) (3.14)

tanh |G Z A, J, H m; (3.15)

HEM(F) i€EL(p)\J

If we now assume that under averages over the quenched disorder A4 and J :
m = (mj)as (3.16)
~ tanh(B(h;)4,s) (3.17)
and that <Hi€£(u)\j mi)A,J = Hiez:(u)\j (mi)a,s, we can then write:
m = tanh (8 C(1 — 2p) m*71), (3.18)

for a BSC with noise level p and imposing }_ ,c vq(j) Audu = C'

The free-energy for a system with uniform local magnetisation m is easily obtained:

fim)=—(1- 2p)%mK — % (3.19)
The entropy is:
s(m):—l-;m 1n(1-;m>_1—2m ln<1_2m>. (3.20)

By minimising this free-energy one can obtain Equation (3.18) whose solutions give the magneti-
sation of the system.

The free-energy of the paramagnetic state fpara = In 2 can be equated to the free-energy frerro
of the state of maximum magnetisation to find the coexistence line. In Figure 3.2 we show the
coexistence line for large K and optimal decoding temperature and compare with the Shannon bound.
Evidently this coexistence line in inconsistent with the channel coding theorem as it predicts the
possibility of errorless (for K — co) communication beyond channel capacity. In the following sections

we will discuss a less naive approach to the problem.
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0.5

Figure 3.2: Coexistence line in the plane rate versus noise level for the Weiss approximation with
K =10 (dashed line) and Shannon’s bound for the BSC.

3.4 Equilibrium

3.4.1 Replica theory

In the following subsections we will develop the replica symmetric theory for Sourlas codes and show
that, in addition to providing a good description of the equilibrium, it describes the typical decoding
dynamics using probability propagation methods.

The previous naive “all ones” messages assumption can be formally translated to the gauge trans-
formation [FHS78] S;+S:&; and Ji;,...ix )= J(iy.ix )iy - - - Eixe that maps any general message to the
ferromagnetic configuration defined as £ = 1 Vi. By introducing the external field F' = (3}, /3 one can

rewrite the Hamiltonian in the form:

N
H(S) = - Z A(uzK) J(leK) Sil "'Sik - FZ&]SJ ’ (321)
(i1--ix) j=1
With the gauge transformation, the bits of the uncorrupted encoded message become J?il...ik) =1
and, for the BSC, the corrupted bits can be described as random variables with probability:
P(J)y=(Q1-p)6(J-1)+pd(J+1), (3.22)

where p is the channel flip rate. For deriving the typical properties we have to obtain an expression
for the free-energy by invoking the replica technique where the free-energy is calculated using the

identity:
f==2am L2 gm ., (3.23)

where (Z™)4¢ 7 represents an analytical continuation in the interval n € [0,1] of the replicated

partition function:
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(2" ag,s = Trisey

o, (i1-iKc)

<eﬂan,k EkS;?>§ <exp (/8 Z A(hzx) J(nzx) Sg tT 'S?K) > ] .
A,J

The overlap p can be rewritten using gauged variables as :

=N Z< sign(S AJIE > (3.25)

where £* denotes the transformation of a message £ into the ferromagnetic configuration.
To compute the replicated partition function we closely follow [WS87a]. We average uniformly

over all codes A such that Z<i1:ii2___iK> Aliyigey = C Vi to find:

<Zn>A’£’J exp {N EIDtT'q’q

il

=0 (a1 .aq)

— C(Z Z Qal...ala\al...az)

1=0 (a1...a1)

_|_

= 0<a1 a1>

C
IIITI‘{Sa} <€ﬁF£E°‘Sa> (Z Z Qal . 1...Sal> y (326)

where 7; = (tanhl (B8J))s, asin [VB85], and gg = 1. We give details of this calculation in the Appendix

A.1 . At the extremum of (3.26) the order parameters acquire a form similar to those of [WS87a:

~
qaly---yal - quu, s3]

1 n -t
<<HS‘“> (Z > q“al...a,sal...sa’) > : (3.27)
i=1 =0 {a1...aq)

X

qaly---yal

where

C
X = (PEas, (Z S G s) , (3.28)

1 0(a1 al)

and <>X = Tr{Sa} [()X] /TI‘{Sa} [()]

3.4.2 Replica symmetric solution

The replica symmetric (RS) ansatz can be introduced via the auxiliary fields 7w(z) and 7(y) in the

following way (see also [WS87al):

o = [ dy R(y)tank (By),
dayoy = /dx ﬂ(x)tanhl(ﬁm) (3.29)

forl=1,2,....
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Plugging (3.29) into the replicated partition function (3.26), taking the limit n — 0 and using
Eq.(3.23) (see Appendix A.2 for details) one obtains:

f = —% Eztr, z {alncosh 8 (3.30)
K K
+ «a / [H dz; w(m,)] <1n ll+tanhﬂJ I tanh ﬂxj]>
=1 j=1 ;

- C’/d:c dy m(z) 7(y) In[l + tanh Bz tanh Sy]

- C’/dy 7(y) Incosh By

c c
/ [H dy; %(yl)] <ln 2 cosh 38 Z y; + F¢ > ,
=1

i=1 ¢

where o = C/K. The saddle-point equations, obtained by varying Eq. (3.30) with respect to the

_|_

probability distributions, provide a closed set of relations between 7(z) and 7(y)

C—1 Cc—-1
m(z) = / lH dy; %(yl)] <5 z— Y y;—F¢ > (3.31)
=1 =1

€
K—1 1 K-1
7ly) = / lH dz; W($l)] <6 y — —atanh | tanh 8J H tanh Bz ; > .
=1 B j=1 ;
Later we will show that this self-consistent pair of equations can be seen as a mean field version for
the probability propagation decoding.
Using the RS ansatz one can find that the local field distribution is (see Appendix A.3) :

c c
P(h) = / lH dyi %(y,)] <5 h=> y;—F¢ > , (3.32)
=1 Jj=1 ¢
where 7(y) is given by the saddle-point equations (3.31).

The overlap (3.7) can then be calculated using:

p= /dh sign(h) P(h). (3.33)

The code performance can be assessed by assuming a particular prior distribution for the message
bits, solving the saddle-point equations (3.31) numerically and then computing the overlap.

The replica symmetric solution is expected to be stable at the Nishimori temperature Sy as is
shown for K = 2 in [NS00].

Instabilities in the solution within the space of symmetric replicas can be probed looking at sec-
ond functional derivatives at the extremum defining the free-energy (3.30). The simplest necessary

condition for stability is having non-negative second functional derivatives in relation to m(z) (and

7(y)) :

1 K—2 K-2
3 / [H dx; 7r($l)] <1n 1+ tanh8J tanh®Bz [ tanh Sz, > >0, (3.34)
=1

Jj=1 J
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for all z. The replica symmetric solution is expected to be unstable for sufficiently low temperatures
(large B). For high temperatures we can expand the above expression around small 8 values to find

the stability condition:
(Niz)E2>0 (3.35)

The average (z), = [dzn(z)z vanishes in the paramagnetic phase and is positive (non-zero when
K is even) in the ferromagnetic phase, satisfying the stability condition. This result is still generally
inconclusive, but provides some evidence that can be examined numerically. In Section 3.4.5 we will
test the stability of our solutions using condition (3.34).

In the next sections we restrict our study to the unbiased case (F' = 0), which is of practical

relevance, since it is always possible to compress a biased message to an unbiased one.

3.4.3 Case K — 0, C =aK

For this case we can obtain solutions to the saddle-point equations at arbitrary temperatures. The

first saddle-point equation (3.31) can be approximated by:

o= > u~ (=)= (€ -1 [dyyFe). (3.36)
=1
It means that if (y)7z = 0 (paramagnetic phase) then 7(z) must be concentrated at z = 0 implying

that m(z) = §(z) and 7(y) = d(y) are the only possible solutions. Moreover, Eq.(3.36) implies that in
the ferromagnetic phase one can expect z ~ O(K).
Using Eq.(3.36) and the second saddle-point equation (3.31) one can find a self-consistent equation
for the mean field (y)z:
_/1 K-1
W)z = ( 5 atanh [tanh(,BJ) [tanh(B(C — 1){y)#)] ] . (3.37)
J
For the BSC the above average is over the distribution (3.22). Computing the average, using C = aK
and rescaling the temperature 8 = S(InK) /K, we obtain in the limit K — oo:

(v)s = (1~ 29) [tanh(afy)s n(K))] ", (3.39)

where p is the channel flip probability. The mean field (y)7 = 0 is always a solution to this equation
(paramagnetic solution); at B, = In(K)/(2aK (1 — 2p)) an extra non-trivial ferromagnetic solution
emerges with (y)z = 1 — 2p. As the connection with the overlap p is given by Eqgs. (3.32) and (3.33);
it is not difficult to see that it implies that p = 1 for the ferromagnetic solution. It is remarkable
that the temperature were the ferromagnetic solution emerges is 8. ~ O(In(K)/K); it means that
in a simulated annealing process paramagnetic-ferromagnetic barriers emerge at high temperatures,
implying metastability and, consequently, a very slow convergence. It seems to advocate the use of
small K values in practical applications. This case is analysed in Section 3.4.6. For 8 > (. both

paramagnetic and ferromagnetic solutions exist.
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The ferromagnetic free-energy can be obtained from Eq.(3.30) using Eq.(3.36), resulting in fprrro =
—a(1 — 2p). The corresponding entropy is sprrro = 0. The paramagnetic free-energy is obtained by

plugging 7(z) = §(z) and 7(y) = §(y) into Equation (3.30):

fPaRa = —%(a In(cosh B) + 1n 2), (3-39)

spara = a(ln(cosh 8) — 3 tanh 3) + In 2. (3.40)

Paramagnetic solutions are unphysical for o > (In 2)/ [ tanh 8 — In (cosh ()], since the correspond-
ing entropy is negative. To complete the picture of the phase diagram we have to introduce a replica

symmetry breaking scenario that yields sensible physics.

3.4.4 Replica symmetry breaking: the frozen spins scenario

We have seen in Section 3.4.3 that the replica symmetric paramagnetic solution for K — oo is
unphysical for & > (In 2)/[8 tanh 8 — In (cosh §)]. In order to construct a solution with non-negative
entropy one has to break the replica symmetry. In general, it is a difficult task to implement a
symmetry breaking scheme in finite connectivity systems (see [Mon98b]). Here we choose as a first
candidate a very simple one-step replica symmetry breaking scheme that yields exact results for the
REM [GM84, Par80].

This simple one-step replica symmetry breaking solution is known as the frozen spins solution. The
idea consists in assuming that the ergodicity breaks in such a way that the space of configurations
is divided in n/m islands. Inside each of these islands there are m identical configurations, implying
that the system can freeze in any of n/m microstates. Therefore, in the space of replicas we have the
following situation:

N

1

N Z S;?‘Sf = 1, if o and 3 are in the same island
Jj=1

N

1

N ZS;-”S? g , otherwise. (3.41)
=1

By assuming the above structure the replicated partition function has the form:

(ZRsBlags = <Tr{s;}eXP (-ﬂ > o H(S® ))>
a=1 A, J¢

n/m
= <TT{SJ1,,...,S;/M}9XP —pm Z,H(Sa) >

o=l A€

n/m
< H Tr{s}x}exp (=Bm H(S= ))>
@ A,J,§

(ZrE™ a7, (3.42)

where in the first step we have used the ansatz with n/m islands with m identical configurations in

each and in the last step we have used that the overlap between any two different islands is ¢. From
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(3.42) we have:

0
(In Zrse(B))ae,s = n (ZRs(B))Ag,
n=0

= %(ln Zrs(Bm))ae,s- (3.43)

The number of configurations per island m must extremise the free-energy, therefore, we have:

0
%ﬂn Zrs(0))ae,g =0, (3.44)
what is equivalent to
sus(l) = <7 22 [ (n Zns(B)
RS = P 33 = RS Ag,J
! 0B 5-p, L5 ¢
Y (3.45)

where we introduced 8 = 8 m. In this way m = Bg/B, with B, being a root of the replica symmetric

paramagnetic entropy (3.39), satisfying:
a(In(cosh B,) — B, tanh 3,) +In 2 =0 (3.46)
The RSB-spin glass free-energy is given by fpara (3.39) at temperature [3,:
frsB.sg = _ﬂl_g (o ln(cosh B4) +1n 2), (3.47)

consequently the entropy is sgsp.se¢ = 0. In Fig.3.3 we show the phase diagram for a given code rate

R in the temperature T versus noise level p plane.

3.4.5 Shannon’s bound

The channel coding theorem asserts that up to a critical code rate R., which equals the channel
capacity (Shannon’s bound), it is possible to recover information with arbitrarily small probability of
error. For the BSC :

1
Re = —=1+plog p+ (1 —p)log, (1 —p). (3.48)

c

The code of Sourlas, in the case where K — oo and C ~ O(N¥) can be mapped onto the REM and
has been shown to be capable of saturating channel capacity in the limit R — 0 [Sou89]. In this section
we extend the analysis to show that Shannon’s bound can be attained by the Sourlas code at zero
temperature also for K — oo but with connectivity C = aK. In this limit the model is analogous to
the diluted REM analysed by Saakian in [Saa98]. The errorless phase is manifested in a ferromagnetic
phase with total alignment (p = 1) (condition that is only possible for infinite K, see Section 3.2) up
to a certain critical noise level; a further noise level increase produces ergodicity breaking leading to a
spin glass phase where the misalignment is maximal (p = 0). The ferromagnetic-spin glass transition

corresponds to the transition from errorless decoding to decoding with errors described by the channel
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Figure 3.3: Phase diagram in the plane temperature T versus noise level p for K — oo and C = aK,
with & = 4. The dotted line indicates the Nishimori temperature T . Full lines represent coexistence.
The critical noise level is p.. The necessary condition for stability in the ferromagnetic phase is satisfied
above the dashed line.

coding theorem. A paramagnetic phase is also present when the transmitted information is insufficient
to recover the original message (R > 1).

At zero temperature saddle-point equations (3.31) can be rewritten as:

Cc-1 c-1
(@) = / [H dy, %(yl)] 5le-Yu (3.49)
=1 j=1
K-1 K-1
i) = [ [H dz, w(wl)] <6 [y—signuﬂwz)min(|J|,---,|xK_1 |)]> ,
=1 =1 7

The solutions for these saddle-point equations may, in general, result in probability distributions
with singular and regular parts. As a first approximation we choose the simplest self-consistent family

of solutions which are, since J = %1, given by:

7(y) = p+o(y—1)+pod(y) +p-o(y+1) (3.50)
Cc-1
7T($) = T[pi,po;cfll(l) 6($ - l)7
=1-C
with
1
c—1)! .
Tips pop_so-1) = D 7;! 7 nz! P4 p6 P, (3.51)
{k,h,m}

where the prime indicates that &, h, m are such that k —h =1; K+ h+m = C — 1. Evidence for this
simple ansatz comes from Monte-Carlo integration of Eq. (3.31) at very low temperatures, that shows

solutions comprising three dominant peaks and a relatively weak regular part. Having employed a
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Figure 3.4: Histogram representing the mean field distribution 7(y) obtained by Monte-Carlo inte-
gration at low temperature (3 = 10, K = 3, C = 6 and p = 0.1). Dotted lines represent solutions
obtained by iterating self-consistent equations both with five peak and three peak ansitze. Inset:
detailed view of the weak regular part arising in the Monte-Carlo integration.

more complex singular solution inside the ferromagnetic and the paramagnetic phases, comprising five
peaks T(y) = py20(y — 1) + p+6(y — 0.5) + pod(y) + p—d(y + 0.5) + p_26(y + 1); we have observed
that it collapses back to the simpler three peak solution. In Fig.3.4 we show a typical result of a
Monte-Carlo integration for the field 7(y). The two peaks that emerge by using either the three peak
ansatz or the five peak ansatz are shown as dotted lines. In the inset we show the weak regular part
of the Monte-Carlo solution.

Plugging the ansatz (3.50) in the saddle-point equations one can write a closed set of equations in
p+ and pg that can be solved numerically (see Appendix A.4 for details).

The three peaks solution can be of three types: ferromagnetic (p+ > p_), paramagnetic (pg = 1)
and replica symmetric spin glass (p— = py). Computing free-energies and entropies enables one to
construct the phase diagram. At zero temperature the paramagnetic free-energy is fpara = —a and
the entropy is spara = (1 — @) In 2, this phase is physical only for a < 1, what is expected since it
corresponds exactly to the regime where the transmitted information is not sufficient to recover the
actual message (R > 1).

The ferromagnetic free-energy does not depend on the temperature, having the form frrrro =
—a(1 — 2p) with entropy srerro = 0. We can find the ferromagnetic-spin glass coexistence line that
corresponds to the maximum performance of a Sourlas code by equating Eq. (3.47) and frerro-
Observing that 8, = OBn(p:) (as seen in Fig. 3.3) we find that this transition coincides with the
channel capacity (3.48). It is interesting to note that in the large K regime both RS-ferromagnetic

and RSB-spin glass free-energies (for T < T,) do not depend on the temperature, it means that
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Figure 3.5: Phase diagram in the plane code rate R versus noise level p for K — oo and C' = aK at
zero temperature. The ferromagnetic-spin glass coexistence line corresponds to the Shannon bound.

Shannon’s bound is valid also for finite temperatures up to 7. In Fig. 3.5 we give the complete zero
temperature phase diagram.
The stability of replica symmetric ferromagnetic and paramagnetic solutions used to obtain Shan-

non’s bound can be checked using Eq.(3.34) at zero temperature:

K-2 K-2
ﬁli_}n;o % / LHl dx; 7r(xl)‘| <ln 1+ tanh 8J tanh? Bz J];[l tanh Bz; > >0, (3.52)

J
for all z.

For the paramagnetic solutions the above integral vanishes, trivially satisfying the condition, while

for the ferromagnetic solution in the large K regime, z; ~ O(K) and the integral becomes
—2p[(1-0©(z+1)+|z|(O(z+1)—O(z—1)) + O (z — 1)], (3.53)

where ©(z) = 1 for z > 0 and 0 otherwise, indicating instability for p > 0. For the noiseless case p = 0
the stability condition is satisfied. The instability of the ferromagnetic phase opens the possibility
that the code of Sourlas does not saturate Shannon’s bound, since a correction to the ferromagnetic
solution could change the ferromagnetic-spin glass transition line. However, it was shown in Sec. 3.4.2
that this instability vanishes for large temperatures, what supports the ferromagnetic-spin glass line
obtained and the saturation of Shannon’s bound in some region.

For finite temperatures the stability condition for the ferromagnetic solution can be rewritten as:
(1 + tanh(8)tanh?(Bz)) " * (1 — tanh(8)tanh?(8z))” > 1 Va. (3.54)

For p = 0 the condition is clearly satisfied. For finite p a critical temperature above which the stability

condition is fulfilled can be found numerically. In Fig. 3.3 we show this temperature in the phase
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Figure 3.6: Top: zero temperature overlap p as a function of the noise level p for various K values
at code rate R = 1/2, as obtained by the iterative method. Bottom: RS-ferromagnetic free-energies
(white circles for K = 2 and from the left: K = 3,4,5 and 6) and RSB-spin glass free-energy (dotted
line) as functions of the noise level p. The arrow indicates the region where the RSB-spin glass phase
starts to dominate. Inset: a detailed view of the RS-RSB transition region.

diagram; one can see that there is a considerable region in which our result that Sourlas code can

saturate Shannon’s bound is supported.

3.4.6 Finite K case

Although the Shannon’s bound only can be attained in the limit K — 0o, it was shown in Section 3.4.3
that there are some possible drawbacks, mainly in the decoding of messages encoded by large K codes,
due to large barriers which are expected to occur between the paramagnetic and ferromagnetic phases.
In this section we consider the finite K case, for which we can solve the RS saddle-point equations
(3.31) for arbitrary temperatures using Monte-Carlo integration. We can also obtain solutions for the
zero temperature case using the simple iterative method described in Section 3.4.5.

It has been shown that K > 2 extensively connected models [GM84] exhibit Parisi-type order
functions with similar discontinuous structure as found in the K — oo case; it was also shown that
the one-step RSB frozen spins solution, employed to describe the spin glass phase, is locally stable
within the complete replica space and zero field (unbiased messages case) at all temperatures. We,
therefore, assume that the ferromagnetic-spin glass transition for K > 2 is described by the frozen
spins RSB solution.

At the top of Fig.3.6 we show the zero temperature overlap p as a function of the noise level p at
code rate R = 1/2. These curves were obtained by using the three peak ansatz of the Section 3.4.5.

Note that the RSB spin glass phase dominates for p > p. (see bottom of Fig.3.6). In the bottom figure
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we plot RS free-energies and RSB frozen spins free-energy, from which we determine the noise level p,
for coexistence of ferromagnetic and spin-glass phases (pointed by an arrow). Above the transition, the
system enters in a paramagnetic or RS spin glass phase with free-energies for K = 3,4,5 and 6 that are
lower than the RSB spin glass free-energy; nevertheless, the entropy is negative and these free-energies
are therefore unphysical. It is remarkable that the coexistence value does not change significantly for
finite K in comparison to infinite K. Observe that Shannon’s bound cannot be attained for finite K,
since p = 1 (pe — 0) only if K — oo (Section 3.2).

It is known that the K = 2 model with extensive connectivity (SK) requires a full Parisi solution
to recover the concavity of the free energy [MPV87]. No stable solution is known for the inten-
sively connected model (Viana-Bray model). We will see that probability propagation only solves
the decoding problem approximately, the approximated solutions happen do be the same obtained by
supposing replica symmetry. Thus, we measure the theoretical relevance of the RS results for K = 2

by comparison with simulations of probability propagation decoding.

