Homological theory of k-idempotent ideal in dualizing varieties

Luis Gabriel Rodríguez Valdés advisor: Valente Santiago Vargas

Universidad Nacional Autonóma de México

29 de octubre de 2021

This is a joint work with V. Santiago Vargas (UNAM) and M. L. S. Sandoval Miranda (UAM-I).

Homological theory of k-idempotent ideals in dualizing varieties.

Preprint arXiv: 2008.07158v2 (2020)

L.G. Rodríguez Valdés, M. L. S. Sandoval Miranda, V. Santiago,

In classical representation theory one of the objects of study are the artin algebras Λ and its category of finitely generated left Λ -modules $mod(\Lambda)$. On the other hand, **dualizing varieties** were introduced by Auslander and Reiten as a categorical counterpart for doing representation theory. In fact, Auslander-Reiten theory has its origin from dualizing varieties.

Let Λ be an artin algebra and I an ideal of $\Lambda.$ The following are equivalent.

- (a) I is an idempotent ideal (that is, $I = I^2$)
- (b) There exists an isomorphism for all $M, M' \in \text{mod}(\Lambda/I)$

 $\operatorname{Ext}^{1}_{\Lambda/I}(M, M') \simeq \operatorname{Ext}^{1}_{\Lambda}(M, M').$

Let Λ be an artin algebra and I an ideal of Λ . It is said that I is a **k-idempotent** ideal if there exists an isomorphism for all $M, M' \in \operatorname{mod}(\Lambda/I) \operatorname{Ext}^{i}_{\Lambda/I}(M, M') \simeq \operatorname{Ext}^{i}_{\Lambda}(M, M') \quad \forall 0 \leq i \leq k.$

Given a small preadditive category C we can think C as a ring with several objects. So, we can construct its category of left C-modules as follows:

 $Mod(\mathcal{C}) := (\mathcal{C}, \mathbf{Ab}) := \{F : \mathcal{C} \longrightarrow \mathbf{Ab} \mid F \text{ additive and covariant}\}$

We recall that

- (a) $Mod(\mathcal{C})$ is a Grothendieck abelian category.
- (b) $\{\operatorname{Hom}_{\mathcal{C}}(C,-)\}_{C\in\mathcal{C}}$ is a set of projective generators.

There is a unique (up to isomorphism) functor $\otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}^{op}) \times \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ called the **tensor product**. The abelian group $\otimes_{\mathcal{C}}(A, B)$ is denoted by $A \otimes_{\mathcal{C}} B$ for all \mathcal{C}^{op} -modules A and all \mathcal{C} -modules B.

There is a unique (up to isomorphism) functor $\otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}^{op}) \times \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ called the **tensor product**. The abelian group $\otimes_{\mathcal{C}}(A, B)$ is denoted by $A \otimes_{\mathcal{C}} B$ for all \mathcal{C}^{op} -modules A and all \mathcal{C} -modules B.

For each C-module B, the functor ⊗_CB : Mod(C^{op}) → Ab given by (⊗_CB)(A) = A ⊗_C B for all C^{op}-modules A is right exact.

There is a unique (up to isomorphism) functor $\otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}^{op}) \times \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ called the **tensor product**. The abelian group $\otimes_{\mathcal{C}}(A, B)$ is denoted by $A \otimes_{\mathcal{C}} B$ for all \mathcal{C}^{op} -modules A and all \mathcal{C} -modules B.

- For each C-module B, the functor ⊗_CB : Mod(C^{op}) → Ab given by (⊗_CB)(A) = A ⊗_C B for all C^{op}-modules A is right exact.
 - **②** For each \mathcal{C}^{op} -module A, the functor $A \otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ given by $(A \otimes_{\mathcal{C}})(B) = A \otimes_{\mathcal{C}} B$ for all \mathcal{C} -modules B is right exact.

There is a unique (up to isomorphism) functor $\otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}^{op}) \times \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ called the **tensor product**. The abelian group $\otimes_{\mathcal{C}}(A, B)$ is denoted by $A \otimes_{\mathcal{C}} B$ for all \mathcal{C}^{op} -modules A and all \mathcal{C} -modules B.

- For each C-module B, the functor ⊗_CB : Mod(C^{op}) → Ab given by (⊗_CB)(A) = A ⊗_C B for all C^{op}-modules A is right exact.
 - **∂** For each C^{op}-module A, the functor A⊗_C : Mod(C) → Ab given by (A⊗_C)(B) = A ⊗_C B for all C-modules B is right exact.
- Solution Provide B and each C-module B, the functors A⊗_C and ⊗_CB preserve arbitrary sums.

There is a unique (up to isomorphism) functor $\otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}^{op}) \times \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Ab}$ called the **tensor product**. The abelian group $\otimes_{\mathcal{C}}(A, B)$ is denoted by $A \otimes_{\mathcal{C}} B$ for all \mathcal{C}^{op} -modules A and all \mathcal{C} -modules B.

- For each C-module B, the functor ⊗_CB : Mod(C^{op}) → Ab given by (⊗_CB)(A) = A ⊗_C B for all C^{op}-modules A is right exact.
 - **∂** For each C^{op}-module A, the functor A⊗_C : Mod(C) → Ab given by (A⊗_C)(B) = A ⊗_C B for all C-modules B is right exact.
- Prove a constraint of the second second
- For each object C in C we have $A \otimes_{\mathcal{C}} (C, -) = A(C)$ and $(-, C) \otimes_{\mathcal{C}} B = B(C)$ for all \mathcal{C}^{op} -modules A and all C-modules B.

