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Motivation

We recall that given a unitary ring R we can construct the
preadditive category CR defined as follows:

(a) Obj(CR) := {∗}
(b) HomCR(∗, ∗) := R.

It is well known that there exists an isomorphism

(CR,Ab) −→ Mod(R).

where (CR,Ab) denotes the category of additive covariant
functors F : CR −→ Ab and Mod(R) is the category of left
R-modules.
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Following Mitchell’s philosophy, given a small preadditive
category C we can think C as a ring with several objects. So, we
can construct its category of left C-modules as follows:

Mod(C) := (C,Ab) := {F : C −→ Ab | F additive and covariant}

We recall that

(a) Mod(C) is a Grothendieck abelian category.

(b) {HomC(C,−)}C∈C is a set of projective generators.
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Let T and U be rings and M a T -U -bimodule (M ∈ UModT ).
We can construct the triangular matrix ring

Λ =
[
T 0
M U

]
.

The elements of Λ are 2× 2 matrices [ t 0
m u ] with t ∈ T , u ∈ U

and m ∈M . Addition and multiplication are given by the
ordinary operations on matrices as follows:

1
[
t1 0
m1 u1

]
+
[
t2 0
m2 u2

]
=
[
t1+t2 0
m1+m2 u1+u2

]
and

2
[
t1 0
m1 u1

] [
t2 0
m2 u2

]
=
[

t1t2 0
m1t2+u1m2 u1u2

]
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In order to construct the triangular matrix category I need to
recall some basic constructions.
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If C and D are preadditive categories, we can define the
tensor product C ⊗Z D of two preadditive categories:

(a) Objects: pairs (C,D) with C ∈ C and D ∈ D.

(b) Morphisms:

HomC⊗ZD

(
(C,D), (C ′, D′)

)
:=HomC(C,C

′)⊗ZHomD(D,D′).

The composition in C ⊗Z D is given as follows: given

f1 ⊗ g1 ∈ C(C,C ′)⊗D(D,D′) = HomC⊗ZD

(
(C,D), (C ′, D′)

)
and

f2 ⊗ g2 ∈ C(C ′, C ′′)⊗D(D′, D′′) = HomC⊗ZD

(
(C ′, D′), (C ′′, D′′)

)
.

we define the composition
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(C,D)
(f1⊗g1) // (C ′, D′)

f2⊗g2 // (C ′′, D′′)

as follows:

(f2 ⊗ g2) ◦ (f1 ⊗ g1) := (f2 ◦ f1)⊗ (g2 ◦ g1)
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With this C ⊗Z D becomes an preadditive category.

So we can consider its category of modules

Mod(C ⊗Z D).
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We recall that if U and T are rings, then M is a T − U
bimodule if and only if M ∈ Mod(U ⊗Z T

op).

Definition

Let U and T be preadditive categories. We say that M is a
U − T -bimodule if M ∈ Mod(U ⊗Z T op).

We have the necessary ingredients to construct the triangular
matrix category.
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Given U and T preadditive categories and M ∈ Mod(U ⊗ T op)
we have the following.

Definition

We define the triangular matrix category Λ =
[ T 0
M U

]
as

follows.

(a) Objects: are matrices of the form[
T 0
M U

]
with T ∈ T and U ∈ U .

(b) Given a pair of objects in
[
T 0
M U

]
,
[
T ′ 0
M U ′

]
in Λ we define

HomΛ

([
T 0
M U

]
,
[
T ′ 0
M U ′

])
:=
[
HomT (T,T ′) 0
M(U ′,T ) HomU (U,U ′)

]
.

(We recall that (U ′, T ) ∈ Obj(U ⊗ T op) and
M : U ⊗ T op −→ Ab).
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Given two morphisms in Λ =
[ T 0
M U

]
:[

t1 0
m1 u1

]
:
[
T 0
M U

]
−→

[
T ′ 0
M U ′

]
(m1 ∈M(U ′, T ))

[
t2 0
m2 u2

]
:
[
T ′ 0
M U ′

]
−→

[
T ′′ 0
M U ′′

]
(m2 ∈M(U ′′, T ′))

we want to define [
t2 0
m2 u2

]
◦
[
t1 0
m1 u1

]
.

