Higher Auslander-Reiten theory: what is it and how to understand it

Vitor Gulisz (UFPR)

14 May, 2021

Some conventions and definitions:

• Λ will always denote an Artin algebra.

```
(If you prefer, you can consider \Lambda as a finite dimensional algebra over a field.)
```

- mod Λ is the category of finitely generated (right) Λ -modules.
- If C is a subcategory of mod Λ , then add C is the subcategory of mod Λ consisting of the direct summands of finite direct sums of objects of C.
- If C has only one object X, then we denote add $C = \operatorname{add} X$.
- n will always be a positive integer.

What is higher Auslander-Reiten theory?

Here is a short answer:

Auslander-Reiten theory: (1970s, Maurice Auslander and Idun Reiten.)

- We work with the category mod Λ .
- We study almost split sequences in mod Λ .

Higher Auslander–Reiten theory: (2000s, Osamu Iyama.)

- We work with a convenient subcategory C of mod Λ .
- We study *n*-almost split sequences in C.

(We recover the classical case by taking n = 1.)

Higher homological algebra! (2010s)

- (n+2)-angulated categories.
- n-abelian and n-exact categories.

(We recover the classical cases by taking n = 1.)

We say that a short exact sequence

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

in $mod \Lambda$ is an **almost split sequence** in $mod \Lambda$ if

- g is right almost split in mod Λ ,
- f is left almost split in mod Λ .

Let $\mathcal C$ be a convenient subcategory of mod Λ . We say that an exact sequence

$$0 \longrightarrow X \xrightarrow{f_{n+1}} Y_n \xrightarrow{f_n} \cdots \xrightarrow{f_2} Y_1 \xrightarrow{f_1} Z \longrightarrow 0$$

in mod Λ of length n with terms in $\mathcal C$ is an $n\text{-}\mathbf{almost}$ split sequence in $\mathcal C$ if

- f_1 is right almost split in C,
- f_{n+1} is left almost split in C,
- $f_i \in \operatorname{rad}_{\mathcal{C}}$ for each $2 \leqslant i \leqslant n$.

How to understand the theory?

Through the functorial approach!

Let Γ be a ring and Ab be the category of abelian groups.

- We can view Γ as a preadditive category \mathcal{C} consisting of only one object X and such that $\mathcal{C}(X,X) = \Gamma$.
- If F is a contravariant additive functor from $\mathcal C$ to Ab, then F(X) is a right Γ -module:

$$\gamma \in \Gamma, z \in F(X) \Rightarrow z \cdot \gamma = F(\gamma)(z)$$

• The category (\mathcal{C}^{op} , Ab) consisting of the contravariant additive functors from \mathcal{C} to Ab is isomorphic to Mod Γ .

"module = functor"

Let C be a skeletally small preadditive category.

- ullet C is a "ring with several objects". (Barry Mitchell)
- We call a contravariant additive functor from C to Ab a C-module.
- We denote $(\mathcal{C}^{op}, \mathsf{Ab}) = \mathsf{Mod}\,\mathcal{C}$ (the category of \mathcal{C} -modules).

" \mathcal{C} -module = right \mathcal{C} -module".

- A **left** C-module is a covariant additive functor from C to Ab.
- A left C-module is the same as a right C^{op} -module.
- Hence we have $(C, Ab) = Mod C^{op}$ (the category of left C-modules).

• An example of a (right) C-module:

The contravariant functor $\mathcal{C}(-,X):\mathcal{C}\to\mathsf{Ab}$ for some $X\in\mathcal{C}.$

• An example of a left C-module:

The covariant functor $C(X, -) : C \to Ab$ for some $X \in C$.

In this talk we will also assume that ${\cal C}$ is a Krull–Schmidt category, i.e.

- \bullet \mathcal{C} is an additive category,
- Every object $X \in \mathcal{C}$ can be written as

$$X \simeq X_1 \oplus \cdots \oplus X_m$$

with the endomorphism ring of each X_i being local.

Some facts and definitions:

- A C-module F is **finitely generated** and **projective** if and only if $F \simeq C(-, X)$ for some $X \in C$.
- If $F \in \mathsf{Mod}\,\mathcal{C}$, then we say that F is **finitely presented** if there is an exact sequence

$$\mathcal{C}(-,Y) \xrightarrow{\mathcal{C}(-,f)} \mathcal{C}(-,X) \longrightarrow F \longrightarrow 0$$

in Mod \mathcal{C} with $X, Y \in \mathcal{C}$.

