Variety defined by a Groebner Basis of a Module

E. L. Green, Sibylle Schroll, E. N. M

IME-USP, 25 de Junho de 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Speaker received financial help from Fapesp, (Fundação de Amparo à Pesquisa do Estado de São Paulo). and a productivity grant from CNPq (Conselho Nacional de Desenvolvimento Centífico e tecnológico).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This talk is aimed for the beginning graduate student. It is about a work in progress.

Using the theory of Gröbner basis, in KQ and a module over KQ we define variety using the right Gröbner basis of KQ, \mathcal{B} denotes the set of paths in Q. I will describe a small part of our work. Various subjects are not touched in the talk.

(There is a book in Portuguese on the classical theory of Gröbner basis for ideals.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We fix an admissible order \succ on \mathcal{B} , that is, a well-order compatible with the multiplication in KQ; that is for $p, q, r \in \mathcal{B}$.

- 1. if $pr \neq 0$, $qr \neq 0$ and $p \succ q$ then $pr \succ qr$,
- 2. if $rp \neq 0$, $rq \neq 0$ and $p \succ q$ then $rp \succ rq$, and
- 3. if $prq \neq 0$, then $prq \succeq r$.

For all effects and ideas in this talk we can take the lenght-lexicographic order.

The idempotent projectives

We also fix an index set \mathcal{I} . For each $i \in \mathcal{I}$, we associate a vertex w_i in Q. Of course, it is possible that $w_i = w_j$ but $i \neq j$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The idempotent projectives

We also fix an index set \mathcal{I} . For each $i \in \mathcal{I}$, we associate a vertex w_i in Q. Of course, it is possible that $w_i = w_j$ but $i \neq j$.

We fix a right projective KQ-module P together with a decomposition $P = \bigoplus_{i \in \mathcal{I}} w_i KQ$. We view elements of P as \mathcal{I} -indexed tuples of the form $(r_i)_{i \in \mathcal{I}}$ where $r_i \in w_i KQ$.

ション ふゆ アメリア メリア しょうくの

The idempotent projectives

We also fix an index set \mathcal{I} . For each $i \in \mathcal{I}$, we associate a vertex w_i in Q. Of course, it is possible that $w_i = w_j$ but $i \neq j$.

We fix a right projective KQ-module P together with a decomposition $P = \bigoplus_{i \in \mathcal{I}} w_i KQ$. We view elements of P as \mathcal{I} -indexed tuples of the form $(r_i)_{i \in \mathcal{I}}$ where $r_i \in w_i KQ$.

For $i \in \mathcal{I}$, let e_i be the element $(r_{i,j})_{j \in \mathcal{I}}$ of P such that $r_{i,j} = \delta_{i,j} w_i$ where

 $\delta_{i,j} = \begin{cases} 0, \text{ if } i \neq j \\ 1, \text{ if } i = j. \end{cases}$ We call the set of e_i 's the standard generating set of P.

Induced Order

 $\begin{aligned} \mathcal{B}^* &= \bigcup_{i \in \mathcal{I}} \{ e_i p \mid p \in \mathcal{B} \text{ and } w_i p = p \}. \\ \text{We extend the admissible order } \succ \text{ on } \mathcal{B} \text{ to a well-order } \succ^* \text{ on } \mathcal{B}^* \text{ as} \\ \text{follows. Fix a well-ordering } >_{\mathcal{I}} \text{ on } \mathcal{I}. \text{ Let } e_i p, e_j q \in \mathcal{B}^*. \text{ We set} \\ e_i p \succ^* e_j q \text{ if } p \succ q \text{ or } p = q \text{ and } i >_{\mathcal{I}} j. \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The tip

Definition

The tip of an element x in $P \setminus \{0\}$, denoted by $\operatorname{tip}_{\mathcal{B}^*}(x)$, is p^* , if $x = \sum_{q^* \in \mathcal{B}^*} c_{q^*} q^*$ with $c_{q^*} \in K$, $p^* \in \mathcal{B}^*$ with $c_{p^*} \neq 0$, and $p^* \succeq^* q^*$ if $c_{q^*} \neq 0$. The coeffcient of the tip of x, denoted $c_{\operatorname{tip}_{\mathcal{B}^*}(x)}$, is c_{p^*} . If $X \subset P$, then $\operatorname{tip}(X) = \{\operatorname{tip}(x) \mid x \in X \setminus \{0\}\}$.