But this must be an element in

HomΛ

([
T 0
M U

]
,
[
T ′′ 0
M U ′′

])
:=
[
HomT (T,T ′′) 0
M(U ′′,T ) HomU (U,U ′′)

]
.

We define [
t2 0
m2 u2

]
◦
[
t1 0
m1 u1

]
:=
[
t2◦t1 0

? u2◦u1

]
Then we have that

? ∈M(U ′′, T ).
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If this were the matrices from linear algebra, we have that

? := m2 • t1 + u2 •m1.

This is the right definition.
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Since t1 : T −→ T ′ we have 1U ′′ ⊗ top1 : (U ′′, T ′) −→ (U ′′, T ) in
U ⊗ T op. Now, we recall that M ∈ Mod(U ⊗ T op)
(i.e, M : U ⊗ T op −→ Ab) then we have a morphism of abelian
groups

M(1U ′′ ⊗ top1 ) : M(U ′′, T ′) −→M(U ′′, T )

Since m2 ∈M(U ′′, T ′) we have that
M(1U ′′ ⊗ top1 )(m2) ∈M(U ′′, T ). So, we define

m2 • t1 := M(1U ′′ ⊗ top1 )(m2).

Similarly, we set

u2 •m1 := M(u2 ⊗ 1T )(m1)

where M(u2 ⊗ 1T ) : M(U ′, T ) −→M(U ′′, T ).



Triangular matrix categories and recollements

Basic definitions and properties

With this we have that

? := m2 • t1 + u2 •m1 ∈M(U ′′, T ).
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Now, for[
t1 0
m1 u1

]
,
[
r1 0
n1 v1

]
∈ HomΛ

([
T 0
M U

]
,
[
T ′ 0
M U ′

])
=
[
HomT (T,T ′) 0
M(U ′,T ) HomU (U,U ′)

]
we define [

t1 0
m1 u1

]
+
[
r1 0
n1 v1

]
:=
[
t1+r1 0
m1+n1 u1+v1

]
Then, it is clear that Λ is a preadditive category since T and U
are preadditive categories and M(U ′, T ) is an abelian group.
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Definition

The (Jacobson) radical of a preadditive category C is the
two-sided ideal radC in C defined by the formula

radC(X,Y ) = {h ∈ C(X,Y ) | 1X − gh is invertible ∀g ∈ C(Y,X)}

for all objects X and Y of C.

Now, we compute the radical in Λ.

Proposition

radΛ

([
T 0
M U

]
,
[
T ′ 0
M U ′

])
=
[
radT (T,T ′) 0
M(U ′,T ) radU (U,U ′)

]
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In the classical setting: U and T rings and M a
U − T -bimodule. We have the following comma category:(

Mod(T ),Hom(M,Mod(U))
)

(a) Objects: are morphisms in Mod(T ) of the form

f : A −→ HomU (M,B)

with A ∈ Mod(T ) and B ∈ Mod(U).

(b) Morphisms: a morphism

Ay
HomU (M,B)

θ //
A′y

HomU (M,B′)
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consists of a pair of morphisms (α, β) where α : A −→ A′ in
Mod(T ), β : B −→ B′ in Mod(U) such that the following
commutes

A
α //

f
��

A′

f ′

��
HomU (M,B)

HomU (M,β) // HomU (M,B′)

Theorem

There exists an equivalence

Mod
( [

T 0
M U

] )
'
(

Mod(T ),Hom(M,Mod(U))
)
.
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In order to have the same result for rings with several objects
we need to define the analogous of the functor HomU (M,−).
First, we note that if M ∈ Mod(U ⊗Z T op) and T ∈ T op then
M(−, T ) : U −→ Ab (i.e, M(−, T ) ∈ Mod(U)).