伺い イラト イラト

It is said that and additive category C (preadditive with finite coproducts) is a category with **splitting idempotents** if for each idempotent $e = e^2 \in \operatorname{Hom}_{\mathcal{C}}(X, X)$ there are morphisms $\mu : Y \to X$ and $\rho : X \to Y$ such that $\mu \rho = e$ and $\rho \mu = 1_Y$.

It is said that and additive category C (preadditive with finite coproducts) is a category with **splitting idempotents** if for each idempotent $e = e^2 \in \operatorname{Hom}_{\mathcal{C}}(X, X)$ there are morphisms $\mu : Y \to X$ and $\rho : X \to Y$ such that $\mu \rho = e$ and $\rho \mu = 1_Y$.

Definition

Let ${\mathcal C}$ be an additive category with splitting idempotents. Such categories are called $\mbox{varieties}.$

If C is an R-variety, then Mod(C) = (C, Ab) is an R-variety, which we identify with the category of covariant functors (C, Mod(R)).

э

医马马马氏

If C is an R-variety, then Mod(C) = (C, Ab) is an R-variety, which we identify with the category of covariant functors (C, Mod(R)).

The category $(\mathcal{C}, \operatorname{mod}(R))$ is abelian and the inclusion

 $(\mathcal{C}, \operatorname{mod}(R)) \subseteq (\mathcal{C}, \operatorname{Mod}(R)) = \operatorname{Mod}(\mathcal{C})$

is exact.

Let C be a Hom-finite R-variety. We denote by mod(C) the full subcategory of Mod(C) whose objects are the **finitely presented functors**. That is, $M \in mod(C)$ if and only if, there exists an exact sequence in Mod(C)

$$\operatorname{Hom}_{\mathcal{C}}(C_0, -) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(C_1, -) \longrightarrow M \longrightarrow 0$$

Consider the functors

 $\mathbb{D}_{\mathcal{C}^{op}}: (\mathcal{C}^{op}, \operatorname{mod}(R)) \to (\mathcal{C}, \operatorname{mod}(R))$

 $\mathbb{D}_{\mathcal{C}}: (\mathcal{C}, \operatorname{mod}(R)) \to (\mathcal{C}^{op}, \operatorname{mod}(R)),$

which are defined as follows:

for any object C in C, $\mathbb{D}(M)(C) = \operatorname{Hom}_R(M(C), I(R/r))$ where r is the Jacobson radical of R, and I(R/r) is the injective envelope of R/r.

Consider the functors

 $\mathbb{D}_{\mathcal{C}^{op}}: (\mathcal{C}^{op}, \operatorname{mod}(R)) \to (\mathcal{C}, \operatorname{mod}(R))$

 $\mathbb{D}_{\mathcal{C}}: (\mathcal{C}, \operatorname{mod}(R)) \to (\mathcal{C}^{op}, \operatorname{mod}(R)),$

which are defined as follows:

for any object C in C, $\mathbb{D}(M)(C) = \operatorname{Hom}_R(M(C), I(R/r))$ where r is the Jacobson radical of R, and I(R/r) is the injective envelope of R/r.

Proposition

The functor $\mathbb{D}_{\mathcal{C}}$ defines a duality

$$\mathbb{D}_{\mathcal{C}}: (\mathcal{C}, \operatorname{mod}(R)) \longrightarrow (\mathcal{C}^{op}, \operatorname{mod}(R)).$$

An Hom-finite R-variety C is **dualizing**, if the functor

$$\mathbb{D}_{\mathcal{C}}: (\mathcal{C}, \operatorname{mod}(R)) \to (\mathcal{C}^{op}, \operatorname{mod}(R))$$
(1)

э

글 🖌 🔺 글 🕨

induces a duality between the categories $\mathrm{mod}(\mathcal{C})$ and $\mathrm{mod}(\mathcal{C}^{\mathit{op}})$:

Let C be a preadditive category. An **ideal** \mathcal{I} of C is an additive subfunctor of $\operatorname{Hom}_{\mathcal{C}}(-,-)$. That is, \mathcal{I} is a class of the morphisms in C such that:

(a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;

- (a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;
- (b) If $f \in \mathcal{I}(A, B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(C, A)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(B, D)$, then $hfg \in \mathcal{I}(C, D)$.

- (a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;
- (b) If $f \in \mathcal{I}(A, B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(C, A)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(B, D)$, then $hfg \in \mathcal{I}(C, D)$.

- (a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;
- (b) If $f \in \mathcal{I}(A, B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(C, A)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(B, D)$, then $hfg \in \mathcal{I}(C, D)$.

$$A \xrightarrow{f \in \mathcal{I}} B$$

Let C be a preadditive category. An **ideal** \mathcal{I} of C is an additive subfunctor of $\operatorname{Hom}_{\mathcal{C}}(-,-)$. That is, \mathcal{I} is a class of the morphisms in C such that:

(a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;

- (a) $\mathcal{I}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \cap \mathcal{I}$ is an abelian subgroup of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for each $A, B \in \mathcal{C}$;
- (b) If $f \in \mathcal{I}(A, B)$, $g \in \operatorname{Hom}_{\mathcal{C}}(C, A)$ and $h \in \operatorname{Hom}_{\mathcal{C}}(B, D)$, then $hfg \in \mathcal{I}(C, D)$.