(ロ) (型) (E) (E) (E) (O)

Definition

Suppose L is a KQ-submodule of P. Then a set \mathcal{H}^* of elements of L is a right Gröbner basis for L with respect to \succ^* if

 $\langle \operatorname{tip}(\mathcal{H}^*) \rangle_R = \langle \operatorname{tip}(L) \rangle_R.$

An equivalent definition is that $\mathcal{H}^* \subset L$ is a right Gröbner basis for L if, for every nonzero element x of L, there is some $h \in \mathcal{H}^*$ such that $\operatorname{tip}(x) = \operatorname{tip}(h)p$, for some path $p \in \mathcal{B}$.

ション ふゆ アメリア メリア しょうくしゃ

Definition

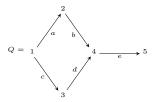
An element n is right uniform if there exists a vertex v in Q such that n = nv.

Two nonzero elements m, n, are *right parallel*, denoted $m||_R n$, if there is a vertex $v \in Q$ such that mv = m and nv = n.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example

Consider the following quiver



and M to be the module whose dimension vector is $\left(1,1,1,1,0\right)$ and all the maps are the identity.

We have that it is quotient of P_1 by the submodule L generated by $\{ab-cd,e\}$

Consider the order a > b > c > d > e and in P_1 the induced order then for the submodule L we have tip(ab - cd) = ab, in the length lex order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition

1. Suppose $e_i p$ and $e_j q$ are elements of \mathcal{B}^* , where p and q are paths. Then we say that $e_i p$ left divides e_q (written $e_i p \mid_{\ell} e_j q$,) if i = j and q = pr for some path r.

2. We say that a set \mathcal{H}^* of nonzero elements of P is *right tip-reduced* if, for all nonzero elements $h, h' \in \mathcal{H}^*$ with $h \neq h'$, $\operatorname{tip}(h)$ does not left divide $\operatorname{tip}(h')$.

ション ふゆ アメリア メリア しょうくしゃ

Reduction

Definition

1. Let \mathcal{H}^* be a set of elements in P and $x = \sum_{p^* \in \mathcal{B}^*} c_{p^*} p^* \in P$, where $c_{p^*} \in K$. We say that x' is a simple right reduction of x by \mathcal{H}^* , denoted $x \to_{\mathcal{H}^*} x'$, if, for some $h \in \mathcal{H}^*$ and $p^* \in \mathcal{B}^*$ with $c_p^* \neq 0$, $p^* = tip(h)s$ for some $s \in \mathcal{B}$; that is, $tip(h)|_{\ell}p^*$. In this case, we set

 $x' = x - (c_{p^*}/c_{tip(h)}) hs.$

ション ふゆ く 山 マ チャット しょうくしゃ

Reduction

Definition

1. Let \mathcal{H}^* be a set of elements in P and $x = \sum_{p^* \in \mathcal{B}^*} c_{p^*} p^* \in P$, where $c_{p^*} \in K$. We say that x' is a simple right reduction of x by \mathcal{H}^* , denoted $x \to_{\mathcal{H}^*} x'$, if, for some $h \in \mathcal{H}^*$ and $p^* \in \mathcal{B}^*$ with $c_p^* \neq 0$, $p^* = tip(h)s$ for some $s \in \mathcal{B}$; that is, $tip(h)|_{\ell}p^*$. In this case, we set

$$x' = x - (c_{p^*}/c_{tip(h)}) hs.$$

2. We say that x is completely reduced by \mathcal{H}^* if there are no simple reductions of x by \mathcal{H}^* . If x is not completely reduced by \mathcal{H}^* , then we say that y is a complete reduction of x by \mathcal{H}^* , denoted $x \Rightarrow_{\mathcal{H}^*} y$, if, for some $n \ge 1$, there is a sequence of simple reductions, $x_i \to_{\mathcal{H}^*} x_{i+1}$, for $1 \le i \le n$, with $x_1 = x$ and $x_{n+1} = y$, and y is completely reduced by \mathcal{H}^* .