• We denote by $\operatorname{mod} \mathcal{C}$ the subcategory of $\operatorname{Mod} \mathcal{C}$ consisting of the finitely presented \mathcal{C} -modules.

Why are we doing this?

If Γ is a ring, then we may study Mod Γ to understand Γ .

If C is a (...) category, then we may study Mod C to understand C.

If Λ is an Artin algebra, then we may study mod Λ to understand Λ .

Furthermore, we may study $Mod(mod \Lambda)$ to understand $mod \Lambda$.

- We will give more attention to $mod(mod \Lambda)$.
- Auslander–Reiten theory!

More facts and definitions:

- If $F \in Mod \mathcal{C}$, then we denote its **Jacobson radical** by $rad_{\mathcal{C}} F$.
- $\operatorname{rad}_{\mathcal{C}} \mathcal{C}(-, X) = \operatorname{rad}_{\mathcal{C}}(-, X)$ for $X \in \mathcal{C}$.
- A C-module F is **simple** if and only if

$$F \simeq \frac{\mathcal{C}(-,Z)}{\operatorname{rad}_{\mathcal{C}}(-,Z)} = S_Z$$

for some indecomposable $Z \in \mathcal{C}$.

• A left C-module G is **simple** if and only if

$$G \simeq \frac{\mathcal{C}(X,-)}{\operatorname{\mathsf{rad}}_{\mathcal{C}}(X,-)} = S^X$$

for some indecomposable $X \in \mathcal{C}$.

Proposition

An exact sequence

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

in $\operatorname{mod} \Lambda$ is an almost split sequence in $\operatorname{mod} \Lambda$ if and only if X and Z are indecomposable and if

$$0 \longrightarrow \mathsf{Hom}_{\Lambda}(-,X) \xrightarrow{\mathsf{Hom}_{\Lambda}(-,f)} \mathsf{Hom}_{\Lambda}(-,Y) \xrightarrow{\mathsf{Hom}_{\Lambda}(-,g)} \mathsf{Hom}_{\Lambda}(-,Z) \longrightarrow \mathcal{S}_{Z} \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{\mathsf{Hom}}_{\Lambda}(Z,-) \xrightarrow{\operatorname{\mathsf{Hom}}_{\Lambda}(g,-)} \operatorname{\mathsf{Hom}}_{\Lambda}(Y,-) \xrightarrow{\operatorname{\mathsf{Hom}}_{\Lambda}(f,-)} \operatorname{\mathsf{Hom}}_{\Lambda}(X,-) \longrightarrow S^X \longrightarrow 0$$

are minimal projective resolutions of S_Z in $Mod(mod \Lambda)$ and of S^X $Mod(mod \Lambda)^{op}$, respectively.

Let $\mathcal C$ be subcategory of mod Λ such that add $\mathcal C=\mathcal C$. We say that an exact sequence

$$0 \, \longrightarrow \, X \, \xrightarrow{f_{n+1}} \, Y_n \xrightarrow{f_n} \, \cdots \, \xrightarrow{f_2} \, Y_1 \, \xrightarrow{f_1} \, Z \, \longrightarrow \, 0$$

in mod Λ of length n with terms in $\mathcal C$ is an n-almost split sequence in $\mathcal C$ if X and Z are indecomposable and if

$$0 \longrightarrow \mathcal{C}(-,X) \xrightarrow{\mathcal{C}(-,f_{n+1})} \mathcal{C}(-,Y_n) \xrightarrow{\mathcal{C}(-,f_n)} \cdots \xrightarrow{\mathcal{C}(-,f_2)} \cdots \xrightarrow{\mathcal{C}(-,f_1)} \mathcal{C}(-,Z) \longrightarrow \mathcal{S}_Z \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{C}(Z,-) \xrightarrow{\mathcal{C}(f_1,-)} \mathcal{C}(Y_1,-) \xrightarrow{\mathcal{C}(f_2,-)} \cdots \xrightarrow{\mathcal{C}(f_n,-)} \\ \longrightarrow \mathcal{C}(Y_n,-) \xrightarrow{\mathcal{C}(f_{n+1},-)} \mathcal{C}(X,-) \longrightarrow S^X \longrightarrow 0$$

are minimal projective resolutions of S_Z in $\operatorname{Mod} \mathcal{C}$ and of S^X $\operatorname{Mod} \mathcal{C}^{\operatorname{op}}$, respectively.