Let \mathcal{I} and \mathcal{J} be ideals in \mathcal{C} . The **product of ideals** $\mathcal{I} \cdot \mathcal{J}$ is defined as follows: for each $A, B \in \mathcal{C}$ we set

$$\begin{aligned} (\mathcal{I} \cdot \mathcal{J})(A, B) \\ &:= \left\{ \sum_{i=1}^{n} f_{i} g_{i} \; \middle| \; f_{i} \in \mathcal{I}(C_{i}, B), g_{i} \in \mathcal{J}(A, C_{i}) \text{ for some } C_{i} \in \mathcal{C} \right\} \end{aligned}$$

э

きょうきょう

< ロ > < 回 > < 回 > < 回 > < 回 >

2

We say that an ideal \mathcal{I} of \mathcal{C} is **idempotent** if $\mathcal{I}^2 = \mathcal{I}$.

Luis Gabriel Rodríguez Valdés advisor: Valente Santiago Vargas Homological theory of k-idempotent ideal in dualizing varieties

글 🖌 🔺 글 🕨

æ

We say that an ideal \mathcal{I} of \mathcal{C} is **idempotent** if $\mathcal{I}^2 = \mathcal{I}$.

Definition

Let \mathcal{I} be an ideal of \mathcal{C} , we set Ann $(\mathcal{I}) := \{F \in Mod(\mathcal{C}) \mid F(f) = 0 \ \forall f \in \mathcal{I}(A, B) \ \forall A, B \in \mathcal{C}\}.$

A B M A B M

3

Let $\mathcal I$ be an ideal in a preadditive category $\mathcal C$. The **quotient category** $\mathcal C/\mathcal I$ is defined as follows:

(a) it has the same objects as $\mathcal C$ and

Let ${\cal I}$ be an ideal in a preadditive category ${\cal C}.$ The **quotient category** ${\cal C}/{\cal I}$ is defined as follows:

(a) it has the same objects as $\mathcal C$ and

(b)
$$\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A,B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A,B)}{\mathcal{I}(A,B)}$$
 for each $A, B \in \mathcal{C}/\mathcal{I}$.

Let ${\cal I}$ be an ideal in a preadditive category ${\cal C}.$ The **quotient category** ${\cal C}/{\cal I}$ is defined as follows:

(a) it has the same objects as $\mathcal C$ and

(b)
$$\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A,B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A,B)}{\mathcal{I}(A,B)}$$
 for each $A, B \in \mathcal{C}/\mathcal{I}$.

Let \mathcal{I} be an ideal in a preadditive category C. The **quotient category** C/\mathcal{I} is defined as follows:

- (a) it has the same objects as $\mathcal C$ and
- (b) $\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A, B)}{\mathcal{I}(A, B)}$ for each $A, B \in \mathcal{C}/\mathcal{I}$. Composition in \mathcal{C}/\mathcal{I} :

• For
$$\overline{f} = f + \mathcal{I}(A, B) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B)$$
 and

Let \mathcal{I} be an ideal in a preadditive category C. The **quotient category** C/\mathcal{I} is defined as follows:

- (a) it has the same objects as $\mathcal C$ and
- (b) $\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A, B)}{\mathcal{I}(A, B)}$ for each $A, B \in \mathcal{C}/\mathcal{I}$. Composition in \mathcal{C}/\mathcal{I} :
 - For $\overline{f} = f + \mathcal{I}(A, B) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B)$ and
 - $\overline{g} = g + \mathcal{I}(B, C) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(B, C)$

Let \mathcal{I} be an ideal in a preadditive category C. The **quotient category** C/\mathcal{I} is defined as follows:

- (a) it has the same objects as $\mathcal C$ and
- (b) $\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A, B)}{\mathcal{I}(A, B)}$ for each $A, B \in \mathcal{C}/\mathcal{I}$. Composition in \mathcal{C}/\mathcal{I} :
 - For $\overline{f} = f + \mathcal{I}(A, B) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B)$ and
 - $\overline{g} = g + \mathcal{I}(B, C) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(B, C)$

Let ${\cal I}$ be an ideal in a preadditive category ${\cal C}.$ The **quotient category** ${\cal C}/{\cal I}$ is defined as follows:

(a) it has the same objects as $\mathcal C$ and

(b)
$$\operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B) := \frac{\operatorname{Hom}_{\mathcal{C}}(A, B)}{\mathcal{I}(A, B)}$$
 for each $A, B \in \mathcal{C}/\mathcal{I}$.
Composition in \mathcal{C}/\mathcal{I} :

• For
$$\overline{f} = f + \mathcal{I}(A, B) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B)$$
 and

•
$$\overline{g} = g + \mathcal{I}(B, C) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(B, C)$$

we set

$$\overline{g} \circ \overline{f} := gf + \mathcal{I}(A, C) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, C).$$
Let $\mathcal I$ be an ideal of $\mathcal C,$ we have the canonical functor $\pi:\mathcal C\longrightarrow \mathcal C/\mathcal I$ defined as:

$$\bullet \ \pi(A) = A \ \forall A \in \mathcal{C} \ \text{and} \label{eq:phi}$$

•
$$\pi(f) := \overline{f} = f + \mathcal{I}(A, B) \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(A, B) \ \forall f \in \operatorname{Hom}_{\mathcal{C}}(A, B).$$

∃ ► < ∃ ►</p>

э

 $\pi: \mathcal{C} \longrightarrow \mathcal{C}/\mathcal{I}$ induces a functor

$$\pi_*: \operatorname{Mod}(\mathcal{C}/\mathcal{I}) \longrightarrow \operatorname{Mod}(\mathcal{C})$$

given as:

•
$$\pi_*(G) := G \circ \pi$$
 for $G \in Mod(\mathcal{C}/\mathcal{I})$.