More Reduction

Definition

We say that \mathcal{H}'^* is a simple right self reduction of \mathcal{H}^* if there exist nonzero $h, h' \in \mathcal{H}^*$ such that

1. $h \neq h'$,

2.
$$h = \sum c_{p^*} p^*$$
 and $h' = \sum c'_{p^*} p^* \in \mathcal{H}^*$

- 3. there is $q^* \in \mathcal{B}^*$ with $c'_{q^*} \neq 0$ and $\operatorname{tip}(h) \mid_{\ell} q^*$; i.e. there is a path s in \mathcal{B} such that $q^* = \operatorname{tip}(h)s$,
- 4. \mathcal{H}'^* consists of removing the element h' from \mathcal{H}^* and replacing it with

 $h'' = h' - (c'_{q^*}/c_{\operatorname{tip}(h)})hs.$

We say that \mathcal{H}^* is *completely right self reduced* if there are no simple self reductions of \mathcal{H}^* .

ション ふゆ アメリア メリア しょうくしゃ

Theorem

Let \mathcal{H}^* be a right uniform, right tip-reduced generating set of a right submodule L of P. Then \mathcal{H}^* is a right Gröbner basis of L with respect to \succ^* . Moreover, L is isomorphic to

$$\bigoplus_{h\in\mathcal{H}^*} hKQ,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

with isomorphism given by $\varphi : \bigoplus_{h \in \mathcal{H}^*} hKQ \to L$ by $\varphi((hs_h)_{h \in \mathcal{H}^*}) = \sum_{h \in \mathcal{H}^*} hs_h$ where each $s_h \in KQ$.

Corollary

If L is a finitely generated KQ-submodule of P and \mathcal{H}^* is a finite (right uniform) generating set for L, then there is a finite sequence of simple reductions starting with the elements of the generating set \mathcal{H}^* so that the resulting set is a (right uniform) right tip-reduced generating set of L. In particular, this gives a right Gröbner basis.

(ロ) (型) (E) (E) (E) (O)

Fundamental Lemma

Proposition

Fundamental Lemma

Suppose that L is a submodule of P. Let \mathcal{H}^* be a right Gröbner basis of L. Then: 1. the complete reduction by \mathcal{H}^* is unique; that is if $x \in P$, $x \Rightarrow_{\mathcal{H}^*} y$, and $x \Rightarrow_{\mathcal{H}^*} y'$, then y = y', Moreover, $x - y \in L$.

2. As KQ_0 -modules,

$$P \cong L \bigoplus \operatorname{Span}_K(\operatorname{nontip}(L)).$$

ション ふゆ く 山 マ チャット しょうくしゃ

Consequence of the fundamental lemma

Proposition

The set $\mathcal{H}_{\mathcal{T}^*}^* = \{h_t = t - n_t \mid t \in \mathcal{T}^*\}$ is right uniform and right tip-reduced. Moreover, $\mathcal{T}^* = \operatorname{tip}(\mathcal{H}_{\mathcal{T}^*}^*)$ and $\mathcal{H}_{\mathcal{T}^*}^*$ is the right tip reduced Gröbner basis of L.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Starting with the tips

Up to now we start with a submodule L of P and choose \mathcal{T}^* to be the unique minimal generating set of the submodule $\langle \operatorname{tip}(L) \rangle_R$. Another approach is to start with a right tip-reduced subset \mathcal{T}^* of \mathcal{B}^* and construct submodules L of P such that the reduced right Gröbner basis of L has tip-set \mathcal{T}^* .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Denote by $\mathcal{N}^* = \mathcal{B} \setminus \langle \mathcal{T}^* \rangle_R$ and for $t \in \mathcal{T}^*$ let

$$\mathcal{N}_t^* = \{n \in \mathcal{N}^* \mid n \|_R t \text{ and } t \succ^* n\}$$

For $t \in \mathcal{T}^*$, let $\varphi_t \colon \mathcal{N}_t^* \to K$ so that $\varphi_t(n) = 0$ for all but a finite number of n's. Define

$$\mathcal{H}_{\varphi}^* = \{ h_t = t - \sum_{n \in \mathcal{N}_t^*} \varphi_t(n)n \mid t \in \mathcal{T}^* \}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The next result classifies the submodules of P whose reduced right Gröbner bases have tip set \mathcal{T}^* .