3.4.7 (Gaussian noise

Using the replica symmetric free-energy (3.30) and the frozen spins RSB free-energy (3.47) one can
easily extend the analysis to other noise types. The general paramagnetic free-energy and entropy

can be written:

feara = —— (a(ln(cosh 8J))s +1In 2)

— Q| =

spara = a ({In(cosh B8J)); — B(J tanh (8J))s) + In 2. (3.55)

The spin glass-RSB free-energy is given by :
1
fsG-RsB = 5 (o (In (cosh B,J)); +1n 2), (3.56)

g

with B, defined as the solution of
a ((In (cosh B4J)) s — By(J tanh (8yJ))s) +1In 2 =0. (3.57)
The ferromagnetic free-energy is in general given by (see Appendix A.5)
frErRRO = —a (J); = —a (J tanh (BN J))- (3.58)
The maximum performance of the code is defined by the coexistence line :
a ((In(cosh ByJ)) s — By{J tanh(BnJ))s) +1n 2 =0, (3.59)

obtained by equating free-energies in the RSB spin glass and ferromagnetic phases. Comparing this
expression with entropy (3.57) it can be seen that §, = Sn at the coexistence line; the same behaviour
observed in the BSC case. From Eq. (3.59) one can write:

1 (log, cosh(BJ)) s , (3.60)

0
R, =4 —
9 B=Bn
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Figure 3.7: Critical code rate R, and channel capacity for a binary Gaussian channel as a function of
the signal to noise rate S/N (solid line). The code of Sourlas saturates Shannon’s bound. Channel
capacity of the unconstrained Gaussian channel (dashed line).

that can be used to compute the performance of the code for arbitrary symmetric noise.

Supposing that the encoded bits can acquire totally unconstrained values Shannon’s bound for
Gaussian noise is given by R, = 1 log,(1 + S/N), where S/N is the signal to noise ratio, defined as
the ratio of source energy per bit (squared amplitude) divided by the spectral density of the noise
(variance). However, if one constrains the encoded bits to binary values {1} the capacity of a

Gaussian channel becomes:
R, = /dJ P(J|1) log,P(J|1)— /dJ P(J) log, P(J), (3.61)

J_JO 2
\/ﬁ exp(—( 202) )

In Fig. 3.7 we show the performance of Sourlas code in a Gaussian channel together with the

where P(J | J°) =

capacities of the unconstrained and binary Gaussian channels. We show that K — oo, C = aK
Sourlas’ code saturates Shannon’s bound for the binary Gaussian channel as well. The significantly
lower performance with respect to the unconstrained Gaussian channel is due to the binary coding

scheme while signal and noise are allowed to acquire real values.

3.5 Decoding with probability propagation

3.5.1 Probability propagation and statistical physics

The probability propagation algorithm was shown in [Mac99] to outperform other methods such

as simulated annealing in decoding tasks. In [KS98] it was proposed that this framework can be
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reinterpreted using statistical physics.

The decoding task consists in the evaluation of estimates of the kind EJ = sign(S;) p(s;|s)- The
marginal posterior P(S; | J) = 3 g, ;.; P(S | J) can in principle be calculated simply by using Bayes
theorem and a proper model for the encoding and corruption processes (namely, coding by a sparse

generator matrix with K bits long parity-checks and a memoryless BSC channel) to write:

N
PS;19) = pizy 22 11 PUtisveiny S~ Sic) [T P(S0), (362)

S;,l;é j checks

where P(J) is a normalisation dependent on J only. A brute force evaluation of the above marginal
on a space of binary vectors § € {£1}" with M checks would take (M + N + 1)2V operations what
becomes infeasible very quickly. As an illustration of how dramatically the computational requirements
increase, assume a code with rate R = 1/2, if N = 10 the number of operations required is 31744, if
one increases the message size to N = 1000, 3 x 103%* operations are required! Monte-Carlo sampling
is an alternative to brute force evaluation that consists in generating a number (much less than 2%)
of typical vectors S and using this to estimate the marginal posterior, however the sample size can
prove to be equally prohibitive.

As a solution to these resource problems, one can exploit the structure of (3.62) to devise an algo-
rithm that produces an approximation to P(S; | J) in order N operations. We start by concentrating
on one particular site .S;, this site interacts directly with a number of other sites through C couplings
denoted by Ji;,...ixy and {J,} = Juy,- -, Ju(c-1)- Suppose now that we isolate only the interaction

via coupling Ji;;...; ), this particular interaction induces the following probability distribution:

P(Sj | Jiiyin)) = WP(SJ') > P(Jiiyeiny | 8558+ Sie ) [] P(Su | {7u}). (3.63)
{Siy--Sig_1} =1

Terms like P(S;, | {J,}) can be interpreted simply like updated priors for S;,. Assuming that these

terms factorise like P(S;, | {J,}) = [I1=5" P(Si, | J.()) a recursive relation can be obtained, intro-

ducing:
vi=P(Sj =z {Ju:pne M@ \v}) (3.64)
and
R, = Y P S {Si:ieLw)\i}) [ @ (3.65)
{Ssi€L(v)\j} i€L(v)\j

where M(j) is the set of couplings linked to site j and L(v) is the set of sites linked to coupling v.
Assuming factorisation properties, Eq.(3.63) can be rewritten as:
Qp; = auiP(S; = x) H Ry;. (3.66)
veM(5)\r

Equations (3.65) and (3.66) can be solved iteratively, requiring (25X KC +2C?)NT operations with
T being the (order 1) number of steps needed for convergence. These computational requirements can

be further reduced by using Markov chain Monte-Carlo methods [Mac99).
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An approximation to the marginal posterior (3.62) is obtained by counting the influence of all C
interactions over each site j and using the assumed factorisation property to write:

vEM(J)

This is an approximation in the sense that the recursion obtained from (3.63) is only guaranteed to
converge to the correct posterior if the system has a tree structure, i.e., every coupling appears only
once as one goes backwards in the recursive chain.
By taking advantage of the normalisation conditions for the distributions Q + Q; ' =1 and
R,J[jl + Rw‘l = 1 one can change variables and reduce the number of equations by a factor of two
= Qi—rjl - Q;jl and m,,; = R/Jtrjl - R;jl‘
The analogy with statistical physics can be exposed by first observing that :

P(J, | S {Sizi€ L) \j}) ~exp | BT, [ Si)- (3.68)

1€L(p)

That can be also written in the more convenient form:

P(J, | 8;,{Si 1 € L)\ j}) ~ %cosh(ﬂJH) 1+ tanh(87,) [ 8- (3.69)

JEL(p)

Plugging Eq. (3.69) for the likelihood in equations (3.66), using the fact that the prior probability
is given by P(S;) = 1 (1 + tanh(8YS;)) and computing m,,; and 7, (see appendix A.6):

fflw- = tanh ,BJ H myi
leL(p)\]
my; = tanh Z atanh(fﬁ,,j)+ﬂ§v . (3'70)
veEM(D)\p

The pseudo-posterior can then be calculated:

m; = tanh Z atanh(m,;) + By | » (3.71)

veM(l)

providing Bayes optimal decoding E, = sign(m;).
Equations (3.70) depend on the particular received message J. In order to make the analysis

message independent, one can use a gauge transformation m,; — &§;m,; and m,; — &m,; to write:

myu; = tanh(8J) H mu
leL(p)\

tanh Z tanh ™ (M,,;) + BrE; | - (3.72)
veM(D)\p

Myj

In this form, a success in the decoding process correspond to m,; > 0 and m,; = 1 for all 4 and
j. For a large number of iterations, one can expect the ensemble of probability networks to converge

to an equilibrium distribution where m and m are random variables sampled from distributions a(y)
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Figure 3.8: Overlap as a function of the flip probability p for decoding using TAP equations for
K = 2. From the bottom: Monte-Carlo solution of the RS saddle-point equations for unbiased
messages (p¢ = 0.5) at T = 0.26 (line) and 10 independent runs of TAP decoding for each flip
probability (plus signs), T = 0.26 and biased messages (p¢ = 0.1) at the Nishimori temperature T .

and ¢(z) respectively. By transforming these variables as m = tanh(8y) and m = tanh(8z) and

considering the actual message and noise as quenched disorder, Egs. (3.72) can be rewritten as:

<@
I

K-
%<tanh_1 tanh(8J) H tanh(Bz;) >

J

Cc-1
r = <Zyj+gF>. (3.73)
j=1 ¢

The above relations lead to a dynamics on the distributions g(y) and ¢(z), that is exactly the same
obtained when solving iteratively RS saddle-point equations (3.31). The probability distributions a(y)
and ¢(z) can be ,therefore, identified with 7(y) and 7(z) respectively and the RS solutions correspond
to decoding a generic message using probability propagation averaged over an ensemble of different
codes, noise and signals.

Equations (3.70) are now used to show the agreement between the simulated decoding and ana-
lytical calculations. For each run, a fixed code is used to generate 20000 bit codewords from 10000
bit messages, corrupted versions of the codewords are then decoded using (3.70). Numerical solutions
for 10 individual runs are presented in Figs. 3.8 and 3.9, initial conditions are chosen as M, = 0
and my; = tanh(BY) reflecting the prior beliefs. In Fig. 3.8 we show results for K = 2 and C = 4
in the unbiased case, at code rate R = 1/2 (prior probability P(S; = +1) = p¢ = 0.5) and low
temperature T = 0.26 (we avoided T = 0 due to numerical difficulties). Solving the saddle-point

equations (3.31) numerically using Monte-Carlo integration methods we obtain solutions with good
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Figure 3.9: Overlap as a function of the flip probability p for decoding using TAP equations for K = 5.
The dotted line is the replica symmetric saddle-point equations Monte-Carlo integration for unbiased
messages (p¢ = 0.5) at the Nishimori temperature T. The bottom error bars correspond to 10
simulations using the TAP decoding. The decoding performs badly on average in this scenario. The
upper curves are for biased messages (ps = 0.1) at the Nishimori temperature T. The simulations
agree with results obtained using the replica symmetric ansatz and Monte-Carlo integration.

agreement to simulated decoding. In the same figure we show the performance for the case of biased
messages (P(S; = +1) = p¢ = 0.1), at code rate R = 1/4. Also here the agreement with Monte-Carlo
integrations is rather convincing. The third curve in Fig. 3.8 shows the performance for biased mes-
sages at the Nishimori temperature T, as expected, it is far superior compared to low temperature
performance and the agreement with Monte-Carlo results is even better.

In Fig.3.9 we show the results obtained for K = 5 and C' = 10. For unbiased messages the system
is extremely sensitive to the choice of initial conditions and does not perform well in average even at
the Nishimori temperature. For biased messages (p¢ = 0.1, R = 1/4) results are far better and in
agreement with Monte-Carlo integration of the RS saddle-point equations.

The experiments show that probability propagation methods may be used successfully for decod-
ing Sourlas-type codes in practice, and provide solutions that are consistent with the RS analytical

solutions.

3.5.2 Basin of attraction

To assess the size of the basin of attraction we consider the decoding process as a dynamics with m,;
as dynamical variables. In gauged transformed equations (3.72) , the perfect decoding of a message
correspond to my,; =1 . To analyse the basin of attraction we start with random initial values with

a given normalised deviation from the perfect decoding A =1 — 55 > w1 = moms ).
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Figure 3.10: Maximum initial deviation A for decoding. Top: A as function of the number of interac-
tions K. Circles are averages over 10 different codes with N = 300, R = 1/3 and noise level p = 0.1.
Symbol sizes are larger than the error bars. Bottom: A as function of the connectivity C. Circles are
averages over 10 codes with N = 300, K = 3 and noise level p = 0.1. Lines and x’s correspond to the
RS dynamics described by the saddle-point equations.

In Fig. 3.10 we show the maximal deviation in initial conditions required for successful decoding.
The top figure shows an average over 10 different experiments with N = 300 (circles) for a fixed code
rate R = 1/3, fixed noise level p = 0.1 and increasing K. The bottom figure shows the maximal
deviation in initial conditions for a fixed number of spins per interaction K = 3, noise level p = 0.1
and increasing C. We confirm the accuracy of the RS description by comparing the experimental
results with the basin of attraction predicted by saddle-point equations (3.31). We can interpret
these equations as dynamics in the space of distributions 7(z). Performing the transformation X =
tanh(Bz), one can move to the space of distributions II(X) with support over [—1,+1]. The initial
conditions can then be described simply as II°(X) = (1 — 3)6(X — 1) + 36(X +1). In Fig. 3.10 we
show the basin of attraction of this dynamics as lines and X’s.

The K = 2 case is the only practical code from a dynamical point of view, since it has the largest
basin of attraction and no prior knowledge on the message is necessary for decoding. Nevertheless,
the code performance degrades faster than the K > 2 case as shown in Section 3.4, which points to a
compromise between good dynamical properties on the one hand and good performance on the other.
One idea could be having a code with changing K, starting with K = 2 to guarantee convergence and
progressively increasing its values to improve the performance [KS99b].

On the other hand, the basin of attraction increases with C'. Again it points to a trade off between
good equilibrium properties (small C' and large code rates) and good dynamical properties (large C,

large basin of attraction). Mixing small and large C values in the same code seems to be a way to
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take advantage of this trade-off [LMSS98, MWD99, VSK00c].

3.6 Conclusion

In this chapter we studied, using the replica approach, a finite connectivity many-body spin glass
that corresponds to the code of Sourlas for finite code rates. We have shown, using a simplified one
step RSB solution for spin glass phase, that for K — oo and C = aK regime at low temperatures
the system exhibits a ferromagnetic-spin glass phase transition that corresponds to Shannon’s bound.
However, we have also shown that the decoding problem for large K has poor convergence properties
when simulated annealing methods are used.

We were able to find replica symmetric solutions for finite K and found good agreement with
practical decoding performance using probability propagation. Moreover, we have shown that the RS
saddle-point equations describe the typical behaviour of probability propagation algorithms.

We studied the dynamical properties of probability propagation and compared to statistical physics
predictions, confirming the validity of the description. The basin of attraction was shown to depend

on K and C. Strategies for improving the performance were briefly mentioned.
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Chapter 4

Gallager Codes

In this chapter we provide a statistical physics treatment for the encoding/decoding scheme proposed
by Gallager. In this scheme the generator of the encoding process is a dense matriz while the decoding
matriz is sparse. The code is mapped onto a K -bodies interaction spin system and the typical perfor-
mance is obtained by using the replica method. A phase transition between the decoding success and
failure phases is found to coincide with the information-theoretic upper bound. Channel capacity is
shown to be attainable in the K — oo limit. A solution is also provided by mapping the problem onto
o Husimi cactus, obtaining results that, in the thermodynamic limit, recover the replica symmetric
results and provide a very good approximation for finite systems of moderate size. The probability
propagation decoding algorithm emerges naturally from the analysis and its performance can be pre-
dicted by studying the free-energy landscape. A simple technique is introduced to provide upper bounds
for the practical performance. Part of the content in this chapter appeared in [VSK00a, VSK00b].

4.1 Introduction

In 1962 Gallager [Gal62] proposed a coding scheme which involves sparse linear transformations of
binary messages in the decoding stage, while encoding uses a dense matrix. His proposal was over-
shadowed soon after by the emergency of convolutional codes due to computational limitations of the
time. In fact, the best computer available to Gallager in 1962 was an IBM 7090, the first transistorised
computer, costing US$ 3 million and with only 1 Megabyte of disc! Convolutional codes only needed
a simple system of shift registers to process one byte at a time.

Recently, Gallager codes have been rediscovered by MacKay and Neal that proposed a closely
related code [MN95] to be discussed in Chapter 5. Curiously, this almost coincided with the break-
through discovery of the high performance Turbo codes [BGT93]. Variations of Gallager codes have
displayed performance comparable (and sometimes superior) to Turbo codes [Dav98, Dav99], qualify-
ing them as state-of-the-art codes.

In Chapter 3 we have used statistical physics for discussing simple error-correcting codes based on
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binary sparse generator matrices first introduced by Sourlas [Sou89]. In the limit of infinite number
of nonzero elements in each row of the generator matrix the codes of Sourlas are equivalent to the
Random Energy Model [Der81b, Saa98, DW99] and can be thought of as an ideal code capable of
saturating Shannon’s bound at vanishing code rates. In Chapter 3 we showed that they are ideal
codes at finite code rates as well [KS99a, VSK99).

In this chapter we analyse the performance of Gallager error-correcting codes first by using a replica
calculation and then by using a generalisation of a Bethe lattice known as Husimi cactus [RK92]. We
show that both methods lead to the same results for the typical performance, yielding the threshold
noise level that corresponds to the phase transition between perfect decoding and decoding failure
phases, this appears to coincide with existing information-theoretic upper bounds.

We also show that the probability propagation (PP) decoding algorithm emerges naturally from the
treatment based on a Husimi cactus, allowing for the analysis of the practical performance employing
PP decoding. We connect this practical performance to the emergence of metastable states in the
replica symmetric free-energy landscape.

We concentrate on analising a simple communication model whereby messages are represented by
binary vectors and are communicated through a Binary Symmetric Channel (BSC) where uncorrelated
bit flips appear with probability p. The extension to different channel models is not expected to be
difficult as was shown in Section 3.4.7 for a Gaussian channel.

This chapter is organised as follows: Section 4.2 describes the code of Gallager. An upper bound
based on information theoretic considerations is discussed in Section 4.3. Section 4.4 presents the
statistical physics formulation for Gallager codes. The replica theory is discussed in Section 4.5.
Section 4.6 provides an alternative derivation for the probability propagation decoding algorithm
based on a tree-like (or cactus-like) approximation for the lattice. In Section 4.7 we introduce a simple
method for estimating the practical performance based on the statistical physics picture. Conclusions

are given in Section 4.8. Appendices with technical details are also provided.

4.2 The code of Gallager

A Gallager code is defined by a binary matrix A = [C7 | C2], concatenating two very sparse matrices
known to both sender and receiver, with C2 (of dimensionality (M — N) x (M — N)) being invertible
and C1 of dimensionality (M — N) x N. A non-systematic Gallager code is defined by a random
matrix A of dimensionality (M — N) x M. This matrix can, in general, be organised in a systematic
form by eliminating a number € ~ O(1) of rows and columns.

Encoding refers to the generation of an M dimensional binary vector ¢ € {0,1}* (M > N) from

the original message € € {0,1}" by
t = GT¢ (mod 2), (4.1)

where all operations are performed in the field {0,1} and are indicated by (mod 2). The generator
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matrix is
G=[I|C;'Ci] (mod 2), (4.2)

where I is the N x N identity matrix, implying that AGT (mod 2) = 0 and that the first N bits of ¢
are set to the message £. Note that the generator matrix is dense and each transmitted parity-check
carries information about an O(N) number of message bits. In regular Gallager codes the number of
non-zero elements in each row of A is chosen to be exactly K. The number of elements per column is
then C' = (1 — R)K, where the code rate is R = N/M (for unbiased messages). The encoded vector
t is then corrupted by noise represented by the vector ¢ € {0,1}™ with components independently
drawn from P({) = (1 — p)d(¢) + pd(¢ — 1). The received vector takes the form

r=GT¢ + ¢ (mod 2). (4.3)

Decoding is carried out by multiplying the received message by the matrix A to produce the

syndrome vector
z = Ar = A¢ (mod 2), (4.4)

from which an estimate T for the noise vector can be produced. An estimate for the original message
is then obtained as the first N bits of » + 7 (mod 2). The Bayes optimal estimator (also known
as marginal posterior mazimiser, MPM) for the noise is defined as 7; = argmax, P(7; | z). The
performance of this estimator can be measured by the bit error probability p, = 1—-1/M Zj\il 8755 Gl
where §[;] is the Kronecker delta. Knowing the matrices C2 and C1, the syndrome vector z and the

noise level p it is possible to apply Bayes theorem and compute the posterior probability
1
P(r|2)= ZX [z = AT (mod 2)] P(T), (4.5)

where x[X] is an indicator function providing 1 if X is true and 0 otherwise. To compute the MPM one
has to compute the marginal posterior P(7; | z) = >, .; P(7 | ), which in general requires 02M)
operations, thus becoming impractical for long messages. To solve this problem we can take advantage
of the sparseness of A and use probability propagation for decoding, requiring O(M) operations to

perform the same task.

4.3 Upper bound on achievable rates

It was pointed by MacKay in [Mac99] that an upper bound for rates achievable for Gallager codes can
be found by an information theoretic argument. This upper bound is based on the fact that each bit
of the syndrome vector z = A¢{(mod 2) is a sum of K noise bits independently drawn from a bimodal
delta distribution P({) with P({ =0) =1 — p. The probability of z; = 1 is p}(K) = + — (1 — 2p)¥
(see Appendix C.1 for details). Therefore, the maximal information content in the syndrome vector

is (M — N)Hz(pL(K)) (in bits or shannons), where Ho(z) is the binary entropy. In the decoding
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Figure 4.1: (a) Bounds for the rate R as a function of the noise level p for several values of K. From
bottom to top: K = 2 to 10,20 and Shannon limit. (b) Bounds for several values of C. From bottom
to top C = 2,3,4,5 and Shannon limit.

process one has to extract information from the syndrome vector in order to reconstruct a noise
vector ¢ which has an information content of M Hs(p). It clearly means that a necessary condition

for successful decoding is:

(M — N)H(py(K)) > MHx(p)
(1- R)Hy(pL(K)) > Ha(p)
H,(p)

In Fig. 4.1a we plot this bound by fixing K and finding the minimum value for C such that R =
1 — C/K verifies (4.6). Observe that as K — oo, p}(K) — 1/2 and R < 1 — Hy(p) that corresponds
to Shannon limit.

In Fig. 4.1b we plot the bound by fixing C' and finding the maximum K such that R =1—- C/K
verifies (4.6), recovering the curves presented in [Mac99]. Note that K — oo implies C' — oo and
vice-versa. Gallager codes only can attain the Shannon limit asymptotically in the limit of large K

or, equivalently, large C.

4.4 Statistical physics formulation

The connection to statistical physics becomes clear when the field {0, 1} is replaced by Ising spins {1}
and mod 2 sums by products [Sou89]. The syndrome vector acquires the form of a multi-spin coupling
Ty = HjeL(u) ¢j where j=1,--- ,M and p=1,---,(M — N). The K indices of nonzero elements in
the row p of A are given by £L(u) = {j1, - ,jk }, and in a column [ are given by M(l) = {u1,--- , uc}-
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The following family of posterior probabilities can be introduced:

1
By(r|T) = Zexp[-BHy (3 T)] (4.7)
M—-N M
Ho(rsT) = =y > (T I m-1]-FY 7.
w=1 JEL(1) J=1

The Hamiltonian depends on hyper-parameters v and F'. For optimal decoding, v and F' have to be
set to specific values that best represent how the encoding process and corruption were performed
(Nishimori condition [Iba99]). Therefore, v must be taken to infinity to reflect the hard constraints
in Eq. (4.5) and F = atanh(1 — 2p), reflecting the channel noise level p. The temperature 3 must
simultaneously be chosen to be the Nishimori temperature Sy = 1, that will keep the hyper-parameters
in the correct scale.