• $\pi_*(\eta) := \eta \circ \pi$ for $\eta : \operatorname{Hom}_{\operatorname{Mod}(\mathcal{C}/\mathcal{I})}(G, H).$

(E)

3

Figura: π_* is full and faithful

2

Figura:

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

We define the functor $\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$ as follows: for $M \in \operatorname{Mod}(\mathcal{C})$ we set $\left(\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} M\right)(C) := \frac{\mathcal{C}(-,C)}{\mathcal{I}(-,C)} \otimes_{\mathcal{C}} M$ for all $C \in \mathcal{C}/\mathcal{I}$ and $\left(\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} M\right)(\overline{f}) = \frac{\mathcal{C}}{\mathcal{I}}(-,f) \otimes_{\mathcal{C}} M$ for all $\overline{f} = f + \mathcal{I}(C,C') \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(C,C').$

医下 化医下口

We define the functor $\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$ as follows: for $M \in \operatorname{Mod}(\mathcal{C})$ we set $\left(\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} M\right)(C) := \frac{\mathcal{C}(-,C)}{\mathcal{I}(-,C)} \otimes_{\mathcal{C}} M$ for all $C \in \mathcal{C}/\mathcal{I}$ and $\left(\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} M\right)(\overline{f}) = \frac{\mathcal{C}}{\mathcal{I}}(-,f) \otimes_{\mathcal{C}} M$ for all $\overline{f} = f + \mathcal{I}(C,C') \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(C,C').$

Definition

We define the functor
$$\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$$
 as follows: for $M \in \operatorname{Mod}(\mathcal{C})$ we set $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, M)(C) = \mathcal{C}\left(\frac{\mathcal{C}(C, -)}{\mathcal{I}(C, -)}, M\right)$ for all $C \in \mathcal{C}/\mathcal{I}$ and $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, M)(\overline{f}) = \mathcal{C}\left(\frac{\mathcal{C}}{\mathcal{I}}(f, -), M\right)$ for all $\overline{f} = f + \mathcal{I}(C, C') \in \operatorname{Hom}_{\mathcal{C}/\mathcal{I}}(C, C').$

A B M A B M

3

Let $\mathcal I$ be an ideal in $\mathcal C$ and $\pi:C\longrightarrow \mathcal C/\mathcal I$ the canonical functor. Then we have the following diagram

$$\operatorname{Mod}(\mathcal{C}/\mathcal{I}) \xrightarrow[\pi^*]{} \operatorname{Mod}(\mathcal{C})$$

where (π^*, π_*) and $(\pi_*, \pi^!)$ are adjoint pairs, $\pi^! = \operatorname{Hom}(\frac{c}{\overline{L}}, -)$ and $\pi^* := \frac{c}{\overline{L}} \otimes_{\mathcal{C}}$.

э

Consider the functor $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$. We denote by $\mathbb{EXT}^i_{\mathcal{C}}(\mathcal{C}/\mathcal{I}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$ the *i*-th right derived functor of $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, -)$.

Consider the functor $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$. We denote by $\mathbb{EXT}^i_{\mathcal{C}}(\mathcal{C}/\mathcal{I}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$ the *i*-th right derived functor of $\mathcal{C}(\frac{\mathcal{C}}{\mathcal{I}}, -)$.

Definition

Consider the functor $\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}} : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$. We denote by $\mathbb{TOR}_{i}^{\mathcal{C}}(\mathcal{C}/\mathcal{I}, -) : \operatorname{Mod}(\mathcal{C}) \longrightarrow \operatorname{Mod}(\mathcal{C}/\mathcal{I})$ the *i*-th left derived functor of $\frac{\mathcal{C}}{\mathcal{I}} \otimes_{\mathcal{C}}$.

不是下 不是下

Let C be a preadditive category. We say that an ideal \mathcal{I} satisfies the **property (A)** if for every $C \in C$ there exists epimorphisms

$$\operatorname{Hom}_{\mathcal{C}}(X,-)\longrightarrow \mathcal{I}(C,-)\longrightarrow 0$$

$$\operatorname{Hom}_{\mathcal{C}}(-,Y)\longrightarrow \mathcal{I}(-,C)\longrightarrow 0.$$

Let C be a preadditive category. We say that an ideal \mathcal{I} satisfies the **property (A)** if for every $C \in C$ there exists epimorphisms

$$\operatorname{Hom}_{\mathcal{C}}(X,-) \longrightarrow \mathcal{I}(C,-) \longrightarrow 0$$

$$\operatorname{Hom}_{\mathcal{C}}(-,Y) \longrightarrow \mathcal{I}(-,C) \longrightarrow 0.$$

Proposition

Let C be an additive category and \mathcal{X} an additive full subcategory of C. Let $\mathcal{I} = \mathcal{I}_{\mathcal{X}}$ be the ideal of morphisms in C which factor through some object in \mathcal{X} . Then \mathcal{I} satisfies property A if and only if \mathcal{X} is functorially finite in C.