Submodules having Gröbner bases with tip set \mathcal{T}^*

Theorem

Let \mathcal{T}^* be a right tip-reduced subset of \mathcal{B}^* , \mathcal{L} be the set of submodules L of P such that \mathcal{T}^* is the tip set of the reduced right Gröbner basis of L, and Φ be the set whose elements are sets of maps

 $\Phi = \{\varphi_t \colon \mathcal{N}_t^* \to K \mid t \in \mathcal{T}^* \text{ and for each } t, \varphi_t(n) = 0 \text{ for almost all } n \in \mathcal{N}_t^* \}.$

There is a one-to-one correspondence between \mathcal{L} and Φ . Moreover, given $\varphi \in \Phi$, \mathcal{H}_{φ}^* is the reduced right Gröbner basis of the submodule of P corresponding to φ , that is \mathcal{H}_{φ}^* is the reduced right Gröbner basis of $\langle \mathcal{H}_{\varphi}^* \rangle_R$.

The ambient space

We define the following set:

$$D(\mathcal{T}^*)$$
 to be the disjoint union $\bigcup_{t\in\mathcal{T}^*}\mathcal{N}^*_t.$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For simplicity in this talk assume that $D(\mathcal{T}^*)$ is a finite set.

The ambient space

We define the following set:

$$D(\mathcal{T}^*) \text{ to be the disjoint union } \bigcup_{t \in \mathcal{T}^*} \mathcal{N}_t^*.$$

For simplicity in this talk assume that $D(\mathcal{T}^*)$ is a finite set.

Definition

Write elements of as $D(\mathcal{T}^*)$ -tuples $\mathbf{c} = (c_{t,n})$ where $t \in \mathcal{T}^*$, $n \in \mathcal{N}_t^*$, and $c_{t,n} \in K$. We define $\mathcal{A}(\mathcal{T}^*)$ to be the $\mathbf{c} = (c_{t,n}) \in K^{D(\mathcal{T}^*)}$

ション ふゆ アメリア メリア しょうくしゃ

The ambient space

We define the following set:

$$D(\mathcal{T}^*) \text{ to be the disjoint union } \bigcup_{t \in \mathcal{T}^*} \mathcal{N}_t^*.$$

For simplicity in this talk assume that $D(\mathcal{T}^*)$ is a finite set.

Definition

Write elements of as $D(\mathcal{T}^*)$ -tuples $\mathbf{c} = (c_{t,n})$ where $t \in \mathcal{T}^*$, $n \in \mathcal{N}_t^*$, and $c_{t,n} \in K$. We define $\mathcal{A}(\mathcal{T}^*)$ to be the $\mathbf{c} = (c_{t,n}) \in K^{D(\mathcal{T}^*)}$ skip such that, for each t, all but a finite number of $c_{t,n}$ are 0.

ション ふゆ アメリア メリア しょうくしゃ

Given $\mathbf{c} = (c_{t,n}) \in \mathcal{A}(\mathcal{T}^*)$, let $\mathcal{H}^*(\mathbf{c})$ denote the set

$$\mathcal{H}^*(\mathbf{c}) = \{h_t = t - \sum_{n \in \mathcal{N}_t^*} c_{t,n} n \mid t \in \mathcal{T}^*\}$$

and

 $L(\mathbf{c})$ be the submodule of P generated by the elements of $\mathcal{H}^*(\mathbf{c})$.

Existence Theorem I

Theorem

Let \mathcal{T}^* be a right tip-reduced subset of \mathcal{B}^* . If L is a submodule of P with \mathcal{T}^* the tip-set of the reduced right Gröbner basis of L, then there is some $\mathbf{c} \in \mathcal{A}(\mathcal{T}^*)$ such that $L = L(\mathbf{c})$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Correspondence Theorem

Theorem

Let \mathcal{T}^* be a right tip-reduced subset of \mathcal{B}^* . The following sets are in one-to-one correspondence with each other.