Definition

Let M ∈ Mod(U ⊗Z T op) be, define

G : Mod(U) −→ Mod(T )

(a) For B ∈ Mod(U), we set
G(B)(T ) := HomMod(U)(M(−, T ), B) for every T ∈ T .
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Definition

For η : B −→ B′ in Mod(U)

[G(η)]T := HomMod(U)(M(−, T ), η) : G(B)(T ) −→ G(B′)(T )

So, we have the following

Theorem [GOS]

There exists an equivalence

Mod
( [ T 0

M U
] )
'
(

Mod(T ),G(Mod(U))
)
.
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Where
(
Mod(T ),GMod(U)

)
is the comma category whose

objects are the triples (A, f,B) with A ∈ Mod(T ), B ∈ Mod(U),
and f : A −→ G(B) a morphism of T -modules. A morphism
between two objects (A, f,B) and (A′, f ′, B′) is a pairs of
morphism (α, β) where α : A −→ A′ is a morphism of
T -modules and β : B −→ B′ is a morphism of U-modules such
that the diagram commutes

A
α //

f
��

A′

f ′

��
G(B)

G(β) // G(B′)
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Let us recall the definition of a dualizing R-variety due to
Auslander and Reiten.

Definition

Let C be a category. It is said that C is a variety if C is
preadditive, with coproducts and with splitting idempotents.

Definition

It is said that and additive category C is a category with
splitting idempotents if for each idempotent
e = e2 ∈ HomC(X,X) there are morphisms µ : Y −→ X and
ρ : X −→ Y such that µρ = e and ρµ = 1Y .
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Now, we consider the R a commutative artin ring.

Definition

Let C be a variety.

(a) It is said that C is an R-variety if HomC(X,Y ) is an
R-module and the composition is R-bilinear.

(a) An R-variety C is Hom-finite if HomC(X,Y ) is a finitely
generated R-module.

Now, let us consider(
C,Mod(R)

)
:= {F : C −→ Mod(R) | F covariant}
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We have(
C,mod(R)

)
:= {F ∈

(
C,Mod(R)

)
| F (C) ∈ mod(R) ∀C ∈ C}

Remark(
C,mod(R)

)
is an abelian full subcategory of

(
C,Mod(R)

)
.

If C is an R-variety, there exists an isomorphism

Mod(C) :=
(
C,Ab

)
' //
(
C,Mod(R)

)
.
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We have a duality

DC :
(
C,mod(R)

)
−→

(
Cop,mod(R)

)
given by

DC(M)(C) = HomR

(
M(C), I(R/rad(R))

)
=

where I(R/rad(R)) is the injective envelope of R/rad(R).
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For example when we have an artin algebra A and consider the
category C = CA with just one object, then

DC :
(
C,mod(R)

)
−→

(
Cop,mod(R)

)
becomes the usual duality in artin algebras

D : mod(A) −→ mod(Aop)
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Definition

Let C be a Hom-finite R-variety. We denote by mod(C) the full
subcategory of Mod(C) whose objects are the
finitely presented functors. That is, M ∈ mod(C) if and
only if, there exists an exact sequence in Mod(C)

HomC(C1,−) // HomC(C0,−) //M // 0,

We have that mod(C) ⊆
(
C,mod(R)

)
.
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Definition

An Hom-finite R-variety C is dualizing, if the functor

DC : (C,mod(R))→ (Cop,mod(R)) (1)

induces a duality between the categories mod(C) and mod(Cop) :

(C,mod(R))
DC // (Cop,mod(R))

mod(C) //
?�

OO

mod(Cop)
?�

OO
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Example

Let Λ an artin algebra, then mod(Λ) is dualizing variety and
also mod(mod(Λ)) is a dualizing variety.
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Theorem [GOS]

Let T and U be dualizing R-varieties and M ∈ Mod(U ⊗R T op)
such that

1 M(U,−) ∈ mod(T op) for all U and

2 M(−, T ) ∈ mod(U) for all , T .

(a) Then Λ =
[ T 0
M U

]
is a dualizing R-variety.