The disorder in (4.7) is trivial and can be gauged to J, — 1 by using 7; — 7;(;. The resulting

Hamiltonian is a multi-spin ferromagnet with finite connectivity in a random field (; F

M
HEE (75¢) = — Z II n-1)|-F> ¢m (4.8)
j=1

p=1 \jeL(p)
At the Nishimori condition y — oo the model is even simpler, corresponding to a paramagnet with

restricted configuration space on a non-uniform external field:

HE¥MEe (€ 5 () = —FZCJT,, (4.9)
where
Q={r:J, [[ n=1,p=1,---,M-N}. (4.10)
JEL(p)

The optimal decoding process simply corresponds to finding local magnetisations at the Nishimori
temperature m; = (7;)g, and calculating Bayesian estimates as 7; = sgn(m;).

In the {£1} representation the probability of bit error, acquires the form

1 1
Py = 37 a9 j;(j sgn(mj), (4.11)

connecting the code performance with the computation of local magnetisations.

4.5 Equilibrium theory

4.5.1 Replica theory

In this section we use the replica theory for analysing the typical performance of Gallager codes along
the same lines discussed in Chapter 3 for Sourlas codes. We start by rewriting the gauged Hamiltonian

(4.8) in a form more suitable for computing averages over different codes:

M
HEEE (€)= =y Y Adoire) (Ta T = 1) = F 3 Gi73, (4.12)

(61-++ix)
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where A, ...ix) € {0,1} is a random symmetric tensor with the properties:
> Ajyigy=M—-N Yo Apyeiny =C VI, (4.13)
(i1+-ix) (1,0 yij =L, ixc)
that selects M — N sets of indices (construction). The construction {A;,...;,)} and the noise vector

¢ are to be regarded as quenched disorder. As usual, the aim is to compute the free-energy:

f=-1 lim —(ln Z)ac, (4.14)

/8 M—oo M
from which the typical macroscopic (thermodynamic) behaviour can be obtained.

The partition function Z is:
Z = Trrexp (—BHE"#(T;()) . (4.15)
The replica method is based on in using

1 .. 1 0

=—— lim — —

(2" (4.16)

to evaluate the free-energy, what requires computing the averaged replicated partition function:

(2Mac = Z 11 <exp (F{ﬁZT )> < I IIexe [BrAvin) (5 — 1)]> )
¢ A

LT j=1 (i1-ix) @=1
(4.17)
The average over constructions {(---))4 takes the form:
(- Na = —ZH(S > A= —C | C0)
{A}J 1 (i1=j,d2, ,ix)
1 i iy Aty
- ATl A Kﬂ () @)
{A}] l Fiy)
The average ((---))¢ over the noise is:
(= Ne=Y (1=ps(¢—1) + pd(¢+1) (---)- (4.19)
¢(=—1,+1

By computing the averages above and introducing auxiliary variables through the identity

M
1
/dqal...am5 (qal...am — M Z Zifrqu .. .Tzf)‘m) =1 (420)
i

one finds, after using standard techniques (see Appendix B.1 for details), the following expression for

the replicated partition function:

1 qudZI\O - anda\a
z" = v —— | 4.21
(2" N ( omi al;[l omi (4.21)
ME & K n
X exp FZ Z qual---am_MZ Z Qovy i Qg - wctm
" m=0 (al---am) m=0 <a1...am>

M
X HTI‘{TQ} <exp
j=1
fmeE@aW%@wm“"ﬂ

2mi ZC+1 ’

)

a=1

X

58



CHAPTER 4. GALLAGER CODES

where T,,, = e ™87 cosh™(B7y) tanh™(Bv). Comparing this expression with that obtained for the code
of Sourlas in Eq. (A.7), one can see that the differences are the dimensionality M for Gallager codes
instead of N for Sourlas (reflecting the fact that in the former the noise vector of dimension M is the
dynamical variable) and the absence of disorder in the couplings, yielding a slightly modified definition

for the constants 7y,.

4.5.2 Replica symmetric solution

The replica symmetric ansatz consists in assuming;:

Goron, = / do 7(2) 2™ Gapoon, = / &5 #(z) 7. (4.22)

By performing the limit v — oo, plugging (4.22) into (4.21), computing the normalisation constant
N, integrating in the complex variable Z and computing the trace (see Appendix B.2) one finds:

(Z™Mac = Extrm;{exp -MC (/ dzdz w(z) 7(Z) (1 + 2Z)" — 1) (4.23)
MC [ {5 o
+ 7/Hdagj m(z;) (1+ [[2)" -1
Jj=1 7j=1
n M
c c c
x /Hdaj 7?(5,-)< P[0 +7,) + PR [[(1-7) >
j=1 j=1 7j=1 ¢
By using (4.16), one finally finds:
1 c ~ s ~
f = 3 Extr, z i7d In2 + C’/dwdw m(z) 7(Z) In(1 + z7)

K K

C C C
- /Hdaj ﬁ(ZEj)<ln S +38) + e PP J[(1-2) > : (4.24)

=1 =1
J J ¢

The extremisation above yields a pair of saddle-point equations:

K-1 K-1
#G) = / 1:[1dwj w(e;) 8 |7 - Hlxj (4.25)

3

—~~

&
Il

c-1 c-1
f 11 42 #@) <5 lx — tanh (5174 + ) atanh a,)D ,

=1 =1 ¢
where 3 = 1 (Nishimori temperature) and F = 1 In (l;p”) for optimal decoding.

Following the derivation of Appendix A.3 very closely, the typical overlap p = (7 E]Ni1 GiTi)Ac

between the estimate 7; = sgn((7;)) and the actual noise (; is given by:

p = /dh P(h) sgn(h) (4.26)

C C
/ 11 dz: #(@) <5 [h—tanh (BFC + ) atanh a,)D .
=1 ¢

=1

3
—_
=

Il
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5.0x10* T

Figure 4.2: Non-ferromagnetic solution mnrerrO(Z) for the saddle-point equations (4.25) obtained
numerically. Parameters are K = 4, C' = 3 and p = 0.20. Circles correspond to an experimental
histogram obtained by decoding with probability propagation in 100 runs with 10 different random
constructions.

4.5.3 Thermodynamic quantities and typical performance

The typical performance of a code as predicted by the replica symmetric theory can be assessed by
solving (4.25) numerically and computing the overlap p using (4.26). The numerical calculation can
be done by representing distributions 7 and 7 with histograms (we have used representations with
20000 bins), and performing Monte-Carlo integrations in an iterative fashion until a solution is found.
Overlaps can be obtained by plugging the distribution 7 that is a solution for (4.25) into (4.26).
Numerical calculations show the emergence of two solution types, the first corresponds to a totally

aligned (ferromagnetic) state with p = 1 described by:
TrErro (2) = 0]z — 1] Trerro (Z) = O[T — 1]. (4.27)

The ferromagnetic solution is the only stable solution up to a specific noise level p;. Above ps; another
stable solution with p < 1 (non-ferromagnetic) can be numerically obtained. This solution is depicted
in Fig. 4.2 for K =4, C = 3 and p = 0.20. The ferromagnetic state is always a stable solution for
(4.25) and is present for all choices of noise level or construction parameters C and K. The stability
can be verified by introducing small perturbations to the solution and observing that the solution is
recovered after a number of iterations of (4.25).

The free-energy for the ferromagnetic state at Nishimori’s temperature is simply frgrro = —F'(1—
2p). In Fig. 4.3 we show free-energies for K = 4 and R = 1/4, p. indicates the noise level where
coexistence between the ferromagnetic and non-ferromagnetic phases occurs. This coexistence noise
level coincides, within the numerical precision, with the information theoretic upper bound in Section

4.3. In Fig. 4.4 we show pictorially how the replica symmetric free-energy landscape changes with

60



CHAPTER 4. GALLAGER CODES

-1.5

_ ‘ ! ‘ ! ‘ ! ‘
2O 0.1 0.2 0.3 0.4

p

Figure 4.3: Free-energies for K = 4, C' = 3 and R = 1/4. The full line corresponds to the free-energy of
thermodynamic states. Up to p, only the ferromagnetic state is present. The ferromagnetic state then
dominates the thermodynamics up to p., where thermodynamic coexistence with non-ferromagnetic
states takes place. Dashed lines correspond to free-energies of non-dominant metastable states.

0 ) P p

Figure 4.4: Pictorial representation of the replica symmetric free-energy landscape changing with the
noise level p. Up to p, there is only one stable state F' corresponding to the ferromagnetic state with
p = 1. At ps, a second stable non-ferromagnetic state F”' emerges with p < 1, as the noise level
increases coexistence is attained at p.. Above p., F' becomes the global minimum dominating the
system thermodynamics.
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Figure 4.5: Overlapsfor K = 4, C = 3 and R = 1/4. The full line corresponds to the overlaps predicted
by thermodynamics. Up to p,; only the ferromagnetic p = 1 state is present, it then dominates the
thermodynamics up to p., where coexistence with non-ferromagnetic states takes place. Dashed lines
correspond to overlaps of non-dominant states.

the noise level p.

In Fig. 4.5 we show the overlap as a function of the noise level as obtained for K = 4 and
R = 1/4 (therefore C' = 3). Full lines indicate values corresponding to states of minimum free-energy
that are predicted thermodynamically. The general idea is that the macroscopic behaviour of the
system is dominated by the global minimum of the free-energy (thermodynamic equilibrium state).
After a sufficiently long time the system eventually visits configurations consistent with the minimum
free-energy state staying there almost all of the time. The whole dynamics is ignored and only the
stable equilibrium, in a thermodynamic sense, is taken into account. Also in Fig. 4.5 we show results
obtained by simulating probability propagation decoding (black circles). The practical decoding stays
in a meta-stable (in the thermodynamic sense) state between p,; and p. and the practical maximum
noise level corrected is actually given by ps. Returning to the pictorial representation in Fig. 4.4, the
noise level p,; that provides the practical threshold is signalled by the appearance of spinodal points in
the replica symmetric free-energy, defined as points separating (meta)stable and unstable regions in
the space of thermodynamical configurations (p). The noise level p; may, therefore, be called spinodal
noise level.

The solutions obtained must produce non-negative entropies to be physically meaningful. The

entropy can be computed from the free-energy (4.24) as s = ,82 yielding:

Bu(B) = 1) (4.28)
/H 03, 7 <FC M (145) - e“’F<HZ:1(1—5j)> |
PP T (4 8) + e PeITL, (1-35) /

where 7 is a solution for the saddle-point equations (4.25) and u(3) corresponds to the internal

»
I

u(B)
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Figure 4.6: Entropy for K = 4, C = 3 and R = 1/4. Negative values imply unphysical behaviour of
the metastable replica symmetric state between p; and p..
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Figure 4.7: Internal energy density for K = 4, C = 3 and R = 1/4 for both ferromagnetic and non-
ferromagnetic states. The equality is a consequence of using the Nishimori condition (see Appendix
B.3).
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energy density at temperature 8. For the ferromagnetic state Sgrrro = 0 what indicates that the
replica symmetric ferromagnetic solution is physical and that the number of micro-states consistent
with the ferromagnetic state is at most of polynomial order in N. The entropy of the non-ferromagnetic
state can be obtained numerically. In Fig. 4.6 we plot the entropy as a function of the noise level
for K =4, C = 3 and R = 1/4. Up to the spinodal noise level p, the entropy vanishes as only the
ferromagnetic state is stable. Above p; the entropy of the replica symmetric non-ferromagnetic state is
negative and, therefore, unphysical. At p. the entropy of the non-ferromagnetic state becomes positive.
The internal energy density obtained numerically is depicted in Fig. 4.7 being u = —F(1 — 2p) for
both ferromagnetic and non-ferromagnetic states, what can be justified by assuming the Nishimori
condition v — o0, # =1 and F = atanh(1 — 2p) [Iba99] (see Appendix B.3).

The unphysical behaviour of the non-ferromagnetic solution between p; and p. indicates that
the replica symmetric ansatz does not provide the correct physical description for the system. The
construction of a complete one-step replica symmetry breaking theory turns out to be a difficult task
in the family of models we focus on here [WS88, Mon98b, Mon98a]. An alternative is to consider a
frozen spins solution as discussed in Section 3.4.4 for Sourlas codes. In this case the entropy in the
interval ps < p < p. is corrected to sgsg = 0 and the free-energy and internal energy are frozen to the
values at pc.

Any candidate to a physical description for the system would have to be compared with simulations
to be validated. Nevertheless, our aim here is predicting the behaviour of a particular decoding
algorithm, namely, probability propagation. In the next section we will show that, to this end, the

replica symmetric theory will be sufficient.

4.6 Code on a cactus

In this section we present a statistical physics treatment of Gallager codes by employing a mean-field
approximation based on the use of a generalised tree structure (Bethe lattice [WS87b]) known as
Husimi cactus that is exactly solvable [Guj95, BL82, RK92, Gol91].

There are many different ways of building mean-field theories. One can make a perturbative
expansion around a tractable model [Ple82, Tan00] or assume a tractable structure and variationally
determine the model parameters [SJ98]. In the approximation we employ, the tractable structure is
tree-like and the couplings 7, are just assumed to be those of a model with cycles. In this framework
the probability propagation decoding algorithm (PP) emerges naturally providing an alternative view
to the relationship between PP decoding and mean-field approximations already observed in [KS98].
Moreover, this approach has the advantage of being slightly more controlled and easier to understand

than replica calculations.
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Tk

Figure 4.8: First step in the construction of Husimi cactus with K = 3 and connectivity C = 4.

4.6.1 The Husimi cactus

A Husimi cactus with connectivity C is generated starting with a polygon of K vertices with one
Ising spin in each vertex (generation 0). All spins in a polygon interact through a single coupling 7,
and one of them is called the base spin. In Fig. 4.8 we show the first step in the construction of a
Husimi cactus, in a generic step the base spins of the (C — 1)(K — 1) polygons in generation n — 1
are attached to K — 1 vertices of a polygon in the next generation n. This process is iterated until
a maximum generation npmax is reached, the graph is then completed by attaching C' uncorrelated
branches of nmax generations at their base spins. In this way each spin inside the graph is connected
to C polygons exactly. The local magnetisation at the centre m; can be obtained by fixing boundary
(initial) conditions in the 0-th generation and iterating the related recursion equations until generation
nmax i reached. Carrying out the calculation in the thermodynamic limit corresponds to having
Nmax ~ In M generations and M — .

The Hamiltonian of the model has the form (4.7) where £(u) denotes the polygon u of the lattice.
Due to the tree-like structure, local quantities far from the boundary can be calculated recursively by
specifying boundary conditions. The typical decoding performance can therefore be computed exactly

without resorting to replica calculations [Guj95].

4.6.2 Recursion relations: probability propagation

We adopt the approach presented in [RK92] for obtaining recursion relations. The probability distri-
bution P, (7) for the base spin of the polygon y is connected to (C —1)(K — 1) distributions P, ;(7;),
with v € M(j) \ p (all polygons linked to j but ) of polygons in the previous generation:

1
Ppk(Tk) = ﬁ ’I‘r{T].}exp By j;ﬂ’k H Tj — 1| +BF1g H H P,,j(Tj), (429)

JEL(W)\K veM()\pjeL(p)\k
where the trace is over the spins 7; such that j € L(u) \ k.

The effective field Z,; on a base spin j due to neighbours in polygon » can be written as :

exp (—28,) = ezﬂF?iiE;;, (4.30)
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Combining (4.29) and (4.30) one finds the recursion relation (see Appendix B.4 for details):

Ty exp BT [jecone 7 + TiecesBF + Suemin 84)7]

exp (—2Z,;) = — (4.31)
Trir;y exp [+ﬂ'7‘7u HjeL(p)\k T+ Zje[,(,u)\k(ﬂp + EVEM(J')\;L ‘EVj)Tj]
By computing the traces and taking v — oo and 8 = 1 one obtains:
Z,, = atanh | J, H tanh(F + Z Zy;) (4.32)

JEL(u)\k vEM(5)\u
The effective local magnetisation due to interactions with the nearest neighbours in one branch is
given by m,; = tanh(Z,;). The effective local field on a base spin j of a polygon p due to C' — 1
branches in the previous generation and due to the external field is z,; = F + -, c pq(j)\u Zvjs the
effective local magnetisation is, therefore, m,; = tanh(z,;). Equation (4.32) can then be rewritten in

terms of m,; and m,; and the PP equations [Mac99, KS98, KF98] can be recovered:

myr = tanh | F + Z atanh (M) Muk = Ty H My; (4.33)
veM(k)\p FEL(B)\k

Once the magnetisations on the boundary (0-th generation) are assigned, the local magnetisation

m; in the central site is determined by iterating (4.33) and computing :

m; =tanh [ F + Z atanh (M,;) (4.34)
vEM(j)

A free-energy can be obtained by integration of (4.33) [MKSV00, VSK00c, BL82]. The equations

(4.33) describing PP decoding represent extrema of the following free-energy:

M—-N M—-N
Fmues @) = D D In(l+mui) — > 1+ T, [[ mu) (4.35)
p=1 ieL(p) p=1 1€L(1)

M
— Zln ef H (1+fﬁm)+97F H (1 —my;)
j=1

BEM(5) HEM(J)
The iteration of the maps (4.33) is actually one out of many different methods of finding stable extrema

of this free-energy.

4.6.3 Macroscopic description and replica symmetric solution

The decoding process can be performed by iterating the multidimensional map (4.33) using some

defined scheduling. Assume that the iterations are performed in parallel using the following procedure:
1. Effective local magnetisations are initialised as my, = 1 — 2p, reflecting prior probabilities.
2. Conjugate magnetisations 77, are updated.
3. Magnetisations m,; are computed.

4. If convergence or a maximal number of iterations is attained, stop. Otherwise go to step 2.
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Figure 4.9: Transitions for K = 6 (left) and for K = 10 (right). Shannon’s bound (dashed line),
information theory upper bound (full line) and thermodynamic transition obtained numerically (o).
Theoretical (¢) and experimental (+, M = 5000 averaged over 20 runs) PP decoding transitions are
also shown. Black squares are estimates for practical thresholds based on Sec . 4.7. In both figures,
symbols are chosen larger than the error bars.

Equations (4.33) have fixed points that are inconveniently dependent on the particular noise vector
¢. By applying the gauge transformation J, — 1 and 7; — 7;(; we get a map with noise independent

fixed points that has the following form:

myur, = tanh | G F + Z atanh () Mok = H My (4.36)
veM(k)\p JEL()\K

In terms of effective fields z,; and Z,; we have:

Tup = G F + Z Tuk 5uk = atanh H tanh(ww-) . (4.37)
vEM(k)\p JEL(n)\k

The above equations provide a microscopic description for the dynamics of a probability propagation
decoder, a macroscopic description can be constructed by retaining only statistical information about
the system, namely by describing the evolution of histograms of variables z,; and Z .

Assume that the effective fields z,; and Z,; are random variables independently sampled from
distributions P(z) and ﬁ(a’v‘) respectively, in the same way assume that (; is sampled from P(¢{) =
(1—p) 6(¢—1) + 6(¢+1). From Eq. (4.37) arecursion relation in the space of probability distributions
[BL82] can be found:

P.(z) = /ng /delpn 1(F) 6

C—-1
z—F(— Z a?,]
=1

— K-1
P, () = / dej P,_1(z;) 6 |# —atanh | ] tanh(z;) | |, (4.38)
7j=1 j=1

where P, (z) is the distribution of effective fields at the n-th generation due to the previous generations

and external fields, in the thermodynamic limit the distribution far from the boundary will be P (z)
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Figure 4.10: Mean normalised overlap p between the actual noise vector ¢ and decoded noise T for
K =4 and C = 3 (therefore R = 1/4). Theoretical values (O), experimental averages over 20 runs of
PP decoding for code word lengths M = 5000 () and M = 100 (full line). Symbols are chosen larger
than the error bars.

(generation n — 00). The local field distribution at the central site is computed by replacing C' — 1
by C in the first equation (4.38), taking into account C' polygons in the generation just before the

central site, and inserting the distribution Py (z):

C
Pty = [ P(o) []]doi Pu@r)
=1

C
z-F¢(-> 5,] : (4.39)
=1

Equations (4.38) are identical to equations (4.25) obtained by the replica symmetric theory [KMS00,
MKSV00, VSKO00c] if the variables describing fields are transformed to those of local magnetisations
through z — tanh(8z).

In Fig. 4.2 we show empirical histograms obtained by performing 100 runs of PP decoding for
10 different codes of size M = 5000 and compare with a distribution obtained by solving equations
like (4.38). The practical PP decoding is performed by setting initial conditions as m,; = 1 — 2p
to correspond to the prior probabilities and iterating (4.33) until stationarity or a maximum number
of iterations is attained [Mac99]. The estimate for the noise vector is then produced by computing
7; = sign(m;). At each decoding step the system can be described by histograms of variables (4.33),
this is equivalent to iterating (4.38) (a similar idea was presented in [Mac99, Dav98]).

In Fig. 4.9 we summarise the transitions obtained for K = 6 and K = 10. A dashed line indicates
the Shannon limit, the full line represents the information theoretic upper bound of Section 4.3, white
circles stand for the coexistence line obtained numerically. Diamonds represent spinodal noise levels
obtained by solving (4.38) numerically and (+) are results obtained by performing 20 runs using
PP decoding. It is interesting to observe that the practical performance tends to get worse as K
grows large, what agrees with the general belief that decoding gets harder as the Shannon limit is

approached.
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Figure 4.11: PP decoding convergence time as a function of the code size (M — N) for K =4 C =3
and p = 0.05, therefore, well below the threshold. The convergence time clearly does not scale with
the system size.

4.6.4 Tree-like approximation and the thermodynamic limit

The geometrical structure of a Gallager code defined by the matrix A can be represented by a bipartite
graph as represented in Fig. (4.12) (Tanner graph) [KF98] with bit and check nodes. Each column j of
A represents a bit node and each row p represents a check node, A,; = 1 means that there is an edge
linking bit j to check u. It is possible to show [RU98] that for a random ensemble of regular codes,
the probability of completing a cycle after walking [ edges starting from an arbitrary node is upper
bounded by P[l; K,C, M] < I2K'/M (see Appendix E). It implies that for very large M only cycles
of at least order In M survive. In the thermodynamic limit M — oo the probability P[l; K,C, M] — 0
for any finite [ and the bulk of the system is effectively tree-like. By mapping each check node to
a polygon with K bit nodes as vertices, one can map a Tanner graph into a Husimi lattice that is
effectively a tree for any number of generations of order less than In M. In Fig. 4.11 we show that the
number of iterations of (4.33) required for convergence far from the threshold does not scale with the
system size, therefore, it is expected that the interior of a tree-like lattice approximates a Gallager
code with increasing accuracy as the system size increases. Figure 4.10 shows that the approximation
is fairly good even for sizes as small as M = 100 when compared to theoretical results and simulations
for size M = 5000. Nevertheless, the difference increases as the spinodal noise level approaches, what
seems to indicate the breakdown of the approximation. A possible explanation is that convergence
times larger than O(InM) may be required in this region. An interesting analysis of the convergence
properties of probability propagation algorithms for some specific graphical models can be found in

[Wei97].
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Figure 4.12: Tanner graph representing the neighbourhood of a bit node in an irregular MN code.
Black circles represent checks and white circles represent bits.