 A(T*).
{H*(c) | c ∈ A(T*)}.
{L(c) | c ∈ A(T*) with H*(c) the reduced right Gröbner basis of L(c)}.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Corollary

The only point (c) in $\mathcal{A}(\mathcal{T}^*)$ such that $L(\mathbf{c})$ has right tip-reduced right Gröbner basis \mathcal{T}^* is the point $\mathbf{0} = (\dots, 0, 0, \dots)$, that is $L(\mathbf{0})$ is the only submodule of P whose right tip reduced right Gröbner is \mathcal{T}^* .

We freely refer to the module $L(\mathbf{c})$ as a point (\mathbf{c}) in affine space $\mathcal{A}(\mathcal{T}^*)$.

ション ふゆ アメリア メリア しょうくしゃ

Proposition

Let \mathcal{T}^* be a right tip-reduced subset of \mathcal{B}^* and let (c) and (c') be points in $\mathcal{A}(\mathcal{T}^*)$. Then

- 1. $\operatorname{tip}(L(\mathbf{c})) = \operatorname{tip}(L(\mathbf{c}'))$
- 2. The tip-sets of the reduced Gröbner bases of $L(\mathbf{c})$ and $L(\mathbf{c}')$ are both equal to \mathcal{T}^* .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

3. The dimension vectors of $P/L(\mathbf{c})$ and $P/L(\mathbf{c}')$ are equal.

Let $I\subset J$ be denote a two-sided Let M be a right KQ/I-module and fix the presentation and the Kernel, on the following exact sequence.

$$0 \to L(M) \stackrel{inc}{\to} P \to M \to 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $I \subset J$ be denote a two-sided Let M be a right KQ/I-module and fix the presentation and the Kernel, on the following exact sequence.

$$0 \to L(M) \stackrel{inc}{\to} P \to M \to 0$$

By the Correspondence Theorem we have that to every $(\mathbf{c}) \in \mathcal{A}(\mathcal{T}^*)$ corresponds a unique right tip-reduced set $\mathcal{H}^*(\mathbf{c})$ and a unique submodule $L(\mathbf{c})$ of P whose reduced right Gröbner is $\mathcal{H}^*(\mathbf{c})$ where $\operatorname{tip}(\mathcal{H}^*(\mathbf{c})) = \mathcal{T}^*$

ション ふゆ アメリア メリア しょうくしゃ

Definition

 Set

 $\mathcal{V}_{I}(\mathcal{T}^{*}) = \{(\mathbf{c}) \in \mathcal{A}(\mathcal{T}^{*}) \mid P/L(\mathbf{c}) \text{ is a } KQ/I\text{-module.}\}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Remark

If L is a submodule of P and \mathcal{T}^* is the tip-set of the reduced right Gröbner basis of L then by Theorem of correspondence there is some $(\mathbf{c}) \in \mathcal{A}(\mathcal{T}^*)$ such that $L = L(\mathbf{c})$. If, in addition, I annihilates P/L, then $(\mathbf{c}) \in \mathcal{V}_I(\mathcal{T}^*)$.

Remark

If L is a submodule of P and \mathcal{T}^* is the tip-set of the reduced right Gröbner basis of L then by Theorem of correspondence there is some $(\mathbf{c}) \in \mathcal{A}(\mathcal{T}^*)$ such that $L = L(\mathbf{c})$. If, in addition, I annihilates P/L, then $(\mathbf{c}) \in \mathcal{V}_I(\mathcal{T}^*)$.

Again by Theorem of correspondence and the definition of $\mathcal{V}_I(\mathcal{T}^*)$, the converse holds; that is, if $(\mathbf{c}) \in \mathcal{V}_I(\mathcal{T}^*)$ then $PI \subset L(\mathbf{c})$ and \mathcal{T}^* is the tip-set of the reduced right Gröbner basis of the submodule $L(\mathbf{c})$ of P.

Algebraic Variety

Theorem

Let \mathcal{T}^* be a right tip-reduced subset of \mathcal{B}^* and I a two-sided ideal of KQ. Then $\mathcal{V}_I(\mathcal{T}^*)$ is an affine algebraic variety in $\mathcal{A}(\mathcal{T}^*)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Existence Theorem II

Theorem

Let I be a two-sided ideal of KQ. Every KQ/I-module corresponds to a point in a variety $\mathcal{V}_I(\mathcal{T}^*)$ for some \mathcal{T}^* .