Let C be a dualizing R-variety and \mathcal{I} an ideal which satisfies property A. Let $\pi_1 : \mathcal{C} \longrightarrow \mathcal{C}/\mathcal{I}$ be the canonical functor, then we can restrict to the finitely presented modules

$$\operatorname{mod}(\mathcal{C}/\mathcal{I}) \xrightarrow[]{\pi_1^*}{(\pi_1)* \longrightarrow} \operatorname{mod}(\mathcal{C})$$

Let ${\mathcal C}$ be a preadditive category and ${\mathcal I}$ an ideal in ${\mathcal C}.$ The following are equivalent.

(a) \mathcal{I} is an idempotent ideal.

b) 4 (E) b

Let ${\mathcal C}$ be a preadditive category and ${\mathcal I}$ an ideal in ${\mathcal C}.$ The following are equivalent.

- (a) \mathcal{I} is an idempotent ideal.
- (b) There exists an isomorphism for all $F, F' \in Mod(\mathcal{C}/\mathcal{I})$

$$\varphi^1_{F,\pi_*(F')} : \operatorname{Ext}^1_{\operatorname{Mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^1_{\operatorname{Mod}(\mathcal{C})}(\pi_*(F),\pi_*(F')).$$

Let $F,G\in {\rm Mod}(\mathcal{C}).$ Then for each $i\geq 0,$ there exists canonical morphisms of abelian groups

$$\varphi_{F,G}^i : \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C}/\mathcal{I})}(F,G) \longrightarrow \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C})}(\pi_*(F),\pi_*(G)).$$

ヨト・イヨト

Let \mathcal{C} be a preadditive category and \mathcal{I} an ideal in \mathcal{C} .

(a) We say that \mathcal{I} is k-idempotent if

$$\varphi^i_{F,\pi_*(F')} : \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C})}(\pi_*(F),\pi_*(F'))$$

is an isomorphism for all $F, F' \in Mod(\mathcal{C}/\mathcal{I})$ and for all $0 \le i \le k$.

Let \mathcal{C} be a preadditive category and \mathcal{I} an ideal in \mathcal{C} .

(a) We say that \mathcal{I} is k-idempotent if

$$\varphi^i_{F,\pi_*(F')}: \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^i_{\operatorname{Mod}(\mathcal{C})}(\pi_*(F),\pi_*(F'))$$

is an isomorphism for all $F, F' \in Mod(\mathcal{C}/\mathcal{I})$ and for all $0 \leq i \leq k$. (b) We say that \mathcal{I} is strongly idempotent if

$$\varphi^{i}_{F,\pi_{*}(F')}: \operatorname{Ext}^{i}_{\operatorname{Mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^{i}_{\operatorname{Mod}(\mathcal{C})}(\pi_{*}(F),\pi_{*}(F'))$$

is an isomorphism for all $F, F' \in Mod(\mathcal{C}/\mathcal{I})$ and for all $0 \leq i < \infty$.

Let C be a dualizing R-variety, $\mathcal I$ an ideal which satisfies property A and $1\leq i\leq k.$ The following are equivalent.

(a) \mathcal{I} es k-idempotent.

Let C be a dualizing R-variety, \mathcal{I} an ideal which satisfies property A and $1 \leq i \leq k$. The following are equivalent.

- (a) \mathcal{I} es k-idempotent.
- (b) $\varphi_{F,\pi_*(F')}^i : \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C})}(\pi_*(F),\pi_*(F'))$ is an isomorphism for all $F,F' \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and for all $0 \le i \le k$.

Let C be a dualizing R-variety, \mathcal{I} an ideal which satisfies property A and $1 \leq i \leq k$. The following are equivalent.

- (a) \mathcal{I} es k-idempotent.
- (b) $\varphi_{F,\pi_*(F')}^i : \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C})}(\pi_*(F),\pi_*(F'))$ is an isomorphism for all $F,F' \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and for all $0 \le i \le k$.
- (c) $\mathbb{EXT}^i_{\mathcal{C}}(\mathcal{C}/\mathcal{I}, F' \circ \pi) = 0$ for $1 \le i \le k$ and for $F' \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$.

Let C be a dualizing R-variety, \mathcal{I} an ideal which satisfies property A and $1 \leq i \leq k$. The following are equivalent.

- (a) \mathcal{I} es k-idempotent.
- (b) $\varphi_{F,\pi_*(F')}^i : \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C}/I)}(F,F') \longrightarrow \operatorname{Ext}^i_{\operatorname{mod}(\mathcal{C})}(\pi_*(F),\pi_*(F'))$ is an isomorphism for all $F,F' \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and for all $0 \le i \le k$.

(c)
$$\mathbb{EXT}^i_{\mathcal{C}}(\mathcal{C}/\mathcal{I}, F' \circ \pi) = 0$$
 for $1 \le i \le k$ and for $F' \in \text{mod}(\mathcal{C}/\mathcal{I})$.

(d) $\mathbb{EXT}^i_{\mathcal{C}}(\mathcal{C}/\mathcal{I}, J \circ \pi) = 0$ for $1 \leq i \leq k$ and for each $J \in \text{mod}(\mathcal{C}/\mathcal{I})$ which is injective.