4.7 Estimating spinodal noise levels

In this section we use insights provided in Section 4.5 to estimate the threshold noise level p;. For

that we introduce a measure for the number of parity-checks violated by a bit 7;:

E=- > |Jn J[ »-1]. (4.40)

HEM(1) JeL(m\l

By using gauged variables:

El:— Z T H T — 1]. (441)

neEM(I) JEL(\!

Suppose that random guesses are generated by sampling the prior distribution, their typical overlap
will be p =1 — 2p. Assume now that the vectors sampled are corrected by flipping 7; a bit if F; = C.
If the landscape has a single dominant minimum we expect that this procedure will tend to increase
the overlap p between 7 and the actual noise vector ¢ in the first step up to the noise level p,, where
suboptimal microscopic configurations are expected to emerge. Above p; there is a large number of
non-ferromagnetic micro-states with overlap around p = 1 — 2p (see Fig. 4.10) and we expect that
if a single bit, of a randomly guessed vector, is corrected the overlap will either increase or decrease,
staying unchanged on average. A vanishing variation in the mean overlap would, therefore, be the
signature of the emergence of suboptimal micro-states at ps.

The probability that a bit 7, = +1 is corrected is:

PE=C|n=+1)= [ P{ J] »=-1;- (4.42)
BEM(1) JeL(m\l
For a a bit ; = —1:
PE=C|n=-1)= [ [1-PS ] m=-1;|- (4.43)

REM(1) JEL(I\

Considering vectors sampled from a prior P(7) = (1 —p) §(t — 1) + p 6(7 + 1) we have:

11
P J[ m=-1 =5~ 3 (1—2p)K-1, (4.44)
JEL(\I
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The gauged overlap is defined as p = Z]Ail S; and the variation on the overlap after flipping a bit
lis Ap = p1 — po = S; — SP. The mean variation in the overlap due to a flip in a bit 7, with E; = C

is therefore:

%(Am — P(n=+1|E=C) — P(n=-1|E =C) (4.45)

PE,=C|nn=41)P(n=+41) — P(EE=C|7n=-1)P(np = -1)
P(E,=C|n=+1))P(n=+1) + P(E,=C|n=-1)P(n=-1)

where we applied the Bayes theorem to obtain the last line.

By plugging the prior probability, (4.42) and (4.44) into the above expression we get:

1,0 [-a-20%"%0-p) - L+a-20)%"]%
5(Ap) = M-1-2p)K1°(1—p) + 1+ (1-2p)K 1 p (4.46)
At p, we have (Ap) = 0 and:
2= [y (4.47)

1—ps  [1+(1—2ps)K-1
The above equation can be solved numerically yielding reasonably accurate estimates for practical
thresholds p, as can be seen in Fig. 4.9.

MacKay [Mac99] and Gallager [Gal62, Gal63] introduced probabilistic decoding algorithms whose
performance analysis is essentially the same those as presented here. However, the results obtained in
Section 4.5 put the analysis into a broader perspective: algorithms that generate decoding solutions
in polynomial time, as it is the case of probabilistic decoding or probability propagation seem to be
bounded by the practical threshold p, due to the presence of suboptimal solutions. On other hand,
decoding in exponential time is always possible up to the thermodynamic transition at p. (with p.
attaining channel capacity if K — oo, by performing an exhaustive search for the global minimum of

the free-energy (4.35).

4.8 Conclusion

We mapped a Gallager code onto a multi-spins interaction Ising system. We then computed the typical
performance of a Gallager code by using the replica symmetric theory. A thermodynamic transition
between a decodable (ferromagnetic) and an undecodable (non-ferromagnetic) phase at a noise level
pe is found to coincide with information theory based arguments. The Shannon limit is shown to be
attainable in the limit K — co. The emergence of suboptimal solutions at ps < p. separates regions
that are decodable in polynomial time and exponential time.

We also introduce a mean-field approximation that transforms the lattice onto a tree-like geometry
known as a Husimi cactus. We show that this approximation allows an exact solution without resorting
to the replica method. We use this approach to recover the replica symmetric solutions and show that
the predictions made are in agreement with numerical experiments carried out in systems of moderate
size. The probability propagation algorithm emerges naturally from this mean-field analysis. A simple
procedure for computing reasonably accurate estimates for the practical thresholding noise levels p,

is also presented.
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Chapter 5

MacKay-Neal Codes

In this chapter we study the statistical physics of the family of codes proposed by MacKay and Neal
(MN). The encoding process is performed by a dense matriz while decoding involves two very sparse
parity-check matrices, one for the signal with K non-zero elements in each row and the second with
L non-zero elements for the noise. We map MN codes onto a spin system with K + L-bodies per
interaction. The typical performance is then obtained by using a replica symmetric theory. We show
that codes with K, L > 2 can attain channel capacity in exponential time, while K = L =2 and K =1,
L = 2 codes can be decoded successfully by a probability propagation decoder, being more practical.
The thermodynamic transitions predicted by the replica symmetric theory coincides with information
theoretic upper bounds for all cases but K = L = 2. We also introduce irreqular constructions and

show that they improve the spinodal noise level ps and, consequently, the practical performance. Part

of the content of this chapter appeared in [KMS00, KMSV00, MKSV00, VSK00c].

5.1 Introduction

MacKay-Neal (MN) codes were introduced [MN95] as a variation on Gallager codes. As Gallager
codes (see Chapter 4), MN codes are defined by two very sparse matrices, but with the difference
that information on both noise and signal is incorporated to the syndrome vector. MN codes are also
decoded using sparse matrices while encoding uses a dense matrix, what yields good distance properties
and a decoding problem solvable in linear time by using the methods of probability propagation.

A class of constructions inside the MN family was recently proposed by Kanter and Saad [KS99b,
KS00b, KS00a] and shown to be capable of outperforming not only Gallager codes but also the cutting-
edge Turbo codes. We will discuss Kanter-Saad codes in the next chapter, but this fact alone justifies
a thorough study of MN codes.

A number of theorems showing the asymptotic goodness of the MN family has been proved in
[Mac99]. By assuming that equal message and noise biases (for a BSC), it was proved that the

probability of error vanishes as the message length increases and that it is possible to get as close as
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desired to channel capacity by increasing the number of non-zero elements in a column of the very
sparse matrices defining the code.

It can also be shown by a simple upper bound that MN codes, unlike Gallager codes (see Section
4.3), might as well attain Shannon’s bound for a finite number of non-zero elements in the columns of
the very sparse matrices, given that unbiased messages are used. This upper bound does not guarantee
that channel capacity can be attained in polynomial time or even that it can be attained at all.
However, results obtained using statistical physics techniques [KMS00, MKSV00, VSK00c, VSK00a]
seem to indicate that Shannon’s bound can actually be approached asymptotically with exponential
time decoding. This feature is considered to be new and somewhat surprising [Mac00b].

Statistical physics has been applied to analyse MN codes and its variants in [KMS00, MKSV00,
VSKO00c]. The analysis follows along the same lines of Chapter 4, namely, we use the replica symmetric
theory to obtain all relevant thermodynamic quantities and to calculate coexistence lines. The theory
also yields a noise level where suboptimal solutions emerge that is in connection with the practical
thresholds observed when probability propagation decoding is used.

This Chapter is organised as follows: Section 5.2 describes MN codes in detail. Section 5.3 derives
an information theoretic upper bound. The statistical physics formulation and the replica theory
are developed in Sections 5.4 and 5.5 respectively. Section 5.6 briefly discusses the probability (PP)
decoding algorithm as applied to MN codes. The PP decoding performance for several families of
construction parameters is presented in Section 5.7. Sections 5.8 and 5.9 analyse the improvement
in the practical performance attained by the introduction of irregular constructions. Conclusions are

given in the final Section 5.10. Appendices with the technical details are also provided.

5.2 MN codes

Assuming that a message is represented by a binary vector £ € {0,1}" sampled independently from
the distribution P(§) = (1 — p¢) 6(&) + pe (& — 1), the MN encoding process consists of producing a
binary vector t € {0,1}* defined by

t = G¢ (mod 2), (5.1)

where all operations are performed in the field {0,1} and are indicated by (mod 2). The code rate is,
therefore, R = N/M.

The generator matrix G is an M X N dense matrix defined by
G =C;1C, (mod 2), (5.2)

with C,, being an M x M binary invertible sparse matrix and Cs an M x N binary sparse matrix.
The transmitted vector ¢ is then corrupted by noise. We here will assume a memoryless binary
symmetric channel (BSC), namely, noise is represented by a binary vector ¢ € {0,1}* with compo-

nents independently drawn from the distribution P({) = (1 — p) 6(¢) + p 6(¢ — 1). The extension
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for other types of noise is expected to be relatively straightforward as was shown for Sourlas codes in
Section 3.4.7.

The received vector takes the form
r = G¢ + ¢ (mod 2). (5.3)

Decoding is performed by pre-processing the received message with the matrix C,, and producing

the syndrome vector
z = Cphr = Cs€ + Cpr (mod 2), (5.4)

from which an estimate E for the message can be directly obtained.

An MN code is called regular if the number of elements set to one in each row of C; is chosen
to be K and the number of elements in each column is set to be C. For the square matrix C,, the
number of elements in each row (or column) is set to L. In this case the total number of ones in the
matrix Cs is MK = NC, yielding that the rate can alternatively be expressed as R = K/C.

In contrast, an MN code is called irregular if a row m in C5s and C,, contains K, and L,, non-zero
elements respectively. In the same way, each column j of C, contains C; non-zero elements and each
column [ of C,, contains D; non-zero elements.

Counting the number of non-zero elements in the matrices leads to the following relations:

N M

M M
ZCJ' = ZKN EDI = ZLm (5.5)
j=1 p=1 I=1 pu=1

The code rate is, therefore, R = K /C, where:
M X
K:MZK“ CZNZCJ" (5.6)
u=1 =1

The Bayes optimal estimator E for the message £ is EJ = argma.ijP(Sj | z). The performance of
this estimator is measured by the probability of bit error p, =1 — 1/N Zjvzl 5[2,-; &;], where 6[;] is
the Kronecker delta. Knowing the matrices Cs and C,,, the syndrome vector z, the noise level p and

the message bias p¢; the posterior probability is computed by applying the Bayes theorem:
1
P(S,7|2)= EX[Z = Cs8S + Cp7 (mod 2)] P(S)P(1), (5.7)

where x[X] is an indicator function providing 1 if X is true and 0 otherwise.

To obtain the estimate one has to compute the marginal posterior
P(Silz)= > Y P(S,7]2), (5.8)
{Si:i#j} T
which requires O(2%) operations and is impractical for long messages. Again we can use the sparseness

of [Cs | Cn] and the methods of probability propagation for decoding, what requires only O(N)

operations.
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When p = p¢, MN and Gallager codes are equivalent under a certain transformation of parameters,
as the code rate is R = N/M for MN codes and R = 1— N/M for Gallager codes. The main difference
between the codes is in the syndrome vector z. For MN codes the syndrome vector incorporates
information on both message and noise while for Gallager codes only information on the noise is
present (see Eq.(4.4)). This feature opens the possibility of adjusting the code behaviour by controlling
the message bias pe.

An MN code can be thought as a non-linear code [Mac00c]. Redundancy in the original message
could be removed (introduced) by using a source (de)compressor defined by some non-linear function
& = 9(&o0; p¢) . Encoding would then be t = Gg(&o;p¢) (mod 2). In the next section we show that

some new features emerge due to the introduction of the parameter pe.

5.3 Upper bound on achievable rates

The same kind of information theoretic argument discussed in Section 4.3 can be applied to MN
codes. For a regular code the syndrome vector 2 = C,S + C,,7 (mod 2) is a sum of K message
bits drawn from the distribution P(§) = (1 — pe) 6(§) + pe 6(§ — 1) and L noise bits drawn from
P(()=(1-p)6({) +pd(¢—1).

The probability of z; = 1 is (see Appendix C.1)

p:(K, L) = (1—2p¢)* (1 - 2p)". (5.9)

N =
DN | =

The maximum information content in the syndrome vector is M Hs(pl (K, L)) (in bits or shannons),
where Hy(z) is the binary entropy. The amount of information needed to reconstruct both the message
vector £ and the noise vector ¢ is NHa(pe) + M Hx(p) (in bits or shannons). Thus, it is a necessary

condition for successful decoding that:

M H,(p,(K,L)) > N H(p¢)+ M H;(p)
H,(py(K,L)) — Hx(p) > R H(p¢)
H,(p}(K,L)) — Hs(p)
R < Tt . (5.10)

For the case p = p and L = C, we can recover bounds (4.6) for Gallager codes with sizes and
parameters redefined as M' = M + N, N' = N and K' = K + L. In [Mac99] a theorem stating that
channel capacity can be attained when K — oo was proved for this particular case.

If unbiased (p¢ = 1/2) messages are used, Ha(p¢) = 1, Ha(pL(K,L)) = 1 and the bound (5.10)

becomes
R <1 — Hs(p), (5.11)

i.e., MN codes might be capable of attaining channel capacity even for finite K and L, given that

unbiased messages are used.
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5.4 Statistical physics formulation

The statistical physics formulation for MN codes is a straightforward extension of the formulation
presented in Section 4.4 for Gallager codes. The field ({0,1},+ (mod 2)) is replaced by ({£1}, x)
[Sou89] and the syndrome vector acquires the form :
eIl ¢ (5.12)
JELs(k)  1€Ln ()
where j=1,--- ,N,I=1,--- Mand p=1,--- ;M.

The K, indices of nonzero elements in the row p of the signal matriz C, are given by L,(u) =
{j1,-+,Jjk,}, and in a column j are given by M,(j) = {p1, -+, uc,}. In the same way, for the noise
matriz C,,, the L, indices of nonzero elements in the row u are given by £, (1) = {j1,---,jr,}, and
in a column [ are given by M,,(I) = {p1,--- , D, }-

Under the assumption that priors P(S) and P(7) are completely factorisable, the posterior (5.7)

corresponds to the limit 7y — oo and 8 = 1 (Nishimori temperature) of:

PS,T| ) = 5 e [-BH (8,7 7] (513)

M N M
=2\ I 8 11 m=1) =R Si-F) =,
u=1 j=1 =1

JELs (1) lELn (1)

Hy(S,73T)

with Fy = 3 atanh( ) and F, = 1 atanh( 2) (Nishimori condition [Iba99]).

By applying the gauge transform S; — S;¢; and 7, — 7;(; the couplings can be transformed as
Ju + 1, eliminating the disorder. The model is free of frustration (as in [Tou77], the model is flat)
. Similarly to Gallager codes, the resulting Hamiltonian consists of two sub-lattices interacting via

multi-spin ferromagnetic iterations with finite connectivity in random fields §; F; and G F),:

N M
HENE (S, 75 €,¢) = _,YZ H S; H =1 —Fszngj —FnZClTl- (5.14)
=1 1=1

b=l \jELs(1)  1ELn(K)
At the Nishimori condition y — oo the model also can be regarded as a paramagnet with restricted

configuration space on a non-uniform external field:

M
HEE((S,7) € €,¢) = —Fs Zg, ~F.YGm, (5.15)
=1
where

Q={S7:7 [ S [[ n=1.n=1,--,M} (5.16)

JEE (») lGE (»)
Optimal decoding consists of finding local magnetisations at the Nishimori temperature in the
signal sub-lattice m; = (S;)p, and calculating Bayesian estimates EJ = sgn(m;).
The probability of bit error is
I
Py =75~ Wj;fj sgn(m;), (5.17)

connecting the code performance with the computation of local magnetisations.
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5.5 Equilibrium theory

5.5.1 Replica theory

The replica theory for MN codes is a straightforward extension of the theory constructed for Gallager
codes in Section 4.5.1, with the introduction of extra dynamical variables S. The gauged Hamiltonian

(5.14) is written as:

N M

HE5(S,73€,¢) = =1 3 Ay, (S Siuis -1 =) = 3 68— Fu Y Gmy (5.18)
b =t =t

where (j1) is a shorthand for (j; --- jxl1---1L).

The code construction is described by the tensor A(il) € {0,1} that specifies a set of indices
(j1+--jkli---1lr) corresponding to non-zero elements in a particular row of the matrix [Cs | Cy].
To cope with non-invertible C,, matrices one can start by considering an ensemble with uniformly
generated M x M matrices. The non-invertible instances can then be made invertible by eliminating
a € ~ O(1) number of rows and columns, resulting in an ensemble of (M — €) x (M — ¢€) invertible Cy,
matrices and (M — €) X (N — ¢) Cs matrices. As we are interested in the thermodynamic limit we
can neglect O(1) differences and compute the averages in the original space of M x M matrices. The

averages are then performed over an ensemble of codes generated as follows:

L. Sets of numbers {C;}_; and {D;}}; are sampled independently from distributions P¢c and Pp

respectively;

2. Tensors A(jl) are generated such that

DAy =M

ah

Y. Ay =0 Y. Agy =D

(1=j-jrli--Ir) (1 jrli=l--1r)

The free-energy is computed by the replica method as:

(2™ Ak (5.19)

The replicated partition function is:

(ZMace = Z Z 11 <exp (F §ﬁ2 sa) >g ﬁ <exp (FJﬁéﬁ) ><

Sn Tl . T‘n ] 1 =1

X <H H exp [ﬁ7A<Jl)( SHT T — 1)]> . (5.20)

glye=1 A
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The average over constructions {(---)) 4 is:

N

M
(- )a = Z HPC(C,')HPD(DI) % 6 ( Z Aty = Cj)

{C;,Di} j=1 =1 (j1=dsiz, jxl)

x 5( > A<jl>_D’>("')

(Jla=lla, - k)

> [I7eic) [17o00 ST [ sy oo ost Moo
= Pe(C Po(D;) — o (i1=dyigyigd) " 1=di ik by
{C;,D1} j=1 =1 iy o 27m z
1y=l,lg, - ,1 1y=l,- 0
< 11 ?{Tmmyl i ”] () (5.21)
=1 l

where the first sum is over profiles {C}, D;} composed by N numbers drawn independently from
Pc(C) and M numbers drawn from Pp(D). The second sum is over constructions .4 consistent with
the profile {C;, D;}.
The signal average ((---))¢ has the form:
((-Ne= D (1=pe)6(€—1) + pe 8(E+1) (---). (5.22)
£=—1,+1
Similarly, the noise average ((---))¢ is:
((=Ne="D (1=p)8(¢—=1) + pb(C+1) (). (5.23)
¢=—1,+1
Along the same steps described for Gallager codes, we can compute the averages above and intro-

duce auxiliary variables via

N
1
/ d4a,..a,, O (qal...am -5 > zsy ---s;*m) =1 (5.24)

M
1 a1 Qm —
/drm...am ) (ral...am i ZYZTz oo ) =1 (5.25)

Using the same type of techniques employed in the case of Gallager codes (see Appendix C.2 for

details), we obtain the following expression for the replicated partition function:
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N M
(ZMace = [ID_PeC)H]]D_Po(D)
j=1 C; I=1 D

qud‘/jO & d%d@a d’l’od?() dradAa
x ( 2mi )(al;[l 2mi 2mi al;[l 2mi

MLNK n
K'L' Z Z mqal “Qm 51---am

m=0 <a1 am)

n n
- N Z Z Qar-amoram — M Z Z Tar--am?al---am]

M=0 (a1 -0t ) m=0 (a1--Cm)

1 N
X ﬁ H Tr{SJQL} <exp
y ‘%\ dZ eXp Z E =0 Z(ar“am) a\al..-am S‘;xl .. -S‘?m] ]

A&Z$D
3

a=1

2mi 7Citt
j

¢

M n

X H Trirey !<exp FnﬂCZ Tf‘]>
=1 a=1
‘% ﬁexp I:Yl ZZ:O E(al---am) ?al---am Tlal ce Tlam] ]

2mi YlD""1

(5.26)

where 7,, = e~"87 cosh™(Bv) tanh™(B7). Note that the above expression is an extension of Eq.
(4.21).

5.5.2 Replica symmetric solution

The replica symmetry assumption is enforced by using the ansitze:

Goran = / do (@) 2™ Gupoen, = / 43 #(z) 7" (5.27)

and

mWM:/@mwwl aﬂm:/@&mw. (5.28)

By plugging the above ansiitze, using the limit v — oo and standard techniques (see Appendix
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C.3 for details) the following expression for the free-energy:

1
f = 3 Extr{%,ma’(ﬁ}{a In 2 (5.29)

+ 6/dx (z) dE 7(3) In (1 + 23) + @ E/ dy $(y) 47 (5) n (1 + v7)

K L
- a/ Hdwjﬂ(wj)] [dezqﬁ(yz) In (1+H$1 Hyl)
j=1 =1 =t =t

_ ;Po /!ﬁdx] ]<lnle‘£ﬁF]1_[11+x +e” ﬁﬂFJﬁll—w]]>

a Y Pp(D) /Lﬂdﬁz a(yz)] <ln legﬁF [ +5) +e 5 Hl—yz]> }
D =1 ¢

=1 1=1
where C =Y, C Pc(C), D=3, D Pp(D) and a = M/N = C/K.
By performing the extremisation above, restricted to the space of normalised functions, we find

the following saddle-point equations:

1

K-1 L K-
(7)) / H dz; m(zj) H dy; (1) lﬁ H z; Hyl] (5.30)

Jj=1 =1

— C-1
%Z C Po(C) /H dz; 7(3)) <5 z — tanh (ﬂst + ) atanh @)D ,
C =1 3

=1

3
—_
&

Il

A~

<)

~
Il

R L1 K L-1 K
¢ H dyi ¢(y1) H dz; m(z;) 5 |7 [[ w H
J M aw ot

=1

15 oo [T i < [twh(ﬁmgmwﬂk.