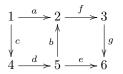
Let I be an ideal in KQ. Assume that KQ/I is finite dimensional, In the following cases the variety contained the module M is just a point.

- 1. If M be an indecomposable projective KQ/I-module.
- 2. If M is a simple module.

I will finish given some examples

Example one

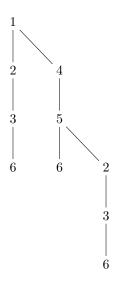
Let Q be the quiver



Let M be the KQ-module such that the vector space at each vertex is K and each linear map is the identity map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Then the projective cover is $P = v_1 K Q$



Let $L = \ker(P \to M)$ where $P \to M$ be a KQ-projective cover of M. Then $L = v_2 KQ \oplus v_6 KQ$. Let $\mathcal{T}^* = \{cdb, afg\}$. Taking $a > b > c > \cdots$ we obtain $h_{cbd} = cdb - Xa$ and $h_{afg} - Ycde$. Let I be the two-sided ideal $\langle cbdfg \rangle$. It is immediate that cbdfg is the right reduced Gröbner basis of I.

Right reducing cdbef by $\{h_1, h_2\}$ we get cdbfg reduces to Xafg. Continuing, Xafg reduces to XYcde which is completely reduced. We conclude that $\mathcal{V}_I(\mathcal{T}^*)$ is zeros of XY.

(ロ) (型) (E) (E) (E) (O)

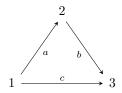
Example 2

Let Q be the quiver

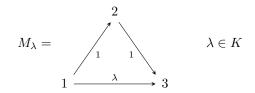
 $P = v_1 K Q$ $\mathcal{T}^* = \{abc, fde\}$ $a > b > c > \cdots > f > q$ with length-lex $\mathcal{H}^* = \{abc - Xf - Zh, fde - Yfa - Uhde - Vha\}$ $I = \langle abcde \rangle$ $abcde \rightarrow_{\mathcal{H}^*} Xfde + Zhde$ $Xfde \rightarrow_{\mathcal{H}^*} X(Yfa + Uhde + Vha) + Zhde$. To obtain an element (X, Y, Z.U, V), in $\mathcal{V}_I(\mathcal{T}^*)$ we need that XY = 0, XU + Z = 0, and XV = 0. so $\mathcal{V}_I(\mathcal{T}^*)$ = the zero locust of (XY, XU + Z, XV) in K^5 . ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example 3

Let Q be the quiver:



Consider the representation



・ロト ・個ト ・ヨト ・ヨト 三日

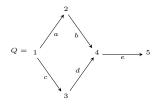
The KQ projective cover in KQ is v_1KQ and the kernel is the projective simple, KQv_3 , Observe that in this case $M_{\lambda} \ncong M'_{\lambda}$ if $\lambda \neq \lambda'$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

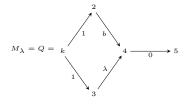
Let $\mathcal{T}^* = \langle ab \rangle$, then $\mathcal{V}(\mathcal{T}^*) = K$, $L = \langle ab - \lambda c \rangle$

Example 4

Let Q be the following quiver:



Also for each $0 \neq \lambda \in K$ the module associated with the representation:



The first KQ syzygy of M is isomorphic to the direct sum $S_5 \oplus P(4)$ A = KQ/I where I = <abe>

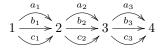
Here, as usual in these examples, we consider the degree lexicographer order with a > b > c > d > e.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Take $\mathcal{T}^* = \{cde, ab\}$ and in this case $\mathcal{V}(\mathcal{T}^*) = K$

Observe that $M_{\lambda} \equiv M_{\lambda'}$ implies $\lambda = \lambda'$.