(b) In particular, mod(Λ) has AR-sequences.
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Proposition

Let C be a dualizing K-variety with duality
DC : mod(C) −→ mod(Cop). Then the following statements hold.

(a) The triangular matrix category

[
C 0

Ĥom C

]
is dualizing.

(b) Suppose that C is an abelian category with enough
projectives. Then the triangular matrix category[
C 0

Êxt
1 C

]
is dualizing.
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The maps category maps(C)

Assume that C is an R-variety. The maps category, maps(C) is
defined as follows.

(a) The objects in maps(C) are morphisms

(f1, A1, A0) : A1
f1−→ A0

(b) the maps are pairs (h1, h0) : (f1, A1, A0)→ (g1, B1, B0),
such that the following square commutes

A1
f1 //

h1

��

A0

h0

��
B1 g1

// B0.
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Proposition

Let C be a K-variety and consider the category Λ =
[
C 0

Ĥom C

]
.

(i) There is an equivalence of categories

Mod(Λ)
∼−→ maps(Mod(C))

(ii) If C is dualizing, there is an equivalence of categories

mod(Λ)
∼−→ maps(mod(C))

Some AR-sequences of maps(mod(C)) can be computed from
those of mod(C).
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Proposition

Let C be a dualizing K-variety.

(1) Let 0→ τM
j−→ E

π−→M → 0 be an almost split sequence of
C-modules. Then the exact sequence in maps(mod(C)):

0→ (τM, 0, 0)
(j, 0)−−−→ (E, π,M)

(π, 1M )−−−−−→ (M, 1M ,M)→ 0

which is represented by the following diagram

0 // τM
j //

0
��

E
π //

π
��

M //

1M
��

0

0 // 0 //M
1M
//M // 0

is an AR-sequence.
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Proposition

Let C be a dualizing K-variety.

(1) Let 0→ τM
j−→ E

π−→M → 0 be an almost split sequence of
C-modules. Then the exact sequence in maps(mod(C)):

0→ (τM, 1τM , τM)
(1τM , j)−−−−−→ (τM, j, E)

(0, π)−−−→ (0, 0,M)→ 0,

which is represented by the following diagram

0 // τM
1 //

1
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j
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0
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Given a finite dimensional K-algebra Λ := KQ/I. Let i a source
in Q and ei the corresponding idempotent in Λ.

If Q′ denote the quiver that we obtain by removing the vertex i
and I ′ denote the relations in I removing the ones which start
in i.

So Λ = KQ/I is obtained from Λ′ := KQ′/I ′ by adding one
vertex i, together with arrows and relations starting in i.

Then Λ :=
[

K 0
(1−ei)Λei Λ′

]
. So Λ is the one-point extension of

Λ′.
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Now, in order to give a generalization of the previous
construction, we consider the following setting. Let C be a
Krull-Schmidt category and (U , T ) a pair of additive full
subcategories of C. It is said that (U , T ) is a
splitting torsion pair if

(i) For all X ∈ ind(C), then either X ∈ U or X ∈ T .

(ii) HomC(X,−)|T = 0 for all X ∈ U .

We get the following result that tell us that we can obtain a
category as extension of two subcategories.
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We get the following result that tell us that we can obtain a
category as extension of two subcategories.

Proposition (GOS)

Let (U , T ) be a splitting torsion pair. Then we have a
equivalence of categories

C ∼=
[
T 0

Ĥom◦ U

]
.