=1

©-
—~~
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~
Il

The typical overlap p = (% Z;VZI §jgj> A,c.¢ between the estimate EJ = sgn((S;)sy) and the actual
signal ¢; is given by (see Appendix A.3):

p = /dh P(h) sgn(h) (5.31)
C C
P(h) = > Pc(C) / [1dz 7@ <5 [h—tanh (51«;5 + ) _atanh @)D .
C =1 =1 I3

The intensive entropy is simply s = ,82 yielding:

s = B - f) (5.32)
~ o PP (148;) — e PPET], (1))
U(/B) - _; PC(C) /dej m (xj) <Fs§ BF.€ H].C_l(l—l-AJ) + e BF¢ Hc_l(l_Aj)>§
= PPN eﬂan H]:l (1 + g]) - e_ﬁF"C HD:1(1 - :UJ)
— a; PD(D) /J:l_Ildy,7¢ (yj) <Fnc ﬂF(HJ.D_l(]_-‘,-Aj) T e_ﬁF"CHDzl(]_—Aj)>C,

where starred distributions are solutions for (5.30) and () is the internal energy density.
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For optimal decoding the temperature must be chosen to be 8 = 1 (Nishimori temperature) and

Fszlln (ﬂ) Fnzlln (ﬂ)
2 g 2 P

5.6 Probability propagation decoding

the fields are

In Chapters 3 and 4 we derived probability propagation equations firstly by assuming a set of factori-
sation properties and writing a closed set of equations that allowed the iterative computation of the
(approximate) marginal posterior and secondly by computing local magnetisations on the interior of a
Husimi cactus (Bethe approximation). The two methods are equivalent as the factorisation properties
assumed in the former are encoded in the geometry of the lattice assumed in the second derivation.
Here we use the insights provided in the last chapters to directly build a decoding algorithm for MN

codes. From the replica symmetric free-energy (5.29) we can write the following Bethe free-energy:

Fm,m) = —1n2+—z Z In (1 + m;,;m2;) —}——Z Z (L+mpmr)

p=liel,(p) p=ljeLl, (1)
——Zln 1+, H my, H my;
i€Ls (1) JEEn (»)
1 & |
-¥ ol fefs J[ @+mi)+e™ J[ (1-m2)
i=1 BEM, (i) BEM, (1)
1|
| I +ap) e ™ [T (-mp)| (5.33)
Jj=1 BEM (H) BEMa(F)

The variables mj; (m},;) are cavity effective magnetisations of signal (noise) bits interacting
through the coupling u, obtained by removing one of the C' couplings in M(j) (My(F)) from the
system. The variables m;,; (fM};) correspond to effective magnetisations of signal (noise) bits due to
the coupling p only.

The decoding solutions are fixed points of the free-energy (5.33) given by :

6}'8(ms,m) —0 8}'8(71,5, m) —0 (5.34)

Myj Myj

OF (m, m) _0 6]-'(1n, m) —0 (5.35)
Omy; omy,;

The solutions for the above equations are the equations being solved by the probability propagation

decoding algorithm:

m,, = tanh Z atanh(m};) + F; My = Ju H m, H mu, (5.36)
| vEM. (D)\p i i€Ls (1) \J leﬁ (»)

my, =tanh | > atanh(®}) + F, mp =T, [ ms J[ ma (5.37)
| vEMan (D)\ s i i€Ls (1) 1€Ln (w\J
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The estimate for the message is EJ = sgn(mj}), where m} is the local magnetisation due to all

couplings linked to the site j can be computed as:

m; = ta,nh Z a.ta;nh(ﬁl,s/]) + FS (5'38)
vEM,(J)

One possibility for a decoding dynamics is to update Eqgs. (5.36) and (5.37) until a certain halting
criteria is reached, and then computing the estimate for the message using equation (5.38). The
initial conditions are set to reflect the prior knowledge about the message m;,;(0) = 1 — 2p¢ and noise
my;(0) =1—2p.

As the prior information is fairly limited, a polynomial time decoding algorithm (like PP) will
work only if the solution is unique or the initial conditions are inside the correct basin of attraction.
In this case the 2(N K + M C) equations (5.34) only need to be iterated a O(1) number of times to get
a successful decoding. In other hand, when there are many solutions, it is possible to obtain improved
decoding in exponential time by choosing random initial conditions and comparing free-energies of
the solutions obtained, selecting a global minimum.

Observe that the free-energy described here is not equivalent to the variational mean-field free-
energy introduced in [Mac95, Mac99]. Here no essential correlations except those related to the
presence of loops are disregarded.

In the next section we will analyse the landscape of the replica symmetric free-energy for three

families of parameters and will be able to predict the practical performance of a PP decoding algorithm.

5.7 Equilibrium results and decoding performance

The saddle-point equations (5.30) can be solved by using Monte-Carlo integration iteratively. In
this section we show, that in terms of the typical performance, MN codes can be divided into three
parameter groups: K >3 (or L > 3) and K > 1, K =2 and L = 2 and K = 1. We, therefore, treat

each these cases separately in the following.

5.7.1 Analytical solution: the case of K >3 or L >3 and K > 1

Replica symmetric results for the cases of K > 3 or L > 3, K > 1 can be obtained analytically,
therefore we focus first on this simple case. For unbiased messages (F; = 0), we can easily verify that

the ferromagnetic state, characterised by p = 1, and the probability distributions

m(z) = 8(z — 1), #(F) =6 — 1), ¢(y) =8y — 1), @) =5F-1) ; (5.39)

and the paramagnetic state of p = 0 with the probability distributions

") = o), 7(@) = 6@), 47) = (D) (5.40)
o) = EEE) o) + 2 5 ann(ry),
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satisfy replica symmetric saddle-point equations (5.30). Other solutions could be obtained numerically.
To check for that, we represented the distributions with histograms of 20000 bins and iterated Egs.
(5.30) 100 — 500 times with 2 x 10° Monte-Carlo sampling steps for each iteration. No solutions other
than ferromagnetic and paramagnetic have been observed.

The thermodynamically dominant state is found by evaluating the free-energy of the two solutions

using Eq. (5.29), which yields

c
fFERRO = _E F, tanh(Fn), (5.41)
for the ferromagnetic solution and
f —gln2—ln2—gln (2 cosh(F,)) (5.42)
PARA — K K n)) .

for the paramagnetic solution.
Figure 5.1(a) describes schematically the nature of the solutions for this case, in terms of the
replica symmetric free-energy and overlap obtained, for various noise levels p and unbiased messages

pe = 1/2. The coexistence line in the code rate versus noise level is given by

In2
fFERRO — fPARA = = [Rc — 1+ Ha(p)] =0. (5.43)
This can be rewritten as
R.=1- Hz(p) =1+ plog,(p) + (1 — p) log,(1 — p), (5.44)

which coincides with Shannon’s channel capacity and is represented in Fig. 5.2(a) together with the
overlap p as a function of the noise level p.

Equation (5.44) seems to indicate that all constructions with either K > 3 or L > 3 (and K > 1)
might attain error-free data transmission for R < R, in the limit where both message and codeword
lengths N and M become infinite, thus saturating Shannon’s bound. However, as it is described in
Fig. 5.1(a), the paramagnetic state is also stable for any noise level what has dynamical implications
if a replica symmetric free-energy is to be used for decoding (as is the case in probability propagation
decoding).

To validate the solutions obtained we have to make sure that the entropy is positive. The entropies
can be computed by simply plugging distributions (5.39) and ( 5.41) into Eq. (5.32). The energy
densities for the unbiased case are u = upara = urgrro = —a Fj,, (1 — 2p), since the Nishimori
condition is employed (see Appendix B.3). The ferromagnetic entropies are sggrro = 4— frErrO = 0

and

SPARA = U — [PARA

—a F, (1-—2p) — % In2+1In2+ % In (2 cosh(F,)). (5.45)

It can be seen by using a simple argument that spara is negative below p.. For p < p., frara >

frERRO and u — SPARA > U — SFERRO -
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This indicates that the distribution (5.41) is non-physical below p., despite being a solution of
replica symmetric saddle-point equations. This result seems to indicate that the replica symmetric
free-energy do not provide the right description below p.. A simple alternative is to use a frozen spins
solution as the formulation of a theory with replica symmetry breaking for highly diluted systems is
a difficult task (see, for example, [WS88, Mon98b]).

Nevertheless, the practical performance of the probability propagation decoding is described by
the replica symmetric theory, the presence of paramagnetic stable states implies the failure of PP
decoding at any noise level. Moreover, even without knowing the correct physics below p, it is
possible in this case use an exhaustive search of the global minimum of the free-energy in Section 5.6

to attain Shannon’s bound in exponential time.

5.7.2 The caseof K =2 and L =2

All codes with either K = 3 or L = 3, K > 1 potentially saturate Shannon’s bound and are char-
acterised by a first order phase transition between the ferromagnetic and paramagnetic solutions.
Solutions for the case with K = L = 2 can be obtained numerically, yielding significantly different
physical behaviour as shown in Fig.5.1(b).

At very large noise levels, the paramagnetic solution (5.41) gives the unique extremum of the
free-energy until the noise level reaches p;, at which the ferromagnetic solution (5.39) of higher free-
energy becomes locally stable. As the noise level decreases to p2 the paramagnetic solution becomes
unstable and a sub-optimal ferromagnetic solution and its mirror image emerge. Those solutions
have lower free-energy than the ferromagnetic solution until the noise level reaches p;. Below ps,
the ferromagnetic solution becomes the global minimum of the free-energy, while the sub-optimal
ferromagnetic solutions remain locally stable. However, the sub-optimal solutions disappear at the
spinodal noise level p; and the ferromagnetic solution (and its mirror image) becomes the unique
stable solution of the saddle-point Egs.(5.30).

The analysis implies that ps, the critical noise level below which the ferromagnetic solution becomes
thermodynamically dominant, is lower than p. = H, *(1 — R) which corresponds to Shannon’s bound.
Namely, K = L = 2 does not saturate Shannon’s bound in contrast to K > 3 codes even if decoded in
exponential time. Nevertheless, it turns out that the free-energy landscape, with an unique minimum
for noise levels 0 < p < ps, offers significant advantages in the decoding dynamics comparing to that
of codes with K > 3 or L > 3, K > 1, allowing the successful use of the polynomial time probability

propagation decoding.

5.7.3 The case of K =1 and general L

The choice of K = 1, independently of the value chosen for L, exhibits a different behaviour presented
schematically in Fig.5.1(c); also in this case there are no simple analytical solutions and all solutions in

this scenario but the ferromagnetic one have been obtained numerically. The first important difference
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Figure 5.1: Figures in the left side show schematic representations free energy landscapes while figures
on the right show overlaps p a function of the noise level p; thick and thin lines denote stable solutions
of lower and higher free energies respectively, dashed lines correspond to unstable solutions. (a) K > 3
or L > 3, K > 1. The solid line in the horizontal axis represents the phase where the ferromagnetic
solution (F, p = 1) is thermodynamically dominant. The paramagnetic solution (P, p = 0) becomes
dominant at p., that coincides with the channel capacity. (b) K = 2 and L = 2; the ferromagnetic
solution and its mirror image are the only minima of the free energy up to ps (solid line). Above p,
sub-optimal ferromagnetic solutions (F’, p < 1) emerge. The thermodynamic transition occurs at p3
is below the maximum noise level given by the channel capacity, which implies that these codes do
not saturate Shannon’s bound even if optimally decoded. (c) K = 1; the solid line in the horizontal
axis represents the range of noise levels where the ferromagnetic state (F) is the only minimum of the
free energy. The sub-optimal ferromagnetic state (F’) appears in the region represented by the dashed
line. The dynamical transition is denoted by p,, where F’ first appears. For higher noise levels, the
system becomes bistable and an additional unstable solution for the saddle point equations necessarily
appears. The thermodynamical transition occurs at the noise level p; where F’ becomes dominant.
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Figure 5.2: Transition lines in the plane rate R versus the flip rate p, obtained from numerical solutions
and the TAP approach (N =10%), and averaged over 10 different initial conditions with error bars
much smaller than the symbols size. (a) Numerical solutions for K =L =3, C'=6 and varying input
bias fs (O) and TAP solutions for both unbiased (+) and biased (<) messages; initial conditions were
chosen close to the analytical ones. The critical rate is multiplied by the source information content
to obtain the maximal information transmission rate, which clearly does not go beyond R =3/6 in
the case of biased messages; for unbiased patterns Ho(fs)=1. (b) For the unbiased case of K =L =2;
initial conditions for the TAP (+) and the numerical solutions (<) were chosen to be of almost zero
magnetisation. (c) For the case of K =1, L = 2 and unbiased messages. We show numerical solutions
of the analytical equations (<) and those obtained by the TAP approach (+). The dashed line
indicates the performance of K = L = 2 codes for comparison. Codes with K = 1, L = 2 outperform
K = L =2 for code rates R < 1/3.
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Figure 5.3: Number tcony of iterations needed for convergence of the probability propagation algorithm
versus noise level p. The system size is N = 5000, rate R = 1/5, K = 2 codes are represented by
black squares while K = 1 codes are represented by white squares. averages are over 2 random codes
and 10 runs for each code.

to be noted is that the paramagnetic state (5.41) is no longer a solution of the saddle-point equations
(5.30) and is being replaced by a sub-optimal ferromagnetic state, very much like Gallager codes.
Convergence to p = 1 solution can only be guaranteed for noise levels p < ps , where only the
ferromagnetic solution is present.

The K = 1 codes do not saturate Shannon’s bound in practice, however, we have found that at
rates R < 1/3 they outperform the K = L = 2 code (see Fig. 5.2) while offering improved decoding
times when probability propagation is used (Fig. 5.3). Studying the replica symmetric free-energy in
this case shows that as the corruption rate increases, sub-optimal ferromagnetic solutions (stable and
unstable) emerge at the spinodal point ps. When the noise increases further this sub-optimal state
becomes the global minimum at p;, dominating the system’s thermodynamics. The transition at p;
must occur at noise levels lower or equal to the value predicted by Shannon’s bound.

In Fig.5.4 we show free-energy values computed for a given code rate and several values of L,
pointing Shannon’s bound by a dashed line; the thermodynamic transition observed numerically (i.e.
the point where the ferromagnetic free energy equals the sub-optimal ferromagnetic free energy) coin-
cides with Shannon’s bound within the numerical precision used. Spinodal noise levels are indicated
by arrows. In Fig. 5.5 we show spinodal noise levels as a function of L as predicted by the replica
symmetric theory (circles) and obtained by running PP decoding of codes with size 10*. The optimal
parameter choice is L = 2.

Due to the simplicity of the saddle-point equations (5.30) we can deduce the asymptotic behaviour
of K =1 and L = 2 codes for small rates (large C') by computing the two first cummulants of the
distributions 7, 7, ¢ and ¢ (Gaussian approximation). A decoding failure corresponds to (h) ~ O(1)

and of ~ O(1). It implies that () ~ O(1/C) and oz ~ O(1/C). For that y must be small and we
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Figure 5.4: Free-energies obtained by solving the analytical equations using Monte-Carlo integrations
for K = 1, R = 1/6 and several values of L. Full lines represent the ferromagnetic free-energy
(FERRO, higher on the right) and the suboptimal ferromagnetic free energy (higher on the left)
for values of L = 1,...,7. The dashed line indicates Shannon’s bound and the arrows represent the
spinodal point values ps for L = 2,...,7. The thermodynamic transition coincides with Shannon’s
bound.
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Figure 5.5: Spinodal point noise level p; for K = 1, R = 1/6 and several choices of L. Numerical
solutions are denoted by circles and PP decoding solutions (10 runs with size N = 10*) by black
triangles. Symbols are larger than the error bars.
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Figure 5.6: Asymptotic behaviour of the transition for small rates. The full line represents Shan-
non’s bound, circles represent transitions obtained by using only the first cummulants and squares
correspond to the Gaussian approximation.

can use atanh(tanh(y;)tanh(y2)) ~ y1y» and write :

() ~ O() o2~0(1) (5.46)
@ ~ (@ (5.47)
oF ~ () - (! (5.48)
(v) = @ + Q-20)F, o, =05 + 4f(1-p)F; (5.49)
B =~ (tanh(z))(y) (5.50)
03 ~ (tanh’(z))(y?) — (tanh(z))*(y)? (5.51)

To simplify further we can assume that p — 0.5. Therefore F}, ~ (1 —2p) . The critical observation
is that in order to have (h) ~ O(1) we need that Z ~ O(1/C) and consequently (y) ~ O(1/+/C).

Manipulating the set of equations above :

(y) ~ (tanhz)(y) + (1 -2f)

By imposing the condition over (y):C~'/2 ~ (1 — 2p)?(1 — (tanhz))~!

In terms of the code rate R =1/C:

(1—2p)*
R~ ——M——— 5.52
(1 — (tanhz))? (5:52)
The asymptotic behaviour of the Shannon bound is given by :
(1—2p)
~ 5.53
R In 2 ( )

Thus, the K = 1 and L = 2 codes are not asymptotically optimal. In Fig. 5.6 we verify (5.52) by
iterating equations for first cummulants (delta approximation) and by first and second cummulants

(Gaussian approximation).
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Figure 5.7: (a) Overlap as a function of the noise level p for codes with K = L = 3 and C = 15 with
message bias p¢ = 0.3. Analytical RS solutions for the regular code are denoted as < and for the
irregular code; with C, = 4 and C, = 30 denoted as O. Results are averages over 10 runs of the PP
algorithm in an irregular code of size N = 6000 starting from fixed initial conditions (see the text) ;
they are plotted as e in the rightmost curve for comparison. PP results for the regular case agree with
the theoretical solutions and have been omitted to avoid overloading the figure. (b) Free-energies for
the ferromagnetic state (full line) and for the failure state (line with o). The transitions observed in
(a) are indicated by the dashed lines. Arrows indicate the thermodynamic (T) transition, the upper
bound (u.b.) of Section 5.3 and Shannon’s limit.

5.8 Error-correction: regular vs. irregular codes

Irregularity can improve the practical performance of MN codes. This fact has been already reported
in the information theory literature (see for example [Dav99, Dav98, LMSS98]). Here we analyse this
problem by using the language and tools of statistical physics. We now use the simplest irregular
constructions as an illustration, to say, the connectivities of the signal matrix C; are described by a

simple bimodal probability distribution:
Pc(C)=(1-0)6(C —-C,) + 046(C—Ce). (5.54)

The mean connectivity is C = (1—6) C, + 6 C, and C, < C < C.; bits in a group with connectivity
C, will be referred as ordinary bits and bits in a group with connectivity C. as elite bits. The noise
matrix C,, is chosen to be regular.

To gain some insight on the effect of irregularity on solving the PP equations (5.36) and (5.37) we
performed several runs starting from the fixed initial conditions mj;(0) = 1—2p¢ and m,;(0) =1—2p
as prescribed in the last section. For comparison we also iterated the saddle-point equations (5.30)
obtained in the replica symmetric (RS) theory, setting the initial conditions to be mo(z) = (1 —
pui) 8(z —m2;(0) + pai 6z +mi,(0)) and poy) = (1 - p) 8y —m4(0)) + p 6y +my(0)), as
suggested from the interpretation of the fields 7(z) and p(y) in the last section.

In Fig. 5.7 (a) we show a typical curve for the overlap p as a function of the noise level p.

The RS theory agrees very well with PP decoding results. The addition of irregularity improves
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Figure 5.8: Overlap monitored during the PP decoding process as a function of the number of iterations
for N = 4000. Elite nodes overlap is represented by A. Ordinary nodes overlap is represented by
V- The overall overlap is represented by ©. The long dashed line shows the dynamics of the regular

code. The constructions employed have parameters K = L = 3, C = 6, C, = 20 and C, = 5. The
noise level is p = 0.065 and the message bias is p; = 0.3.

the performance considerably. In Fig. 5.7 (b) we show the free-energies of the two emerging states.
The free-energy for the ferromagnetic state with overlap p = 1 is shown as a full line, the failure
non-ferromagnetic state (in Fig. 5.7 (a) with overlap p = 0.4) is shown as a line marked with
o. The transitions seen in Fig. 5.7(a) are denoted by dashed lines. It is clear that they are far
below the thermodynamic (T) transition, indicating that the system becomes trapped in suboptimal
non-ferromagnetic states for noise levels p between the observed transitions and the thermodynamic
transition. The thermodynamic transition coincides with the upper bound (u.b.) in Section 5.3 and
is very close to, but below, Shannon’s limit which is shown for comparison. Similar behaviour was

observed in regular MN codes with K =1 in Section 5.7.3.

It is instructive to look how the overlap of elite (m.) and ordinary (m,) nodes evolve throughout
the iterative decoding process. In Fig. 5.8 we show this dynamics for a regular and an irregular code
at a noise level where the irregular code converges to the ferromagnetic state while the regular code
fails (long-dashed lines). One can see that the overlap of ordinary nodes follow that of the regular code
in the first iterations, elite nodes are then corrected quickly achieving high overlaps. These highly
reliable nodes then lead the correction of ordinary nodes, producing successful decoding. From the
decoding dynamics point of view the typical performance of irregular MN codes can be qualitatively
regarded as a mixture of low and highly connected regular codes where elite nodes can tolerate higher

noise levels while ordinary nodes allow for higher code rates.
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5.9 The spinodal noise level

In the last section we gained some insight into how irregularity affects the practical performance of
codes. The dynamical decoding process shown in Figure 5.8 only provides a qualitative explanation
and does not seem to allow some simple analysis.

A possible alternative is to relate the observation that the system gets trapped in suboptimal
states to global properties of the free-energy. The PP algorithm can be regarded as an iterative
solution of fixed point equations for the free-energy (5.33), which is sensitive to the presence of local
minima in the system. One can expect convergence to the global minimum of the free-energy from all
initial conditions when there is a single minimum or when the landscape is dominated by the basin of
attraction of this minimum when random initial conditions are used.

To analyse this point we rerun the decoding experiments starting from initial conditions m;,;(0)

and mg; (0) that are random perturbations of the ferromagnetic solution drawn from the following

distributions:
P (m;;(0)) = (1= As) 6(my;;(0) — &) + As 8(my;(0) + &) (5.55)
and
P (m7,(0)) = (1 — A) 8(m™(0) — 71) + g 8(mi(0) +7), (5.56)

where for convenience we choose 0 < A\; = A\, = A < 0.5.

We performed PP decoding several times for different values of A and noise level p. For A < 0.026
we observed that the system converges to the ferromagnetic state for all constructions, message biases
pe and noise levels p examined. It implies that this state is always stable. The convergence occurs for
any ) for noise levels below the transition observed in practice.