Figura: Definition of k-idempotent

э

∃ ► < ∃ ►</p>

Figura: Definition of k-idempotent

э

∃ ► < ∃ ►</p>

Figura: Equivalent condition of k-idempotent

э

b) 4 (E) b

Let Λ be an artin algebra and P a finitely generated projective $\Lambda\text{-module}.$ In this case we consider the trace ideal

$$I = \operatorname{Tr}_{P}(\Lambda) := \sum_{f \in \operatorname{Hom}(P,\Lambda)} \operatorname{Im}(f) \subseteq \Lambda.$$

It is well known that I is two sided ideal of Λ and $I^2 = I$.

Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a family in $Mod(\mathcal{C})$. For each $N \in Mod(\mathcal{C})$ de define a \mathcal{C} -submodule of N, denoted by $Tr_{\mathcal{F}}(N)$ as follows: for $X \in \mathcal{C}$ we define

$$\operatorname{Tr}_{\mathcal{F}}(N)(X) = \sum_{\{f \in \operatorname{Hom}(F,N) \mid F \in \mathcal{F}\}} \operatorname{Im}(f_X).$$

In the case $\mathcal{F} = \{F\}$ is just one object, we will write $\operatorname{Tr}_F N$.

Let C be a preadditive category and $\mathcal{F} = \{F_i\}_{i \in I}$ a family of objects in $Mod(\mathcal{C})$. For each $C \in C$ consider the C-submodule $Tr_{\mathcal{F}}(Hom_{\mathcal{C}}(C, -))$ of $Hom_{\mathcal{C}}(C, -)$. We define the subfunctor $Tr_{\mathcal{F}}C$ of $Hom_{\mathcal{C}}(-, -) : \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathbf{Ab}$ as follows:

$$(\operatorname{Tr}_{\mathcal{F}}\mathcal{C})(C,C') := \operatorname{Tr}_{\mathcal{F}}(\operatorname{Hom}_{\mathcal{C}}(C,-))(C')$$

for all $C, C' \in C$. This ideal will be called **trace ideal**. In the case that $\mathcal{F} = \{P\}$ with P a projective C-module, we will write $\operatorname{Tr}_P C$.

Let C be a preadditive category and let P be a projective C-module. Then $\mathcal{I} := \operatorname{Tr}_P C$ defines an idempotent ideal of C (i.e $\mathcal{I}^2 = \mathcal{I}$).

Let C be a preadditive category and let P be a projective C-module. Then $\mathcal{I} := \operatorname{Tr}_P C$ defines an idempotent ideal of C (i.e $\mathcal{I}^2 = \mathcal{I}$).

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -)$ a finitely generated projective C-module and $\mathcal{I} = \operatorname{Tr}_{P} C$. Then \mathcal{I} satisfies property A.

Corollary

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ and $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$. Then we can restrict the diagram of a previous result to the finitely presented modules

$$\operatorname{mod}(\mathcal{C}/\mathcal{I}) \xrightarrow[\leftarrow]{\pi_1^*} (\pi_1) \xrightarrow{\pi_1^*} \operatorname{mod}(\mathcal{C})$$

Let C be a dualizing R-variety and $P \in \text{mod}(C)$ be a projective module. For each $0 \le k \le \infty$ we define \mathbb{P}_k to be the full subcategory of mod(C) consisting of the C-modules X having a projective resolution

$$\cdots P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X \longrightarrow 0$$

with $P_i \in \operatorname{add}(P)$ for $0 \le i \le k$.

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ and $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$. For $1 \leq k \leq \infty$ and $X \in \operatorname{mod}(\mathcal{C})$, the following are equivalent.

(a) $X \in \mathbb{P}_k$.

医马马马氏

э

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ and $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$. For $1 \leq k \leq \infty$ and $X \in \operatorname{mod}(\mathcal{C})$, the following are equivalent.

(a) $X \in \mathbb{P}_k$.

(b)
$$\operatorname{Ext}^{i}_{\operatorname{mod}(\mathcal{C})}(X, (\pi_{1})_{*}(Y)) = 0$$
 for all $Y \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and $i = 0, \ldots, k$.

きょうきょう

э

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ and $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$. For $1 \leq k \leq \infty$ and $X \in \operatorname{mod}(\mathcal{C})$, the following are equivalent.

- (a) $X \in \mathbb{P}_k$.
- (b) $\operatorname{Ext}_{\operatorname{mod}(\mathcal{C})}^{i}(X, (\pi_{1})_{*}(Y)) = 0$ for all $Y \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and $i = 0, \ldots, k$.
- (c) $\operatorname{Ext}_{\operatorname{mod}(\mathcal{C})}^{i}(X, (\pi_{1})_{*}(J)) = 0$ for all $J \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ injective and $i = 0, \ldots, k$.

We recall that given an abelian category ${\cal A}$ and ${\cal B}$ a subcategory of ${\cal A}$ we define the perpendicular category

$${}^{\perp_i}\mathcal{B} = \{A \in \mathcal{A} \mid \operatorname{Ext}^i_{\mathcal{A}}(A, B) = 0, \ \forall B \in \mathcal{B}, \ \forall \ 0 \le i \le k\}$$

Figura:
$$\mathbb{P}_k = {}^{\perp_i} \mathcal{Z}$$
 with $\mathcal{I} = \operatorname{Tr}_P \mathcal{C}$.