Here without danger to cause confusion Ĥom◦ denotes the
restriction of Ĥom◦ : C ⊗ Cop → Ab to the subcategory U ⊗ T op
of C ⊗ Cop.
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As an application of the last result, we consider Q = (Q1, Q0)
be a quiver. Recall that the path category KQ is an additive
category, with indecomposable objects the vertices, and given
a, b ∈ Q0, the set of the maps HomKQ(a, b) is given by the
K-vector space with basis the set of all paths from a to b. The
composition of maps is induced from the usual composition of
paths. Let U = {x ∈ Q0|x is a sink } and let T = Q0 − U , and
consider U = add U and T = add T . We consider the triangular

matrix category
[

T 0
HomKQ U

]
. Then we have a equivalence of

categories

KQ ∼=
[
T 0

Ĥom◦ U

]
.
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As a concrete example, consider the following quiver
Q = (Q0, Q1) with set of vertices Q0 = {ui, ti : i ∈ Z}. As
above, if U = {ui : i ∈ Z} and T = {ti : i ∈ Z}, and we consider
U = add U and T = add T , then we have an equivalence of

categories KQ ∼=
[
T 0

Ĥom U

]
,

· · · ui−1 ui ui+1 · · ·

· · ·

OO <<

// ti−1

OO ==

// ti

OO ==

// ti+1

OO <<

// · · ·

OO
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Definition

Let A, B and C be abelian categories

(a) The diagram

C
i∗

//
A

j!
//

i∗oo
B

j!oo

is a called a left recollement if the additive functors
i∗, i∗, j! and j! satisfy the following conditions:

(LR1) (i∗, i∗) and (j!, j
!) are adjoint pairs;

(LR2) j!i∗ = 0;
(LR3) i∗, j! are full embedding functors.



Triangular matrix categories and recollements

Recollements

i∗ = i!

i∗

B A
j! = j∗

j!

C

Figura: Left Recollement
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i∗ = i!

i∗

i!

B A
j! = j∗

j!

j∗

C

Figura: Recollement



Triangular matrix categories and recollements

Recollements

Our purpose in this section is to prove a generalization of the
following Theorem given by Q. Chen and M. Zheng in [4, Theo.
4.4].
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Theorem [Chen-Zheng]

Let R, S, C and T be rings. For any M ∈ Mod(R⊗ T op),
consider the matrix rings Λ :=

(
T 0
M R

)
Λ! :=

(
T 0

j!(M) S

)
,

Λ∗ :=
(

T 0
j∗(M) S

)
.

(a) If the diagram

Mod(C)

i∗
//
Mod(S)

j!
//

i∗oo
Mod(R)

j!oo

is a left recollement, then there is a left recollement

Mod(C)

ĩ∗

//
Mod(Λ!)

j̃!
//

ĩ∗oo
Mod(Λ)

j̃!oo
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So we have the result
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Theorem [GOS]

Let R,S, C and T be aditive categories. For any
M ∈ Mod(R⊗ T op), consider the matrix categories

Λ :=
( T 0
M R

)
Λ! :=

(
T 0

j!(M) S

)
, Λ∗ :=

(
T 0

j∗(M) S

)
, where the

bimodules j!(M) and j∗(M) are canonical constructed.

(a) If the diagram

Mod(C)
i∗

//
Mod(S)

j!
//

i∗oo
Mod(R)

j!oo

is a left recollement, then there is a left recollement

Mod(C)
ĩ∗

//
Mod(Λ!)

j̃!
//

ĩ∗oo
Mod(Λ)

j̃!oo
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Theorem [GOS]

Let R,S, C and T be dualizing. For M ∈ Mod(R⊗K T op) such
that MT ∈ mod(R) and MR ∈ mod(T op) for all T ∈ T and
R ∈ U , consider the matrix categories Λ :=

( T 0
M R

)
Λ! :=

(
T 0

j!(M) S

)
, Λ∗ :=

(
T 0

j∗(M) S

)
. Moreover suppose that

j!(M)S , j∗(M)S ∈ mod(T op) for all S ∈ S.

(a) If the diagram

mod(C)
i∗

//
mod(S)

j!
//

i∗oo
mod(R)

j!oo

is a left recollement, then there is a left recollement

mod(C) ĩ∗ //
mod(Λ!) j̃! //

ĩ∗oo
mod(Λ)

j̃!oo
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Thank you
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