These observations suggest that the ferromagnetic basin of attraction dominates the landscape
up to some noise level p;. The fact that no other solution is ever observed in this region suggests
that p; is the noise level where suboptimal solutions actually appear, namely, it is the noise level that
corresponds to the appearance of spinodal points in the free-energy. This behaviour have already been
observed for regular MN codes with K =1 or K = L = 2 in Sections 5.7.3 and 5.7.2.

We have shown that MN codes can be divided into three categories with different equilibrium
properties: (i) K >3 or L > 3, (ii) K > 1, K = L = 2 and (iii) general L, K = 1. In the next two

subsections we will discuss these cases separately.

5.9.1 Biased messages: K >3 or L >3

To show how irregularity affects codes with this choice of parameters we choose K,L = 3, C, = 4,
Ce = 30 and biased messages with p; = 0.3. These choices are arbitrary but illustrate what happens
with the practical decoding performance. In Fig. 5.9 we show the transition from the decoding phase

to the failure phase as a function of the noise level p for several rates R in both regular and irregular
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Figure 5.9: Spinodal noise level p; for regular and irregular codes. In both constructions parameters
are set as K = L = 3. Irregular codes with C, = 4 and C, = 30 are used. PP decoding is carried out
with N = 5000 and a maximum of 500 iterations; they are denoted by + (regular) and * (irregular).
Numerical solutions for the RS saddle-point equations are denoted by < (regular) and o (irregular).
Shannon’s limit is represented by a full line and the upper bound of Section 5.3 is represented by a
dashed line. The symbols are chosen to be larger than the actual error bars.

o o1 02 03 04 05
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Figure 5.10: Spinodal noise level p; for irregular codes as a function of the message bias pe. The
construction is parameterised by K = L = 3, C, = 4 and C, = 30 with C = 15. PP decoding is
carried out with N = 5000 and a maximum of 500 iterations, and is represented by +, while theoretical
RS solutions are represented by <. The full line indicates Shannon’s limit. Symbols are larger than
the actual error bars
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Figure 5.11: Pictorial representation of the free-energy landscape for codes with K > 3 or L > 3,
K > 1 and biased messages p; < 0.5 as a function of the noise level p. Up to the spinodal noise
level p, there is only the ferromagnetic state F. At ps; another state F' appears , dominating the
decoding dynamics. The critical noise level p. indicates the point where the state F’ becomes the
global minimum (thermodynamic transition).

codes. Practical decoding (< an o) results are obtained for systems of size N = 5000 with a maximum
number of iterations set to 500. Random initial conditions are chosen and the whole process repeated
20 times. The practical transition point is found when the number of failures equals the number of
successes.

These experiments were compared with the theoretical values for p; obtained by solving the RS
saddle-point equations (5.30) (represented as + and * in Fig. 5.9) and finding the noise level for which
a second solution appears. For comparison the coding limit is represented in the same figure by a full
line.

As the constructions used are chosen arbitrarily one can expect that these transitions can be
further improved, even though the improvement shown in Figure 5.9 is already fairly significant.

The analytical solution obtained in Section 5.7.1, for K > 3 or L > 3, K > 1 and unbiased
messages p¢ = 1/2, implies that the system is bistable for arbitrary code constructions when these
parameters are chosen. The spinodal noise level is then p, = 0 in this case and cannot be improved by
adding irregularity to the construction. Up to the noise level p. the ferromagnetic solution is the global
minimum of the free-energy, and therefore Shannon’s limit is achievable in exponential time, however,
the bistability makes these constructions unsuitable for practical decoding with a PP algorithm when
unbiased messages are considered.

The situation improves when biased messages are used. Fixing the matrices C,, and C;5 one
can determine how the spinodal noise level p, depends on the bias p;. In Figure 5.10 we compare
simulation results with the theoretical predictions of p; as a function of p;. The spinodal noise level
ps collapses to zero as p, increases towards the unbiased case. It obviously suggests the use of biased
messages for practical use of MN codes with parameters K > 3 or L > 3, K > 1 under PP decoding.

For biased messages with K > 3 or L > 3, K > 1 the qualitative picture of the energy landscape
differs from the unbiased coding presented in Section 5.7.1. In Fig. 5.11 this landscape is sketched
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Figure 5.12: Spinodal noise level p; for regular and irregular codes. The constructions are of K =1
and L = 2, irregular codes are parameterised by C, = 4 and C, = 10. PP decoding is carried out
with N = 5000 and a maximum of 500 iterations ; they are denoted by + (regular) and * (irregular).
Numerical solutions for RS equations are denoted by < (regular) and o (irregular). The coding limit
is represented by a line. Symbols are larger than the actual error bars.

as a function of the noise level p for a given bias. Up to the spinodal noise level ps the landscape is
totally dominated by the ferromagnetic state F'. At the spinodal noise level another suboptimal state
F' emerges, dominating the decoding dynamics. At p. the suboptimal state F' becomes the global
minimum. The bold horizontal line represents the region where the ferromagnetic solution with p =1
dominates the decoding dynamics. In the region represented by the dashed line decoding dynamics is

dominated by suboptimal non-ferromagnetic p < 1 solutions.

5.9.2 TUnbiased messages

For the remaining parameter choices, namely general L, K = 1 and K = L = 2, it was shown in
Sections 5.7.2 and 5.7.3 that unbiased coding is generally possible yielding close to Shannon’s limit
performance.

In the same way as in the K > 3 case the practical performance is defined by the spinodal noise
level ps. The addition of irregularity also changes ps in these cases.

In the general L, K = 1 family we illustrate the effect of irregularity by the choiceof L =2, C, =4
and C, = 10. In Fig. 5.12 we show the transitions observed by performing 20 decoding experiments
with messages of length N = 5000 and a maximal number of iterations set to 500 (+ for regular and
* for irregular). We compare the experimental results with theoretical predictions based on the RS
saddle-point equations (5.30) (< for regular and o for irregular). Shannon’s limit is represented by a
full line. The improvement is modest, as expected, since regular codes already present close to optimal

performance. Discrepancies between the theoretical and numerical results are due to finite size effects.
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Figure 5.13: Spinodal noise level values p; for regular and irregular codes. Constructions are of K = 2
and L = 2, irregular codes are parameterised by C, = 3 and C, = 8. PP decoding is carried out
with N = 5000 and a maximum of 500 iterations; they are denoted by + (regular) and * (irregular).
Theoretical predictions are denoted by <& (regular) and o (irregular). The coding limit is represented
by a line. Symbols are larger than the actual error bars.

We also performed a set of experiments using K = L = 2 with C, = 3 and C¢ = 8, the same
system size N = 5000 and maximal number of decoding iterations 500. The transitions obtained

experimentally and predicted by theory are shown in Fig. 5.13.

5.10 Conclusion

We mapped a general irregular MN codes onto a multi-spins systems and employed the replica theory to
compute their typical performance. We divided the codes in terms of performance to three categories:
(i) K>2or L>2,K>1;(ii) K =L =2 and (iii) K = 1. For unbiased messages (p¢), we obtained
an analytical replica symmetric solution for the first case, showing that the thermodynamic transition
coincides with the channel capacity and with an information theoretic upper bound. For the second
case, we obtained numerical solutions and a transition below the information theoretic upper bound.
For K = 1 codes we numerically obtained a transition that coincides with the channel capacity within
the numerical precision used.

The probability propagation algorithm was linked directly to the replica symmetric free-energy.
We discussed the connection between the noise level where spinodal points emerge in the free-energy
(ps) and the performance of PP decoding. We showed that, since unbiased K > 2or L > 2, K > 1
codes have a bistable free-energy, only K = L = 2 and K = 1 are suitable for PP decoding, unless
biased messages are used. K = 1 codes were shown to attain better decoding times.

We also introduced simple irregular constructions, we analysed each one of the three parameter

groups, discussing the practical use of biased messages with K > 2 or L > 2, K > 1 and of unbiased
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messages with the other two groups. We showed that irregularity changes the free-energy global

topology and can easily improve the practical performance threshold p;.
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Chapter 6

Kanter-Saad Codes

In this chapter we obtain a statistical description for the typical PP decoding process of the codes
presented by Kanter and Saad, a variation of MN codes. We use this description to optimise the

construction of a simple Kanter-Saad code.

6.1 Introduction

Kanter and Saad (KS) recently proposed a variation of MN codes that has been shown to be capable
of attaining close to channel capacity performance and outperforming Turbo codes [KS99b, KS00b,
KS00a]. The central idea is to explore the superior dynamical properties (i.g. large basin of attraction)
of MN codes with K = 1,2 and the potential for attaining channel capacity of MN codes with
K > 2 by introducing constructions with intermediate properties. This is done by employing irregular
constructions like the one depicted in Fig. 6.2, with the number of non-zero elements per row set to
several different values Ki,--- , K,y,.

In Fig. 6.1 we show a performance comparison (presented in [KS00b]) of Turbo, KS and Gallager
codes with optimised irregular constructions [RSU99] for a memoryless Gaussian channel . The bit
error probability p, is plotted against the signal to noise ratio in decibels (10 log;,(S/N)) for codes
of sizes N = 1000 and N = 10000.

The introduction of multi-spin interactions of several different orders and of more structured ma-
trices makes the statistical physics of the problem harder to solve. In this chapter we, therefore,
adopt a different approach. We first write the probability propagation equations and find an appro-
priate macroscopic description of then in terms of field distributions. We then solve saddle-point like
equations for the field distributions to find the typical performance.

This chapter is organised as follows. Section 6.2 presents the KS constructions in detail. In Section
6.3 a macroscopic description for the decoding process in terms of field distributions is provided. In
Section 6.4 we use the macroscopic description to optimise a simple KS construction. Conclusions are

provided in Section 6.5. An appendix on the use of cummulant expansions for optimisation is also

98



CHAPTER 6. KANTER-SAAD CODES

10
10°° %
A
D-_Q
10"
10°
0.5 0 1.5

" SNR(dB)

Figure 6.1: Bit error probability p, as a function of the signal to noise ratio for codes of rate R = 1/2,
sizes N = 1000 (right) and N = 10000 (left) in a memoryless Gaussian channel. Black triangles
represent KS codes, dashed lines represent Turbo codes and dotted lines represent optimised irregular
Gallager codes of similar sizes. This figure was extracted from [KS00b).

provided.

6.2 KS codes

KS codes are specific constructions of MN codes. The signal matrix C; is defined by m random sub-

matrices with Ky, K»,--- , K, non-zero elements per row respectively. The matrix C,, is composed
by two sub-matrices: an(;-) =0i; + 6ij+a and an(j-) = 4;,;. The inverse C; ! used in the encoding

process is easily obtainable. In Fig. 6.2 we represent a KS code with three signal sub-matrices, the
non-zero elements in the noise matrix C,, are denoted by lines, we also represent the inverse of the
noise matrix C; 1.

The signal matrix C, is subdivided onto M; x N sub-matrices, with j = 1,---,m. The total
number of non-zero elements is given by N C'= 37", M; K; what yields C = }1" | a; K, where
aj = M;/N. The code construction is, therefore, parametrised by the set {(a;, K;)}. If we fix {Kj},
the parameters {o;} completely specify a construction. A further constraint to the parameters set
{a;} is provided by the choice of a code rate, as the inverse code rate is « = M/N = 37", ;.

Encoding and decoding using KS codes are performed in exactly the same fashion as described in

Section 5.2 for MN codes. A binary vector t € {0,1} defined by
t = G¢ (mod 2), (6.1)

is produced, where all operations are performed in the field {0, 1} and are indicated by (mod 2). The
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Cr—ll

Figure 6.2: KS construction with three signal sub-matrices with K7, K5 and K3 non-zero elements per
row, respectively. The number of non-zero elements per column is kept fixed to C. The noise matrix
C,, is composed by two sub-matrices, the non-zero elements are denoted by lines. The inverse C !
is also represented.
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code rate is R = N/M. The generator matrix G is a M x N dense matrix defined by
G =C;'C, (mod 2). (6.2)

The transmitted vector 7 is then corrupted by noise. Assuming a memoryless binary symmetric
channel (BSC), noise is represented by a binary vector ¢ € {0,1}™ with components independently
drawn from the distribution P({) = (1 —p) 6(¢) +p 6(¢ —1).

The received vector is
r = G¢ + ¢ (mod 2). (6.3)
Decoding is performed by computing the syndrome vector
z =Chr = Cs€ + Cpr(¢ (mod 2), (6.4)

from which an estimate E for the message can be obtained.

6.3 Typical PP decoding and saddle-point like equations

In this section we show how a statistical description for the typical PP decoding can be constructed
without using replica calculations. To keep the analysis as simple as possible we exemplify the proce-
dure with a KS code with two signal matrices denoted 1s and 2s and two noise sub-matrices denoted
1n and 2n. The channel is chosen to be a memoryless binary symmetric channel (BSC). The number
of non-zero elements per row is K; and K>, respectively, and the inverse rate is & = a; + as. There-
fore, for a fixed code rate, the code construction is specified by a single parameter «;. We represent
a code in this family in Fig.6.3.

The PP decoding dynamics for these codes is described by Eqs.(5.37). However, due to the irreg-
ular character of the construction, sites inside each one of the sub-matrices are connected differently.
Reminding the statistical physics formulation of MN codes presented in Section 5.4, non-zero row
elements in the matrices depicted in Fig.6.3 correspond to sites taking part in one multi-spin inter-
action. Therefore, signal sites in the sub-matrix 1s interact with other K; — 1 signal sites in 1s and
exactly two noise sites in 1n. Moreover, the same site takes part in other a; K7 + az K2 — 1 multi-spin
couplings in both 1s and 2s. Sites in sub-matrix 2s interact with one noise site in 2n and Ky — 1
signal sites in 2s, taking part in other a1 K; + as K — 1 multi-spin interaction. Noise sites in the
sub-matrix 1n interact with another noise site and with K; signal sites in 1s. Finally, noise sites in

2n interact with K> sites in 2s. Thus, the Hamiltonian for a KS code takes the following form:

M, M M N
H==Y (Ju S SiTuTura =) =7 D (Ju S Si,7u—1) = Fa Y n—F Y S,
u=1 nw=M;+1 =1 j=1

(6.5)

where Jj, = &, - Eixe, CuCutar, for o = 1, , My and Jy = &, -+ bixe, Cu for p = My + 1, , M.
Additionally, the Nishimori condition requires that v — oo, Fs = atanh(1 — 2p,) and F,, = atanh(1 —

2p), where the prior probabilities are defined as in the previous chapters.
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Figure 6.3: KS code with two signal matrices with parameters K; and K». Note that noise sites inside
the shaded regions take part in a different number of interactions than the ordinary sites.

We can write PP decoding equations for each one of the sub-matrices 1s, 2s, 1n and 2n. The
shaded regions in Fig. 6.3 have to be described by different equations, but can be disregard if the
width A is of O(1), implying A/N — 0 for N — oo.

For the sub-matrix 1s we have:

278) = tanh Z atanh(A(ls))‘*' Z atanh(A(zs)) + Fi (6.6)
veEMis(5)\1 vEMas(3)
~(1s 1n 1s
mfm ) = ‘7” ln)m[(Lu-i)-A H I(ll )7 (67)
l€L1s (1)\J

where the second equation represents interactions with two noise sites and and K; — 1 signal sites.
The first equation represents the a3 K1 + as K2 — 1 multi-spin interactions the site j belongs to.

Similarly, for the sub-matrix 2s we have:

mfjs) = tanh Z atanh(m (15)) Z atanh(m (25)) + Fs (6.8)
vEMi5(7) vEMas(5)\v
T/ﬁffi) — \7“ mffn) H mffls) (6-9)
1€L2s(u)\J

For the sub-matrix 1n we have:

mf}j") = tanh [atanh( (1")) +F, ] (6.10)
aln = Zoml I mGY, (6.11)
leLis(p)

where either j =p,i=p+Aorj=p+A,i=u

102



CHAPTER 6. KANTER-SAAD CODES

Finally, for sub-matrix 2n we have:

ml(f") = tanh[F),] (6.12)
aem = g, [[ m&Y (6.13)
1€Las (1)

The pseudo-posterior and decoded message are given by :

m; tanh Z atanh(ﬁz,%s))—i— Z atanh(m ,(;‘;3)) (6.14)

vEMi, (J) vEMas (J)
sgn(m;). (6.15)

~

&

The above equations provide a microscopic description for the PP decoding process, we can pro-
duce a macroscopic description for the typical decoding process by writing equations for probability
distributions related to the dynamical variables. It is important to stress that the equations describing
the PP decoding are entirely deterministic when couplings J,, and initial conditions are given. The
randomness comes into the problem when quenched averages over messages, noise and constructions
are introduced.

By performing the gauge transformation

m(a's) N (as) A(as) — & "(‘13) (6.16)
l(LaJ.n) = Gm (an) A(fm) = (i "(a") (6.17)
J, = 1 (a=1,2), (6.18)

(as) ~(as) y(an)

introducing effective fields z,,; = atanh(m,;), Z,,; = atanh(/,,;) and assuming that z,,;”, Z,,.”, y,; >

~(an)

Y,; are independently drawn from distributions P, (z), P, (@), Ra(v), R, (9), respectively, we get the

following saddle-point like equations (for simplicity, we restrict the treatment to the case of unbiased
messages F; = 0).

For the sub-matrix 1s:

a1K1 1 ale a1K1—1 ang
Pi(z) = / H dePl z;) H dwng (W) 6 |z — Z zj — Z wy (6.19)
i=1 j=1 =1
Ki—1 Ki—1
P(z) = / H dz;Pi(zj)dy1R1(y1)dy2R1(y2) 0 | — atanh(tanh(y;)tanh(y2) H tanh(z;))
Jj=1 j=1
For 2s
Ot1K1 a1K2 1 a1K1 O(gKg 1
Py(z) = / H dw]Pl z;) H d, Py(@y) § | = — Z zj — Z wy (6.20)
Ko—1 Ko—1
Py(z) = / H dz;Py(z;)dyRa(y) 6 | % — atanh(tanh(y H tanh(z;))
j=1
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Figure 6.4: Monte-Carlo integration of field distributions and simulations for a KS code with two
signal matrices (K; = 1 and K2 = 3) , a =5 (R =1/5) and oy = 3. Circles: full statistics (4000
bins). Squares: simulations N = 5000

For 1n we have:

Ri) = [daRa@) (6l -7 P (6:21)
K, K1

R = / H dz;Py(z;)dyR:(y) 6 |2 — atanh(tanh(y) H tanh(z;))
j=1 j=1

Finally, for sub-matrix 2n:

Ro(y) = (dly—(Fal), (6.22)
Ko Ko

Bo(d) = /dejpz(x,-)a 7 — atanh(] ] tanh(z;))
=1 P

The typical overlap can then be obtained as in the case of MN codes by computing:

p = / dh P(h) sgn(h) (6.23)
a1 K1 R a1 Ko N a1 K1 as Ko

Py = [ 1] d&Pi@) [[ dofa@) s |n- Y o- Y. w (6.24)
Jj=1 =1 j=1 =1

The numerical solution of these equations provides the typical overlap for KS codes with two signal
matrices parametrised by a; (as = a — al). In Fig 6.4 we compare results obtained by solving the
above equations numerically (Monte-Carlo integration with 4000 bins) and PP decoding simulations
(10 runs, N = 5000) with R = 1/5 and oy = 3. The agreement between theory and experiments

supports the assumptions employed to obtain the saddle-point like equations.
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Figure 6.5: Spinodal noise level p, as a function of a; for a KS code with K; = 1, K5 = 3 and
R =1/5 (a = 5). Circles: Monte-Carlo integrations of saddle-point equations (4000 bins). Squares:
PP decoding simulations (10 runs with size N = 5000). The best performance is reached for a; = 3
and is close to the channel capacity for a BSC (indicated by a dashed line).

6.4 Optimising construction parameters

Equations (6.19) to (6.24) can be used to optimise code constructions within a given family. For the
family introduced in Fig. 6.3 with parameters K; and K> fixed the optimisation reduces to finding the
value of a; that produces the highest threshold ps. In Fig. 6.4 we show the threshold (spinodal noise
level) p, for a KS code with K1 =1, K» = 3 and rate R = 1/5 (o = 5). The optimal performance is

obtained by selecting a; = 3 and is very close to the channel capacity.

6.5 Conclusion

We introduced a high performance construction of MN codes named KS codes. A macroscopic de-
scription for the typical PP decoding was obtained by writing saddle-point like equations for effective
fields. Numerical simulations were shown to agree with the theory. We then used the macroscopic
description in terms of effective fields distributions to optimise a single parameter family of KS codes.

The optimised construction was shown to attain close to channel capacity performance in a BSC.
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Chapter 7

Conclusions and Perspectives

7.1 Overview

In this thesis we analysed error-correcting codes based on very sparse matrices by mapping them
onto spin systems of the statistical physics. The equivalence between coding concepts and statistical

physics is summarised in the following table.

Coding Theory Statistical Physics

message bits s spins S

received bits r multi-spin disordered couplings J (Sourlas)
syndrome bits z multi-spin couplings J (Gallager, MN, KS)

bit error probability p. | gauged magnetisation p (overlap)

posterior probability Boltzmann weight
MAP estimator ground state
MPM estimator thermal average at Nishimori’s temperature

In the statistical physics framework random parity-check matrices (or generator matrices as in the
case of Sourlas codes), random messages and noise are treated as quenched disorder and the replica
method is employed to compute the free-energy. Under the assumption of replica symmetry we found
in most of the cases that two phases emerge: a successful decoding (p = 1) and failure (p < 1) phases.
For MN codes with K = L = 2 three phases emerge representing successful decoding, failure and
catastrophic failure.

The general picture that emerges shows a phase transition between successful and failure states
that coincides with the information theory upper bounds in most cases, the exception being MN codes
with K = L = 2 where the transition is bellow the upper bound.

A careful analysis of replica symmetric quantities reveals unphysical behaviour for low noise levels
with the appearance of negative entropies. This question is resolved in the case of Sourlas codes with

K — oo by the introduction of a simple frozen spins first-step replica symmetry breaking ansatz.
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Despite the difficulties of the replica symmetric theory, threshold noise values observed in simulations
of probability propagation (PP) decoding agree with the noise level where meta-stable states (or
spinodal points) appear in the replica symmetric free-energy.