Let Q be the following quiver



Let P = vKQ where v is the vertex 1 of Q and let \mathcal{B}^* be the basis of P. Let \succ be the length lexicographical order on \mathcal{B} the basis of paths of KQ such that $a_1 \succ a_2 \succ a_3 \succ b_1 \ldots \succ c_3$ and also call \succ the induced order on the basis \mathcal{B}^* of P. We start by defining two subsets \mathcal{S} and \mathcal{S}' of \mathcal{B}^* . Namely, let

S = the set of all paths of length 2 except $\{a_1c_2, c_1a_2, c_1b_2, c_1c_2\}$

 \mathcal{S}' = the set of all paths of length 3 except $\{a_1c_2c_3, c_1a_2c_3, c_1b_2c_3, c_1c_2c_3\}$

ション ふゆ アメリア メリア しょうくしゃ

Let I be the two-sided monomial ideal generated by

$$\mathcal{G} = \mathcal{S} \cup \mathcal{S}' \cup \{a_1 c_2 c_3\}.$$

Then \mathcal{G} is the right reduced Gröbner of Iand since PI = I, \mathcal{G} also is the reduced right Gröbner \mathcal{G}^* of PI, that is $\mathcal{G} = \mathcal{G}^*$.

In this example let

$$\mathcal{T}^* = \mathcal{S} \cup \mathcal{S}' \cup \{a_1c_2, c_1a_2c_3, c_1b_2c_3\}.$$

Let $\mathbf{X} = (X_{t,n})$, for $t \in \mathcal{T}^*$ and $n \in \mathcal{N}_t^*$, be variables and let

$$\mathcal{H}^*(\mathbf{X}) = \{ h_t = t - \sum_{n \in \mathcal{N}_t^*} X_{t,n} n \mid t \in \mathcal{T}^* \}.$$

We may assume $X_{t,n} = 0$ for all $t \in S \cup S' \subset PI \cap T^*$ and hence $h_t = t$, for all $t \in S \cup S'$.

We have

So the only linear combinations with possible non-zero coefficients in $\mathcal{H}^*(\mathbf{X})$ are

$$h_{a_1c_2} = a_1c_2 - X_{a_1c_2,c_1a_2}c_1a_2 - X_{a_1c_2,c_1b_2}c_1b_2 - X_{a_1c_2,c_1c_2}c_1c_2$$
$$h_{c_1a_2c_3} = c_1a_2c_3 - X_{c_1a_2c_3,c_1c_2c_3}c_1c_2c_3$$

and

$$h_{c_1b_2c_3} = c_1b_2c_3 - X_{c_1b_2c_3, c_1c_2c_3}c_1c_2c_3.$$

For simplicity, let

$$\begin{array}{rclrcl} X_1 &=& X_{a_1c_2,c_1a_2} \\ X_2 &=& X_{a_1c_2,c_1b_2} \\ X_3 &=& X_{a_1c_2,c_1c_2} \\ X_4 &=& X_{c_1a_2c_3,c_1c_2c_3} \\ X_5 &=& X_{c_1b_2c_3,c_1c_2c_3} \end{array}$$

Let $L(\mathbf{X}) = \langle \mathcal{H}^*(\mathbf{X}) \rangle_R$. In order for $L(\mathbf{X})$ to specialise to $L(\mathbf{c})$ such that $(\mathbf{c}) \in \mathcal{V}_I(\mathcal{T}^*)$, every generator starting at v in the reduced right Gröbner basis of PI must completely reduce to zero by $\mathcal{H}^*(\mathbf{c})$.

But all the paths $t \in S \cup S'$ are such that $h_t = t$ and thus they are in $L(\mathbf{X})$. The only path in \mathcal{G}^* that is not in \mathcal{T}^* is $a_1c_2c_3$ and we need to completely reduce it by $\mathcal{H}^*(\mathbf{X})$.

We have a simple reduction using $h_{a_1c_2}$ and

$$\begin{array}{rl} a_1c_2c_3 & \to_{\mathcal{H}^*(\mathbf{X})} & X_1c_1a_2c_3 + X_2c_1b_2c_3 + X_3c_1c_2c_3 \\ & \to_{\mathcal{H}^*(\mathbf{X})} & X_1X_4c_1c_2c_3 + X_2X_5c_1c_2c_3 + X_3c_1c_2c_3 \end{array}$$

where the latter is equal to $(X_1X_4 + X_2X_5 + X_3)c_1c_2c_3$. The zero locus of this polynomial give rise to the points $(\mathbf{c}) \in \mathcal{Y}_I(\mathcal{T}^*)$.

Muito Obrigado, Muchas Gracias, Thank you very much Saúde a todos