Luis Gabriel Rodríguez Valdés advisor: Valente Santiago Vargas Homological theory of k-idempotent ideal in dualizing varieties

イロト イロト イヨト イヨト

2
We also have the dual notion of \mathbb{P}_k .

Definition

Let \mathcal{C} be a dualizing R-variety, $P \in \operatorname{mod}(\mathcal{C})$ a projective module and $J := I_0(\frac{P}{\operatorname{rad}(P)}) \in \operatorname{mod}(\mathcal{C})$ the injective envelope of $\frac{P}{\operatorname{rad}(P)}$. For each $0 \leq k \leq \infty$ we define \mathbb{I}_k to be the full subcategory of $\operatorname{mod}(\mathcal{C})$ consisting of the \mathcal{C} -modules Y having an injective coresolution $0 \longrightarrow Y \longrightarrow J_0 \longrightarrow J_1 \longrightarrow \cdots$ with $J_i \in \operatorname{add}(J)$ for $0 \leq i \leq k$.

Let $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ be a projective module, $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$ and $1 \leq k \leq \infty$. Let $\pi_1 : \mathcal{C} \longrightarrow \mathcal{C}/\mathcal{I}$ the canonical projection. The following conditions are equivalent for $Y \in \operatorname{mod}(\mathcal{C})$.

(a) $Y \in \mathbb{I}_k$.

Let $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ be a projective module, $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$ and $1 \leq k \leq \infty$. Let $\pi_1 : \mathcal{C} \longrightarrow \mathcal{C}/\mathcal{I}$ the canonical projection. The following conditions are equivalent for $Y \in \operatorname{mod}(\mathcal{C})$.

- (a) $Y \in \mathbb{I}_k$.
- (b) $\operatorname{Ext}_{\operatorname{mod}(\mathcal{C})}^{i}((\pi_{1})_{*}(X), Y) = 0$ for all $X \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and $i = 0, \ldots, k$.

Let $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ be a projective module, $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$ and $1 \leq k \leq \infty$. Let $\pi_1 : \mathcal{C} \longrightarrow \mathcal{C}/\mathcal{I}$ the canonical projection. The following conditions are equivalent for $Y \in \operatorname{mod}(\mathcal{C})$.

(a)
$$Y \in \mathbb{I}_k$$

(b)
$$\operatorname{Ext}_{\operatorname{mod}(\mathcal{C})}^{i}((\pi_{1})_{*}(X), Y) = 0$$
 for all $X \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ and $i = 0, \ldots, k$.

(c) $\operatorname{Ext}_{\operatorname{mod}(\mathcal{C})}^{i}((\pi_{1})_{*}(Q), Y) = 0$ for all $Q \in \operatorname{mod}(\mathcal{C}/\mathcal{I})$ projective and $i = 0, \ldots, k$.

We recall that given an abelian category ${\cal A}$ and ${\cal B}$ a subcategory of ${\cal A}$ we define the perpendicular category

$$\mathcal{B}^{\perp_i} = \{ A \in \mathcal{A} \mid \operatorname{Ext}^i_{\mathcal{A}}(B, A) = 0, \ \forall B \in \mathcal{B}, \ \forall \ 0 \le i \le k \}$$

Figura:
$$\mathbb{P}_k = {}^{\perp_i} \mathcal{Z}$$
 and $\mathbb{I}_k = \mathcal{Z}^{\perp_i}$

Luis Gabriel Rodríguez Valdés advisor: Valente Santiago Vargas Homological theory of k-idempotent ideal in dualizing varieties

イロン イロン イヨン イヨン

2

Definition

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{C} be abelian categories. Then the diagram

$$\mathcal{B} \xrightarrow[i^*]{i^* = i_1 \longrightarrow i_1} \mathcal{A} \xrightarrow[j_1]{j_1 \longrightarrow j_1 = j^* \longrightarrow i_2} \mathcal{C}$$

is called a **recollement**, if the additive functors $i^*, i_* = i_!, i^!, j_!, j^! = j^*$ and j_* satisfy the following conditions:

Figura: Recollement

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Let Λ an artin algebra and $P \in \text{mod}(\Lambda)$ a finitely generated projective. Consider the trace ideal $\text{Tr}_P(\Lambda) = I$. Then, there exist a recollement

$$\operatorname{mod}(\Lambda/I) \xrightarrow[\operatorname{Hom}_{\Lambda}(\Lambda/I,-)]{} \operatorname{mod}(\Lambda) \xrightarrow[\operatorname{Hom}_{\Lambda}(P,-)]{} \operatorname{mod}(\Lambda) \xrightarrow[\operatorname{Hom}_{\Lambda}(P,-)]{} \operatorname{mod}(R_P)$$
where $R_P = \operatorname{End}(P)^{op}$ and $P^* = \operatorname{Hom}_{\Lambda}(P,\Lambda)$.

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$, $\mathcal{B} = \operatorname{add}(C)$ and $R_P = \operatorname{End}_{\operatorname{Mod}(\mathcal{C})}(P)^{op}$. Then, there exist a recollement

where $\mathcal{I}_{\mathcal{B}}$ is the ideal of morphisms in \mathcal{C} which factor through objects in \mathcal{B} . Moreover, we have that $\mathcal{I}_{\mathcal{B}} = \operatorname{Tr}_{P}\mathcal{C}$.

module category over a ring

2

・ 同 ト ・ ヨ ト ・ ヨ ト

Figura: The recollement of finitely presented functors.