A mean-field (Bethe) theory based on the use of a tree-like lattice (Husimi cactus) exposes the
relationship between PP decoding and statistical physics and justifies the agreement between theory
and simulations as PP decoding can be reinterpreted as a method for finding local minima of a Bethe
free-energy. Those minima can be described by distributions of cavity local fields that are solutions
of the replica symmetric saddle-point equations.

The performance of the decoding process with probability propagation can be obtained by looking
at the Bethe free-energy landscape (or the replica symmetric landscape), in this way we can show
that information theoretic upper bounds can be attained by looking for global minima of the Bethe
free-energy, which may take time that grows exponentially with the system size. In practical time
scales, simple decoding procedures that simply find minima become trapped in meta-stable states.
That is the reason why practical thresholds are linked to the appearance of spinodal points in the
Bethe free-energy.

For KS codes we adopted a different approach for the analysis. Using the insights obtained in the
analysis of the other codes we started by writing down the PP decoding equations and writing the
Bethe free-energy and the saddle-point like equations for distributions of cavity fields. The transi-
tions predicted by these saddle-point like equations were shown to agree with experiments. We then
employed this procedure to optimise parameters of one simple family of KS codes.

By studying the replica symmetric landscape we classified the various codes by their construction
parameters, we also showed that modifications in code constructions, like the use of irregular con-
structions, can improve the performance by changing the way the free-energy landscape evolves with

the noise level. We summarise the results obtained in the following table.

Channel capacity | Practical decoding of

unbiased messages

Sourlas K — o K=2

Gallager K — o any K

MacKay-Neal | K,L > 2 K=1,anyLor K=L=2
Kanter-Saad | still unclear K; = 1,2 for some j

7.2 Some future directions

A tentative list of possible future research directions and open problems suggested by the research

presented in this thesis is the following:

e Optimisation of irregular constructions: Is it possible to use statistical physics to optimise

general irregular constructions from first principles ?
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¢ KS codes and Shannon’s bound: Are KS codes capable of attaining Shannon’s bound in

some region of the parameter space ?

e Enhanced decoding algorithms: Probability propagation decoding is based on a mean-field
approximation that assumes a tree-like lattice; is it possible to design better decoding algorithms

by using methods of statistical physics (e.g. Kikuchi approximations or variational methods) ?

¢ Calculating the typical probability of block error: The framework presented in this thesis
used the overlap p = % Ejvzl 5,-2,- between message and estimate as an order parameter. This is
equivalent to calculate the typical probability of bit error as a performance measure. The same
calculation using the typical probability of block error as a performance measure is still an open

problem.

¢ Replica symmetry breaking: The role of replica symmetry breaking is still unclear in the

low noise region. What are the practical implications of breaking the replica symmetry ?

¢ Phase diagram outside Nishimori’s condition: Most of the calculations in this thesis were
performed using Nishimori’s condition, that is equivalent to consider that real and assumed
parameters (temperature, noise level, message bias) match. It would be interesting to determine
the complete phase diagram by analysing the situation where real and assumed parameters do

not match.

¢ Replica symmetry breaking and Nishimori’s condition: It has been recently shown that
replica symmetry breaking is not expected to occur over the Nishimori line in the SK model
[NS00, Nis00]. However it is still unclear the same arguments can be extended to the somewhat
pathological models describing Gallager and MN codes. If the argument can be extended, how

to explain the negative entropies emerging in the low noise level region ?
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Appendix A

Sourlas Codes: Technical Details

A.1 Free energy

In order to compute free energies we need to calculate the replicated partition function (3.26). We

can start from Equation (3.24):

<Z">A7§,J = TI'{S;;} [<exp (_IBH(”) ({S= }))> (A1)

A,J,s] ’

where (") ({§%}) represents the replicated Hamiltonian and « the replica indices. First we average
over the parity-check tensors 4; for that an appropriate distribution has to be introduced, denoting

u = (i1, ..., i) for a specific set of indices:
1
(zm) = < NI (Z A - 0) Trispyexp (—5 H<”><{sa}))> , (A2)
{A} i p\i T€

where the § distribution imposes a restriction on the connectivity per spin, A/ is a normalisation
coefficient and the notation u \ 7 means the set p except the element i. Using integral representations

for the delta functions and rearranging:
. 1 az; 1 .
(27) = Trysey <ﬁ (H Q—MW) ST 204 | exp (—ﬂ’H( (s }))> - (A3
g i {A} \ v iep Je

Remembering that A € {0,1}, and using the expression (3.5) for the Hamiltonian we can change the

order of the summation and the product above and sum over A:

n 1 de 1 F L £; S
(Z ):Tr{s;_x}</7 (H %zCH)eﬂ T &iSs

X 1;[ l1 +(I] Zi)exp (mu SII sg) ] >J’5 . (A.4)

€N a tEW
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Using the identity exp(8Jy [[;¢,, S§) = cosh(3) [1 + (Hie“ Sf‘) tanh(ﬁJu)] we can perform the prod-

uct over « to write:
) PF . isi5?> (A.5)
13

(2" = TT{S“}N <H]{ 2mi 20T
1+ (H Z,-) cosh™ () ( + (tanh(8J)) Z H Sy

€N a e
+ (tanh®(8J)), > [Ise I S5 + )]

(1az) i€p JER

<11

n

Defining (u1, g2, .-, 1) as an ordered set of sets, and observing that for large N Z(m---uz)( )

l
ll (E u( )) we can perform the product over the sets p and replace the energy series by an expo-

nential:

(2") = Trgsey 4 (H y{m Zc+1) IR (A.6)

Z(H Z;) + (tanh(8J)); > > [ 282

X exp lcosh”(ﬁ) (
a L i€

uooiEp
(tanh®(8J))s > >[I Z:S7 852 + )]

(@raz) M i€p

Observing that }°, =1/K!>:, . , defining 7; = (cosh™ (3J)tanh'(3J)); and introducing auxil-
iary variables qq, ...a,, = % > ZiSit .87 we find:

(A.8)

dgodgo / d¢adga
2Zm) —_— A.
< .A§ J = (H% 2 ZC+1> (/ 27 H 2mi ( 7)
N
Xexp 76(]0 +71an +75 Z qalaz o
L (a1a2) i
Xexp -N (qOQO + Z QaQa + Z QalaQQalag +.. )
L (a1asz) i
XTI‘{S;;} <eBF 2a,i §iSF >§ eXpZ (E]‘OZ, + Z a\aZiS? +.. )
i a
The normalisation constant is given by:
N=3"T]s (ZAH —0) ,
{A} i p\i
and can be computed using exactly the same methods as above, resulting in

B dz; 1 dgoddo NE o~
N = (1:[ Tmﬁ) ( omi )P | KT _NQOQO"‘QO;Zi
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Computing the integrals over Z;’s and using Laplace method to compute the integrals over go and
Go we obtain:

NK i
N =exp {Extrqo@0 [Fqé{ — Ngogo + Nln <%>] } . (A.10)

The extremum point is given by
a0 = NUF/E(K — 110"
and
@ = (CN)S O [(K — 1y~

Replacing the auxiliary variables in Eq.(A.7) using ga,...a., /9 = da1...0r, 304 oy .0 /00 = Tor...cm >
computing the integrals over Z; and using Laplace method to evaluate the integrals we finally find

Eq. (3.26).

A.2 Replica symmetric solution

The replica symmetric free energy (3.30) can be obtained by plugging the ansatz (3.29) into Eq.
(A.7).Using Laplace method we obtain:

(E™aes = % exp {N Extr, [%91 - CG + 93:| } , (A.11)
where:
K
G =To+T; Z/H (de; m(x;) tanh(Bz;))
+72 Z /H dz; m(z;) tanh®(Bz;)) + ..., (A.12)
(a1a2) J
Go=1+ Z/ dz dy w(z) 7 (y) tanh(Bz) tanh(By)
+ Z / dz dy m(z) 7(y) tanh?(8z) tanh?(By) + ... (A.13)
{naz)
and

{2 e o)

a,i

xexp Go (Z Zi + ZZ Z;8¢ / dy 7 (y)tanh(By)
+ 3 ZZSalSa2/dy7r )tanh?(By) + )]} (A.14)

(ara2) 4
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The equation for Gy can be worked out by using the definition of 7, and the fact that (32, 1) =

n .
( ) to write:
l

K n
G = <cosh" BJ) / (H dz; m(z; ) (1 + tanh(8J) Htanh(ﬂwj)) > . (A.15)
' J

=1

Following exactly the same steps we obtain:

Go = / dz dyn(z) 7(y) (1 + tanh(Bz) tanh(By))", (A.16)

and

Gs = {Tl"{sa l exp 5F5250)>
3
jZ Zol+1exp (qo /dy7r H + S%anh( ﬂy))>‘|} (A.17)

Computing the integral over Z; and the trace we finally find:

c c "
n {% /H dyim(y1) [Z oBFE) §1_[ (1 + otanh ﬂyl))] } (A.18)
=1

o==+1 =1

Putting everything together, using Eq. (3.23) and some simple manipulation we find Eq. (3.30).

A.3 Local field distribution

In this appendix we derive explicitly Eq. (3.32). The gauge transformed overlap can be written as

N
p= N Z <Sign(mi)>A,J,§ ) (A.19)

i=1
introducing the notation m; = (S;), where (---) is a gauged average.

For an arbitrary natural number p, one can compute p-th moment of m;

n—0

(mi?) 4 ¢ = lim < Z Sl.82.....8Pe P EZ=1”H(“)> , (A.20)
S” AT
where #(®) denotes the gauged Hamiltonian of the a-th replica. By performing the same steps
described in the Appendices A.1 and A.2, introducing the auxiliary functions n(z) and 7(y) defined
in Egs. (3.29), one obtains

C
(m;” AJg_/deJ 7(y; <tanhp (ﬂF§+ﬂZy,)> . (A.21)

£
Employing the identity

n

. . 2n! 1+z Imemo e \™
sign(z) = —1 + QHILIICZO Z @n = m)im! ( 5 ) ( 5 ) (A.22)
m=0
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which holds for any arbitrary real number z € [—1,1] and Egs. (A.21) and (A.22) one obtains

: e 2n! L+ R\ (1—h\"
(sign(mi)) 4 ¢ = —1+2 / dh P(h) nlinéoz(zn—m)!m!< 2 ) ( 2 )

m=0

/dh P(h) sign(h), (A.23)

where we introduced the local fields distribution

C C
P = [ T1 dvs i) <6<h - F¢ - Zyj)> , (A24)

3
thus reproducing Eq. (3.32).

A.4 Zero temperature self-consistent equations

In this appendix we describe how one can write a set of self-consistent equations to solve the zero

temperature saddle-point equations (3.49). Supposing a three peaks ansatz given by:

7(y) = p4+0(y —1) +pod(y) +p-o(y +1) (A.25)
Cc-1
71'(:12) = T[pi,po;C’—l] (l) (5(CE - l)’ (A26)
I=1-C
with
(€ —1)! .
Tip posp—;c1 (1) = > AT P o P (A.27)

{k,h,m ; k—h=l ; k+h+m=C—1}

We can consider the problem as a random walk, where 7(y) describes the probability of one step
of length y (y > 0 means one step to the right) and 7(z) describes the probability of being at dis-
tance z from the origin after C' — 1 steps. With this idea in mind it is relatively easy to understand
Tip, po,p—;c—1](l) as the probability of walking the distance / after C' — 1 steps with the probabilities
P+, p— and pg of respectively moving right, left and staying at the same position. We define the prob-
abilities of walking right/left as ¢y = ZZC_I Tip, .po,p_;c—1](£l). Using second saddle-point equations
(3.49):

=1

K-1 K-1
P+ = / lH dxlﬂ(xl)] <6 ll — sign(J H ;) min(| J |,|z1 |,...,| 2x-1 |]> (A.28)
=1 S

The right side of the above equality can be read as the probability of making K — 1 independent
walks, such that after C' — 1 steps: none is at origin and an even (for J = +1) or odd (for J = —1)

number of walks is at the left side.
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Using this reasoning for p_ and pg we can finally write :

p+ = (1-p) %W%K 2 (429
=0
. L5521 (K —1)! PRI PE=272 4 K1 odd(K — 1)
P4 @i+ DK -2-2))! o
55+ -1 (K —1)!
p = (1-p) A (4.50)

(K —2j —2)1(2j + 1)!

1! )
+ z:: m¢2J¢K 74 (1—p) 9T odd(K - 1),

where odd(z) = 1(0) if z is odd (even). Using that p, + p_ + po = 1 one can obtain py. A similar
set of equations can be obtained for a five peaks ansatz leading to the same set of solutions for the
ferromagnetic and paramagnetic phases. The paramagnetic solution py = 1 is always a solution, for

C > K a ferromagnetic solution with p, > p_ > 0 emerges.

A5 (J);=(J tanh(GnJ));

In this appendix we establish the identity (J); = (J tanh(8nJ)); for symmetric channels. It was
shown in [Sou94a] that :

SN (CARYS
it =5 (01 (451

where By is the Nishimori temperature and p(J | J°) are the probabilities that a transmitted bit J°

is received as J. From this we can easily find:

_p(J|1)—p(J[-1)
tanh (B ) = B RS (A.32)
In a symmetric channel (p(J | —=J%) = p(—J | J?)), it is also represented as
_p(J 1) —p(-J|1)
tanh (ﬂNJ)—p(J|1)+p(_J|1). (A.33)
Therefore,
_ Jp(J|1)
<J tanh (/61\’ J)>J = Tr; p(J| 1) p(J | 1) +p(—J | 1)
(=) p(=J|1)
F P T ST )
_ Jp(J|1)
= P ST e D
Jp(J|1)
T I ST 0 D
= Try; Jp(J|1)
= (J)s. (A.34)
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A.6 Probability propagation equations

In this section we derive the probability propagation equations (2.25) and (2.26) in the form (3.70).

We start by introducing the following representation for the variables QS * and RS s

1 -
Q5 = (1 +mueSe) RO = = (14 MuSk) - (A.35)
Iz iz 2

We can now put (3.65), (3.69) and (A.35) together to write:

1 1 1
R}t = — Z 3 cosh(8J,) [ 1 + tanh(BJ,) H S; H 5(]—+mpksk)7
W {SuikeL(w\i} j€ku ] kELmNI
11
= e Z | cosh(8J,,) (1 + tanh(8J,) H S)
{Sk:keL(p)\j} JEL(R)
X (1+ Z mur Sk + Z mukmu15k5l+"')
keL(p)\J k#leL(m)\J
11
= ®a cosh(8J,) [ 1 + tanh(8J,) S; [ mur
keL(p)\J
1
= 3 (1 + tanh(8J,) S; H mﬂk) . (A.36)
keL(mw)\j

To obtain the last line we used that the normalisation constant is a, = 57— cosh(8J,). Writing the

above equation in terms of the new variable 7, we obtain the first equation (3.70):

M = RU)—RG) (A.37)
1 1
= 3 (1 + tanh(8J,) H muk) ~5 (1 — tanh(8J,) H muk)
keL(w)\J keL(mw)\j
= tanh(8J,) H Mk
keL(p)\i

To obtain the second equation (3.70), we write:

(1+ i Si) - (A.38)

DN | =

1
Qi/’: — auk§ (1 + tanh (BN Sk)) H
veM(k)\p

In terms of the new variables m,; we have:

M = auk},{{amnh(ﬁﬁv)) [I (+mu)—(—tanh(@y) ][] (1—%)}

veM(k)\p veM(k)\u

By using the identity e’* = cosh(z)(1 + otanh(z)) we can write:

exp [EueM(k)\H atanh(m, ) + ,ij] — exp [— EueM(k)\u atanh(m,z) — ,85\,] (4.39)
m = .
ne a;kl2K cosh(By) I, e am(y\, cosh(atanh(my )

Computing the normalisation a,; along the same lines gives:

Duk = 2K cosh(By) [T, meiy  cosh(atanh(m, )

(A.40)
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Inserting (A.40) into (A.39) gives:

myr = tanh Z atanh(myi) + By | - (A.41)
vEM(k)\p
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Gallager Codes: Technical Detalils

B.1 Replica theory

The replica theory for Gallager codes is very similar to the theory obtained for Sourlas codes (see

Appendix A). We start with Eq. (4.17):

= > H<eXp (FCﬂZT )><< I ﬁexp[ﬁ’yA@l...iK)(Tg---Tg{—1)]>A.

Tl rn j=1 (i1--vixc) @=1
(B.1)
The average over constructions 4 is then introduced using Eq. (4.18) :
1 il "
(2Mac = S II <exp (Fgﬂ ZT;*)>
1 rm =1 a=1
Tl ¢
M
% H dZJ 1 E( 1=drig,yig) 'A< 1=J K)‘|
y C+177
{A}j=1 2mi Z;
X H exp lﬂ’yA@-l...iK) Z(Tfl” T — 1)] . (B.2)
{i1---ix) a=1

After observing that
M
i iy Alig =g, i o
H ij“l‘“z’ gy =Rl H (Zi, -+ Zs, ) Ainino |
Jj=1 (1-++ix)

we can compute the summation over A, ...;.y € {0,1}:

o 4 )

]{ dz; 1
9.7 7C+1
™ j=1 ¢J=1 2m Zj

% H {1 n Zzl-- iK Hexp /87 “... ZK)j|} (BS)

(i1-+ix)
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We can now use the identity e = cosh(z)(1 + otanh(z)), where o = %1, to write:

(ZMac = TZ H<exp<FCBZT>> ZH

™ j=1 ¢{A} =1

27m ZC+1

y H {1 n COS:nB(:/BFY) (Zzl . 'ZiK) ﬁ [1 + Ti‘: .. .Tz.O‘Ktanh(Iny)] } .

{i1--+iK) a=1

By following Appendix A.1 from Eq. (A.5) we can finally find Eq. (4.21).

B.2 Replica symmetric solution
As in the code of Sourlas (Appendix A.2) the replicated partition function can be put into the form:
n 1 C
(2" ac = N exp | M Extr, 7z Egl —CGy + Gs| ¢. (B.5)
Introducing the replica symmetric ansatz (4.22) into the functions G;, G and G3 we obtain:

Gi(n)

75+712qa +T Y Qi+ (B.6)

(a102)

" ( ! S
= Cosen’yf,y / H dz] ‘TJ |: (n i 1)! tanh(,@’y) r[l Z;
j=

K
+ ﬁ tanh®(87) [ | §+---]

Jj=1

K n
h"™ (
= COSeMB /dej m(z;) ll+ tanh(G7) H ]

e 1 K K
— on Hd:EJ W(J)j) 1+H.’Ej ,
j=1 j=1

where we use the Nishimori condition v — 00, 8 = 1 to obtain the last line.

g2 (n) = 1 + Z qaqa + Z Qa1a2Qa1a2
{araz)
= /dacdac (z)7(Z) [1 + zz]" . (B.7)
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and

Gs(n)

i)

a=1

%ln Triray l<exp

d7Z €Xp [Z ETan:O Z(Utl"'am> ‘/l\al"'am T - TOM] ]

2mi ZC+1
>C

?{ a7 exp [2 [ diR(@) [T0, (1 + r“f)]]

FBCY ™

a=1

1
i In Tryray <exp

* ¥ 2mi Zo+
1 i c c "
= oo %/Hd@, 7(@) [Z (exp [FB¢T]) [[(1+72) (B.8)
=1 =41 =1
By using Eq. (4.16) we can write
1 c 0 0 0
=—= 7= = - C — — B.
f=mgixng S o G0 -0 g G+ g Gw]. (B9
what yields the free-energy (4.24).
B.3 Energy density at the Nishimori condition
In general the average internal energy is evaluated as:
U = ((HOYF))p)ag (B.10)

_ 2¢ Pyp({Tu3 | Q) Prs(€) 3, H(y*, F*) Pyp-({Tu} | T) Prep=(T)
- ; > 7.¢ Pio{Tu} 1 €) Prs(C) 22 Pyep-({Tu} | 7) Prep- () ’
where the hyper-parameters v*, F'* are used in the Hamiltonian H and B* is the temperature, while
v, F and @ are the actual parameters of the encoding and corruption processes.
The Nishimori condition is defined by setting the temperature and all hyper-parameters of the
Hamiltonian to the values in the encoding and corruption processes. If this is done, the expression for

the energy can be rewritten:

 Yg. HOWF) Pyg({Tu} | 7) Prp(T)
' ZJ,T P’YB({ju} | 7') PFB(C) : (B.ll)

By plugging (4.7) for the likelihood P,5({J,} | T) and for the prior Prg((); setting the hyperparam-

eters to vy — 00, B = 1 and F' = atanh(1 — 2p) and performing the summation over J first, we easily
get:
u= 1im£——F(1—2) (B.12)
= i D). .

M —o0

Note that this expression is independent on the state.
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B.4 Recursion relations

We start by introducing the effective field Z,; :

Pyj(+)e T = Pyy(-)etP”
P (+)eF + Py ()P

tanh(5%,;) =

(B.13)

Equation (4.30) can be easily obtained from the equation above. Equation(4.31) is then obtained

by introducing Eq. (4.29) into Eq. (4.30) and performing a straightforward manipulation we obtain

Eq. (4.32):

Trgryyexp [By (=T IT; 75— 1) | TL, IT; €757 exp (8705(r; — 1))
Tre,.y exp [ﬂ7 (+.7,mg H;’ T — 1)] H:, H'j' ePF7i exp (B%,;(tj — 1))

exp(—26Z ) =

b

where

P,,j (Tj)e_ﬁFTj

exp (B2y;(7; = V) = —p 5 epF

and the products H:} and H;I are over v € M(j)\ p and j € L(u) \ k respectively.

The above equation can be rewritten as:

Trir,y H;’ exp [(ﬂF + Z; 55,,]-) Tj] [cosh(ﬁ7) (1 - Ty H;' Tjtanh(ﬂfy))]

exp(—20Z ;) =

By introducing the Nishimori condition 8 = 1 and vy — o0 and computing traces:

N
I ecqune 2or=x1 €7 + Tulljeciung 2or=s1 T€T
1 = Tulljecqus tanh(zy;)

1+ 7, HjeL(u)\k tanh(z,;)’

exp(—2B%Zux) =

where we have introduced

sy =F+ Y By
veM(5)\p

A brief manipulation of the equation above yields Eq. (4.32).
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Appendix C

MN codes: technical details

C.1 Distribution of syndrome bits

In this section we evaluate probabilities p? associated to syndrome bits in MN and Gallager codes.

In the case of Gallager codes a syndrome bit p has the form

zN:Cll ®"'®CIK7 (C]-)

where ¢ € {0,1} and @ denotes mod 2 sums. Each bit (; is randomly drawn with probabilities
P(¢(=1)=pand P({ =0) =1— p. The probability p%(K) of z, = 0 equates with the probability of
having an even number of {; = 1 in the summation, therefore:

K Kl

pI(K) = l%nmpl(l—p)l{_l

K K
= Y (-1 & =it p(1-p)< . (C.2)
1 even o
Consequently

1 - K! ! K-l
p(K) = Z ®—pm? (1-p)
1 odd

K
K! _
= - > (- mpl(l -p)¥. (C.3)
1 odd
From Equations (C.2) and (C.3) above we can write:

K

1-2pK) = Y (1) ey A p)
1 odd
= (1-p-p*=0-2p)~ (C-4)
From what we find:
PE(K) = 5 — 51— 2p)". ()
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For MN codes syndrome bits have the form:
zuzgjlEB"'eang@Cll@"'@ClLa (C6)

where signal bits ¢; are randomly drawn with probability P({ = 1) = p¢ and noise bits (; are drawn
with probability P(( =1) =p
The probability p2(K, L) of z, = 0 is, therefore:

PpU(K,L) = p(K)pd(L)+ p;(K)py(L)
= 1-py(K)—pi(L)+2p,(K)p:(L). (C.7)

where p?(K) and p2(L) stand for probabilities involving the K signal bits and L noise bits, respectively.

By plugging Equation (C.5) into Equation (C.7) we get:

p(K,L) = 1-p3(K,L)
= % - %(1 —2pe)¥ (1-2p)". (C.8)

C.2 Replica theory

For MN codes the replicated partition function has the following form:

(Z"acc = Z S 11 <exp (F §ﬁz S")> ﬁ <exp (FnCﬁéTﬁ) ><

SnTl, T"J 1 El:]_

X

<H H exp [ ’Y.Aul)( ST T, — 1)]> . (C.9)

gh =t A
By introducing averages over constructions (4.18) as described in Appendix B.1 we find:

(Z e = Z Z H<exp (F§525a>> ﬁ<exp (anin‘-"»g

S" T, T j=1 ¢ j=1 a=1

x Yy HPc(Cj) HPD(Dl)
{C’Jtz}J':l =
1 1=, i b A=ie ik
{A}J 1
M dy; 1 > A
l (Grl1 =11, 1) Gl =L, 1)
X H ‘%%—YD1+1XIZ 1 2 L ‘|
=1 l
n
X H exp IB’YA(jl) Z(Sﬁ eSS T T — 1)] . (C.10)
gb a=1
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Computing the sum over 4 we get:

(ZMaec = Z > ﬁ <eXp (F 0 Z Sa) >U1Af[1 <exp (an Xn: Tf) ><

Sn Tl ° aTn] 1 — a=1
ud 1 dz; 1 dy; 1
Y H'Pc(C’j) [ 7o(D))— . ?{_{D_ﬂ
{C;j,D:1} j=1 =1 2mi Z 27i P
Zil-“ZiKYll'“YlL . o a a
x l_l[ {1 + B l_Ilexp [BY(SZ -+ 82 72 - 1)] } ‘ (C.11)
(28) a=

We use the identity e = cosh(z)(1 + otanh(z)), where o = £1, to write:

M n
(ZMage = Z Z H <exp (F 8’82 Sa>> H <exp <Fn(,8 ZTJO‘)>
S" T T gi=1 a=1 ¢
r 1 dy; 1
x Po(C;) Tl Po(Dy) f 74_,_1 (©12)
{C’%z}jl;[l ’ ll;ll N § 2ni ZC 1 2mi y, Pl
cosh” (8 n 3 i} )
: rl[{l R CARER R A L[+ si Tll"-Tthanh(ﬂ’Y)]}.
(al) a

The product in the replica index « yields:

n n

H [1 + S¢S 7 -7 tanh(By)] Z [tanhm (BY) (C.13)

a=1 m=0

X Z St SEm L G GEm O pam "'Tch"]’
(ala"' ’am>
where (a1, -+ ,am) ={a1, - ,am 1oy < - < g}
The product in the multi-indices (il) can be computed by observing that the following relation
holds in the thermodynamic limit:

mmaz

H Q+ew) = Z Z Yitys = Pitym

(2l m=0 ((il)1, ,(il)m)
N—co
=% exp lz ¢<il):| ) (C.14)
)
with mmaz ~ (NK ML) /KL
We find Eq. (5.26) by putting Egs. (C.14) and (C.13) into (C.12) and using the following identities

to introduce auxiliary variables:

N
1 a1 Qm —
/dqm...am(slqal...am — WZZJ'SJ‘ o 5 ] =1
j=1
| M
/dral...am ) lral...am — MZYlTlal,..Tlam] = 1 (C.15)
1=1
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C.3 Replica symmetric free-energy

We first compute the normalisation N for a given :

dgoday drodr MLINK =N =N
N = /(M>/(M) exp [77@5{ ré — NgoGo — Mmoo

2mi 271 K!L!
H [ 5o ettt Hf s o (.16)
By using Cauchy’s integrals to integrate in Z; and Y; and Laplace’s method we get:
N = exp {EXtrq(,,f;‘o,ro,?o [%%Qé{ re — NgoGo — Mrofo

- £0(6)- £ (5)])

The extremisation above yields the following equations:

| XN
0o = 52 Ci=C (C.18)

j=1

1 & —
rofo = - l_zlLl =L (C.19)
—(K — 1L
wre = Cgoyr (C.20)
The variables can be normalised as:

Josam g o Tasam g (C.21)

90 To

By plugging Eqgs. (C.17), (C.18), the above transformation into (5.26) and by using Laplace’s

method we obtain:

6 n
<Zn>A,£,C = Extry .57 exp !NEZ Z qufl...am ré’l...am

m=1 (a1-0m)

- NCY > quanbaran —MLY Y rm...am?al...am]

m=1{ai-am) m=1(ai--oam)

N

M
X > Po(CH ] D Po(Dy)
j=1 Cj =1 Dy
N C" n
X H (F]J) TI'{S]q} <exp Fsﬂfz Sa]>
i=1 \%0 a=1 ¢
dZ; exp [Zj anzo E<a1___am> Qay ey S* -+ .Sam]
2mi
M Dl' n
X H (A_Dl> TI'{Tla} <exp Fn,BC Z Tla] >
1=1 \"0 a=1 ¢

ch+1
f dl/l xp I:)fl 27’7‘:0 Z(Cﬁ'--am) ?ar--am T ... Ta""] ] }
: 2mi ’

j
o Yo (C.22)
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where T,, = e~ cosh”(Bv) tanh™(B3y).

We can rewrite the replicated partition function as:
n 6 Yal T
(2™)ae,c = exp §{ NExtr .57 EG1 —CGs — LGs + Ga + G5 (C.23)
Introducing the replica symmetric ansatze:
Goson = / Az 7(2) 8™ oo, = / &z #(3) 3™ (C.24)
and
roran = [ W)Y Farean = [0 5@ T (C.25)

By introducing the Nishimori condition v — oo and 3 = 1, we can work each term on (C.23) out

and find:

G1(n) = 76+712an +T Z qalag a1a2 +- (C26)
(a12)
b ( K L
= CosemﬁﬁV /H da; del d(y1) l CE] ) tanh(87y) 1_[1 H
j= =

L
n! 2 2 2
+ -2 tanh®(8y) HacJHyl —|—]
j=1 =1

cosh™(8y) ud - !
= B /Hd:c] m(z; del¢yl 1+ tanh(8y) H 1:[11/1

J

I
-

n

12 /dej m(z;) de,qsyl ll+Hm,Hy,] ,
Jj=1 =1

G2 (n) = 1 + Z qaqa + Z QalaQQalag
(ara2)
= /dar:dac ™ @)1+ 2z]". (C.27)
Similarly,
Gs(n) = 1+ Zrara + Z TarasTaras +

{araz2)

~ [ dydg o)) 1+ vil" (C.28)

125



APPENDIX C. MN CODES: TECHNICAL DETAILS

N n
1 C;!
Gi(n) = NZln > Pe(Cy) <£—J) Tr{sa) l<exp Fsﬁgz:s;fb
j 'l a=1
f dZJ exp I:ZJ 221:0 E(al---am) Zl\al---am S‘;,xl ce S;lm] ]
X —_

2mi VAchl
j

3

1 & Cy!
= NZ In Z'Pc(cj) <60—11> TI'{S?} <exp
0

j=1 Cj

FBeY. s;-l] >
13

a=1

7{ dz; exp [Z; [ dzw(3) [T, (1 + $53)]
2mi Z]Cj+1

C; C; "
= In Y Po(Cy) / [1 4z 7@) lz (exp [F,BES)). H(1+S@)] (C.29)
C; =1

S==+1 i=1

In the same way:

M
i) = 3y 3o ot () 1 [(
Dy

=1

FoBC Y Tf’] >
¢

a=1

dy; exp I:}/l Z?n:ﬂ Z(al---am) ?al"'am Tlal . Tlam]
% halnid
2mi y,Prtt

= —Zln ZPD Dl< )Tr{pa |:<eXP nﬂCZTzD

/ 4y, exp [Yl [ d58@) Moy (1 + 779 ]
« §

¢

2me Y;D"H
D, N D, n
~ 0 Y Po(0) [ T[40 6@ [Z (exp[Fafcrl), [J0+73)|  (C30)
D, 1=1 r=+1 i=1
By using Eq. (5.19) we can write
(] — 0 — 0
f = IBExtrﬂﬁd)d) [K n . Gi(n) = C n L Ga(n) — L n . Gs(n)
0 0
£ an G+ gl G, (1)

what yields free-energy (5.29).

C.4 Viana-Bray model: Poisson constructions

The Viana-Bray (VB) model is a multi-spin system with random couplings and strong dilution [VB85].
We can introduce a VB version of our statistical mechanical formulation for MN codes. The Hamil-

tonian for a VB-like code is identical to Eq. (5.13):

N M
Hgauge(s T; £ C ')/Z'A(Jl "'SJ'KTh"'TlL —1)_FsZ§ij_FnZClTl' (C32)
@b =t =
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The variables A(jl) are independently drawn from the distribution:

LK ) ) + —2E a1, (C.33)

P(A) = (1 T MI-INEK + ML-1NK

The above distribution will yield the following averages:

<Z A<ﬂ>> = M (C.34)

ab A

< > A<ﬂ>> = C (C.35)

(Gr1=FFrli-lr) A
< > A<ﬂ>> = L (C.36)
(G1--jrli=l---lr) A
In the thermodynamic limit the above summations are random variabels with a Poisson distributions:

T
_uM
z!

P A(jl) =z = e (C.37)
)

“l
P 3 A =zb = 0L (C.38)
ab 7!

(j1=3--jxl1-lL)
~T°
_ _ -I
P >y Agy=o¢ = e (C.39)
(jr-jrcla=l-lr)
Since the variance of a Poisson distribution is given by the square root of the mean in the thermody-

namic limit:

M
P Z Ay =z =5 8(@@ - M). (C.40)

ab
The Poisson distribution for the construction variables C' and L will imply that a fraction N e C of
the signal bits and M e~ L of the noise bits will be decoupled from the system. These unchecked bits
have to be estimate by randomly sampling the prior probability P(S;), implying that the overlap p is

upper bounded by:

1 — —
p < N [N — Ne © + Ne 9(1 — 2p¢)
< 1-e %+ 676(1 — 2p¢)
< 1-2pe©. (C.41)

Therefore, a VB-like code has necessarily an error-floor that decays exponentially with the C' chosen.
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Appendix D

KS codes: cummulant expansion

In this appendix we propose to expand Egs. (6.19) to (6.24) into cummulants and truncate the
series, speeding up the optimisation of constructions and avoiding multi-dimensional Monte-Carlo
integrations. To exemplify the procedure, the same family of codes with two signal sub-matrices
presented in Section 6.3 is analysed and equations for first (delta approximation) and second order
(Gaussian approximation) cummulant expansions are obtained.

A n-order cummulant [z],, of a probability distribution P(z) is defined as:
le]n = 2 InFP(w = 0) (D.1)
n — 6(,(]’"’ - ) *

where FP(w) = [ dz e~**¥ P(z) is the Fourier transform of P(z).

Equations (6.19) to (6.24) can be expanded in series of cummulants by observing the following

relationships:
6—nln.7-'Pj (w=0) = (;K; — 1)ﬁ1nf13j (w=0)+ (aiKz-)a—nln]-'ﬁi(w =0). (D.2)
Own Owm Owm
In the same way:
;—nln]—'Rl (w=0) = —nln]-'ﬁl (w=0)+ ﬂln {e7®CEn) |mo (D.3)
wn Ow Ow™ ¢
%ln}'Rz(w =0) = %ln (e wtEn)y ¢ lo=0 (D.4)
For the conjugate distributions we have:
9" P (w=0)= AN Kﬁldx'P (z;)dy1 Ry (y1)dy2 R D.5
o 1 ERD / u i P1(xj)dyy Ry (y1)dy2 Ra (y2) x (D.5)
e—z’w[a.ta.nh(ta.nh(yl)ta.nh(yg) 2t tanh(zj))]] o
O \nrP (w=0)= 9 l / Kﬁldw-P (z;)dyRo (y) e~ iatanh(tanh(y) [;27" tanh(z,))] (D.6)
Do 2 Do i j2\Zj)ay ey »
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K,
o D " —zw tanh(tanh b h(z
%111]:31 =0)= 8w"1n [/H dz; Py (z;)dyRy (y) e latanh(tanh(y) [T,2, tanh(s;))] ,(D.7)
an 'n, Ky
a—lnfRz ((U — 0) — In /H d$JP2 (l' —zw[atanh(l_[- tanh(wj))] (DS)
j=1 w=0

The equations for the first order (n =

Ir1 = (a1K1 - 1)@1 + Clsziz

71 = atanh [tanh2 (yl)tanhKl_l(xl)}

nn=n+1-2pF,

71 — atanh [tanh(yl)tanhKl (ml)]

Lo =

1) cummulant expansion are:

(OélKl)ﬁ?\l

y2 = (1-2p)F,

+ (O(sz - 1)?2\2

)
Zo = atanh [tanh(yg)tanth_l(xg)] (D.10)
)
)

J2 = atanh [ta,nhK2 (wg)] .

The field generating the decoded message is given by:

h= alKliEl + CE2K2§2.

(D.13)

The first-order approximation is equivalent to assuming that the probability distributions in Egs.

(6.19) to

(6.24) are delta distributions.

Eliminating the equations for the section 2n, the second order (Gaussian, n = 2) expansion gives:

<.’E1> = (OélKl - ].)< ) (a2K2)<C/I?\2> 0'31 = (a1K1 - 1)0’%1 + (Cszz)O'%z (D].4)
<.’L‘2> = (a1K1)< ) + (Olsz — 1)(@2) 032 = (Olel — 1)0’%1 =+ (OLQKQ — 1)0% (D15)
W) = @+Q-20)F, o2=02+4f(1—p)F? (D.16)
¥ = <atanh ltanh Y1) H tanh(ml,j)] (D.17)
7j=1,...,K1
Y1,Z1,5
05 = <atanh2 ltanh Y1) H ta.nh($1,j)] —(@)? (D.18)
7j=1,...,K1
Y1,%1,5
</.’E\1> = <atanh ltanh yl 1)tanh(y1 2) H tanh(xl,j):| > (D].g)
j=1, K1—1 Vity171
oz = <atanh ltanh y1,1)tanh(y1,2) H tanh(ml,j)] > - (21)* (D.20)
j:l,...,Kl—l Y1,1,91,2,T1,5
<§I\2> = (1 — 2p) <atanh tanh(Fn) H tanh(xg,j) > (D21)
7j=1,...,Ka—1 Ta,;
cr%2 = <atamh2 tanh(F},) H tanh(xz,j)] > — (22)? (D.22)
7j=1,...,Ko—1

2,5
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0.3 T T T T
i * channel capacity
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Figure D.1: Threshold p, as a function of a; for a KS code with K; =1, K = 3 and R = 1/5
(a = 5). Circles: Monte-Carlo integrations of saddle-point equations (4000 bins). Squares: PP
decoding simulations (10 runs with size N = 5000). Triangles: Gaussian approximation. Stars: delta
approximation.

The decoding field is then :

(h)y = (auK1)(@1) + (a2 K2)(T2) (D.23)
or = (aKi1)o3, + (a2K3)0%, (D.24)

In the above equations (---) indicates Gaussian means and o2 variances. This approximation is,
therefore, equivalent to assuming that distributions in Eqs. (6.19) to (6.24) are Gaussians.

In Fig. D we show thresholds ps obtained by the delta and Gaussian approximations and compare
with simulations and results obtained by Monte-Carlo integration of Egs. (6.19) to (6.24). The
approximations considerably overestimate the performance and generate poor optimisations (a; = 2

for the Gaussian approximation and a; = 3,4 or 5 for the delta approximation).
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Appendix E

Path lengths on random graphs

In this appendix we evaluate the probability distribution of lengths of paths starting in a randomly
selected node.

A regular Gallager code of rate R = N/M can be represented by a bipartite graph G(M, M — N)
with M nodes in the signal class and M — N nodes in the check class. The degree of each signal node
is C' and the degree of each check node is K. A path is a subgraph with no cycles.

Lets organise the graph in generations such that in generation 0 (go) we have one randomly chosen
signal nodes and the C check nodes connected to it. The following generations g; are then recursively
produced from this initial generation.

A subgraph with n generations is denoted by G™. If this subgraph G" has a tree structure, to say
giNgn=0for0<I,m<nl+#m,one can denote G® € T". Suppose that one has G” € 7". What
is then the probability that the addition of the generation g,,11 produces a cycle of any size 7

The total number of signal nodes is M, the total number of check nodes is M — N. The number

of signal nodes in G" is

N, = i(o — 1) (K —1)7. (E.1)

J

The number of check nodes in G is

|
-

n

M,=1+ (C—-1)) (C—-1) (K —1). (E.2)

.
Il
<

The probability of cycle not emerging in the generation g, is then :

Mn+1—M" Nn+1_Nn

M,+j5-1 N,+j-1
n+1 n+1 n ny _ _ - 4
PLGMH € T | Gn e T = ,1;[1 (1 nti ) };[1 (1 ) ) (E.3)
The probability that a cycle emerges in generation g,, is then:
Pn)=P{G ¢ T |G e T }[[P{GF €T/ |G €T/} (E.4)
J
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o
[y
T
|

Figure E.1: P(l) for K = 5, M = 5000, M — N = 2000.

A simpler lower bound for Equation (E.3) is:

Mn+1 . Nn+1 .
n n n n Mn+.7_1 Nn+.7_]-
P{G "t e T |G ET}ZH<1—7M_N )H(l—iM ),
Jj=1 Jj=1

as Mn+1 - Mn S Mn+1 and Nn+1 - Nn S Nn+1-

Simplifying further:

Mn+1 Nn+1
PG € T | Gn e TP} > (1 2 M”“) (1 _ 2 Nni N"“) (E.5)

M-N M
j=Mn41,l=Nn j l
s 2Mun 2N | +1Z Y s C (—1)i+ (2 Mn (2 Nnpa
- M—N M Myt1,j Y Nnga,l M—-N M ’
GHI>1
Where Cyy,,,; is a combinatorial factor. Observing that the series in the left hand side has

positive sign ( an order M number of terms is needed to cancel the sign of the leading order positive
term, but only an order 1 number of terms is available in the whole summation) one can write:

2 M2, +aNz,

n+1 n+1 n n _
PG eT"|G"eT"} > 1 5 i ,

(E.6)

where a =1 — M/N =1 — R = C/K. The probability that a cycle of any size emerges in the gn41

generation is then:

pigr g T | gr e Ty < AOTT), (1)
where
K 2 2
#(C,K,n) =2 vl (M7, 1 +aN.,,). (E.8)

Since n, C, K are of O(1), ¢(C, K, n) is also of O(1) and the probability that a cycle emerges vanishes

in the thermodynamical limit.
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Figure E.2: Mean cycle-free length (I) as a function of the size M

Another upper bound can be obtained by using that
N, M, < (1 - R)"nK?",

resulting in

(1-R)>™n’K*"(1 + a)
M

rp{gn—l—l ¢ Tn+1 | gn = Tn} S % (Eg)

It can be deduced from (E.4) P(n) < P{G" ¢ 7" | G» ' € 7" '} and one can find the upper

bound:

4n2K4n
M

P(n) < (E.10)

For large M one has P(n) ~ P{G" ¢ T | G"! € T" 1}. It can be seen in (E.10) that for large
M only paths with length of at least order InM can have finite probability.
The length of a path crossing n generations is [ = 4n, the upper bound becomes:

I2K!
4M

P(l) < (E.11)

Equation (E.4) can be computed numerically. In Figure E.1 the distribution of path lengths
obtained for a system of size M = 5000 with K =5 and N = 3000 is shown. In Figure E.2 we show
the mean path length () as a function of the size M.
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Appendix F

Publications related to this thesis

The research reported in this thesis resulted in the following publications:

Vicente, R., Saad, D. and Kabashima, Y., Finite-connectivity systems as error-correcting codes,

Phys. Rev. E 60 (1999), 532-5366.

Kabashima, Y., Murayama, T., Saad, D. and Vicente, R., Regular and irreqular Gallager-type
error-correcting codes, in Advances in Neural Information Processing Systems 12, edited by S.

A. Solla, T. K. Leen and K. R. Miiler (MIT Press, Cambridge, MA) (1999), pp. 271-278.

Murayama, T., Kabashima, Y., Saad, D. and Vicente, R., Statistical physics of regular low-
density parity-check error-correcting codes, Phys. Rev E 62, (2000) 1577-1591.

Vicente, R., Saad, D. and Kabashima, Y., Statistical mechanics of irregular low-density parity-

check codes, J. Phys . A 33, (2000) 6527-6542.

Vicente, R., Saad, D. and Kabashima, Y., Error-correcting code on a cactus: a solvable model,

Europhys. Lett. 51, (2000) 698-704.

Vicente, R., Saad, D. and Kabashima, Y., Error-correcting codes on o Bethe-like lattice, to

appear in Advances in Neural Information Processing Systems 13.

Saad, D., Kabashima, Y. and Vicente, R., TAP for parity-check error-correcting codes, to appear
in Saad, D. and Opper, M. (eds.) Advanced Mean Field Methods. MIT Press.
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