Let C be a dualizing R-variety and $P = Hom_{\mathcal{C}}(C, -) \in mod(\mathcal{C})$. The map

$$\Phi_{X,Y}^n : \operatorname{Ext}^n_{\operatorname{mod}(\mathcal{C})}(X,Y) \longrightarrow \operatorname{Ext}^n_{R_P} \left(\operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,X), \operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,Y) \right)$$

is an isomorphism for all $n\geq 0,$ provided one of the three following conditions holds:

(a)
$$X \in \mathbb{P}_i$$
, $Y \in \mathbb{I}_j$ and $n \leq i+j$,

Let C be a dualizing R-variety and $P = Hom_{\mathcal{C}}(C, -) \in mod(\mathcal{C})$. The map

$$\Phi_{X,Y}^n : \operatorname{Ext}^n_{\operatorname{mod}(\mathcal{C})}(X,Y) \longrightarrow \operatorname{Ext}^n_{R_P} \left(\operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,X), \operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,Y) \right)$$

is an isomorphism for all $n\geq 0,$ provided one of the three following conditions holds:

(a)
$$X \in \mathbb{P}_i$$
, $Y \in \mathbb{I}_j$ and $n \leq i+j$,

(b)
$$X \in \text{mod}(\mathcal{C})$$
 and $Y \in \mathbb{I}_{n+1}$,

きょうきょう

э

Let C be a dualizing R-variety and $P = Hom_{\mathcal{C}}(C, -) \in mod(\mathcal{C})$. The map

$$\Phi_{X,Y}^n : \operatorname{Ext}^n_{\operatorname{mod}(\mathcal{C})}(X,Y) \longrightarrow \operatorname{Ext}^n_{R_P} \left(\operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,X), \operatorname{Hom}_{\operatorname{mod}(\mathcal{C})}(P,Y) \right)$$

is an isomorphism for all $n\geq 0,$ provided one of the three following conditions holds:

(a)
$$X \in \mathbb{P}_i, Y \in \mathbb{I}_j \text{ and } n \leq i+j,$$

(b) $X \in \text{mod}(\mathcal{C}) \text{ and } Y \in \mathbb{I}_{n+1},$
(c) $X \in \mathbb{P}_{n+1} \text{ and } Y \in \text{mod}(\mathcal{C}).$

Corollary

Let C be a dualizing R-variety and $P = Hom_{\mathcal{C}}(C, -) \in mod(\mathcal{C})$. The following conditions hold.

(a) If
$$X \in \mathbb{P}_{\infty}$$
 then $pd(X) = pd_{R_P}((P, X))$.

э

∃ ► < ∃ ►</p>

Corollary

Let C be a dualizing R-variety and $P = Hom_{\mathcal{C}}(C, -) \in mod(\mathcal{C})$. The following conditions hold.

(a) If
$$X \in \mathbb{P}_{\infty}$$
 then $pd(X) = pd_{R_P}((P, X))$.

(b) If
$$X \in \mathbb{I}_{\infty}$$
 then $id(X) = id_{R_P}((P, X))$.

∃ ► < ∃ ►</p>

Let C be a dualizing R-variety with cokernels and consider $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$. If $\mathbb{P}_1 = \mathbb{P}_{\infty}$ or $\mathbb{I}_1 = \mathbb{I}_{\infty}$ then $\operatorname{gl.dim}(R_P) \leq 2$. In particular, R_P is a quasi-hereditary algebra.

Let C be a dualizing R-variety, $P = \operatorname{Hom}_{\mathcal{C}}(C, -) \in \operatorname{mod}(\mathcal{C})$ and $\mathcal{I} = \operatorname{Tr}_{P}\mathcal{C}$. Consider the functor $\pi_* : \operatorname{mod}(\mathcal{C}/\mathcal{I}) \longrightarrow \operatorname{mod}(\mathcal{C})$. If $\mathcal{I}(C', -)$ is projective for all $C' \in \mathcal{C}$, we have a full embedding

$$\mathrm{D}^b(\pi_*):\mathrm{D}^b(\mathrm{mod}(\mathcal{C}/\mathcal{I}))\longrightarrow \mathrm{D}^b(\mathrm{mod}(\mathcal{C}))$$

between its bounded derived categories.

Bibliography I

- M. Auslander, I. Reiten, *Stable equivalence of dualizing R-varieties*. Adv. in Math.12, No.3, 306-366 (1974).
- M. Auslander, M.I. Platzeck and G. Todorov. Homological theory of idempotent ideals. Trans. Amer. Math. Soc. Vol. 332, No. 2 (Aug. 1992), pp. 667-692.
- M. Prest. *Purity, spectra and localisation*. Cambridge University Press, New York, 2009.
- L. G. Rodríguez-Valdés, M. L. S. Sandoval-Miranda, V. Santiago-Vargas. Homological theory of k-idempotent ideals in dualizing varieties. Preprint arxiv. https://arxiv.org/pdf/2008.07158.pdf
- C. Psaroudakis. Homological Theory of Recollements of Abelian Categories. J. Algebra. Vol. 398, 63-110 (2014).
- C. Psaroudakis, J. Vitoria. Recollements of module categories. J. Appl. Categor. Struc. 22, 579-593 (2014).

A representation-theoretic approach to recollements of abelian categories. Contemp. Math. of Amer. Math. Soc. Vol. 716, 67-154 (2018).

Obrigado

< 同 > < 三 > < 三 >

2