Proposition

An exact sequence

$$0 \, \longrightarrow \, X \, \xrightarrow{f_{n+1}} \, Y_n \, \xrightarrow{f_n} \, \cdots \, \xrightarrow{f_2} \, Y_1 \, \xrightarrow{f_1} \, Z \, \longrightarrow \, 0$$

in $\operatorname{mod} \Lambda$ of length n with terms in $\mathcal C$ is an n-almost split sequence in $\mathcal C$ if and only if

- f_1 is right almost split in C,
- f_{n+1} is left almost split in C,
- $f_i \in \operatorname{rad}_{\mathcal{C}}$ for each $2 \leqslant i \leqslant n$,
- The sequences

$$0 \longrightarrow \mathcal{C}(-,X) \xrightarrow{\mathcal{C}(-,f_{n+1})} \mathcal{C}(-,Y_n) \xrightarrow{\mathcal{C}(-,f_n)} \cdots \xrightarrow{\mathcal{C}(-,f_2)} \mathcal{C}(-,Y_1) \xrightarrow{\mathcal{C}(-,f_1)} \mathcal{C}(-,Z)$$

and

$$0 \longrightarrow \mathcal{C}(Z,-) \xrightarrow{\mathcal{C}(f_1,-)} \mathcal{C}(Y_1,-) \xrightarrow{\mathcal{C}(f_2,-)} \cdots \xrightarrow{\mathcal{C}(f_n,-)} \mathcal{C}(Y_n,-) \xrightarrow{\mathcal{C}(f_{n+1},-)} \mathcal{C}(X,-)$$

are exact in $Mod \mathcal{C}$ and in $Mod \mathcal{C}^{op}$, respectively.

It would be interesting to have the following property:

"If

$$0 \longrightarrow X \xrightarrow{f_{n+1}} Y_n \xrightarrow{f_n} \cdots \xrightarrow{f_2} Y_1 \xrightarrow{f_1} Z \longrightarrow 0$$

is an exact sequence in $mod \Lambda$ of length n with terms in C, then

$$0 \longrightarrow \mathcal{C}(-,X) \xrightarrow{\mathcal{C}(-,f_{n+1})} \mathcal{C}(-,Y_n) \xrightarrow{\mathcal{C}(-,f_n)} \cdots \xrightarrow{\mathcal{C}(-,f_2)} \mathcal{C}(-,Y_1) \xrightarrow{\mathcal{C}(-,f_1)} \mathcal{C}(-,Z)$$

and

$$0 \longrightarrow \mathcal{C}(Z,-) \xrightarrow{\mathcal{C}(f_1,-)} \mathcal{C}(Y_1,-) \xrightarrow{\mathcal{C}(f_2,-)} \cdots \xrightarrow{\mathcal{C}(f_n,-)} \mathcal{C}(Y_n,-) \xrightarrow{\mathcal{C}(f_{n+1},-)} \mathcal{C}(X,-)$$

are exact in $Mod \mathcal{C}$ and $Mod \mathcal{C}^{op}$, respectively."

To have this property it is sufficient to suppose that

$$\operatorname{Ext}^i_{\Lambda}(X,Y)=0$$

for every $X, Y \in \mathcal{C}$ and 0 < i < n.

Proposition

Suppose that $\operatorname{Ext}_{\Lambda}^{i}(X,Y) = 0$ for every $X,Y \in \mathcal{C}$ and 0 < i < n. Then an exact sequence

$$0 \, \longrightarrow \, X \, \xrightarrow{f_{n+1}} \, Y_n \, \xrightarrow{f_n} \, \cdots \, \xrightarrow{f_2} \, Y_1 \, \xrightarrow{f_1} \, Z \, \longrightarrow \, 0$$

in $\operatorname{mod} \Lambda$ of length n with terms in $\mathcal C$ is an n-almost split sequence in $\mathcal C$ if and only if

- f_1 is right almost split in C,
- f_{n+1} is left almost split in C,
- $f_i \in \operatorname{rad}_{\mathcal{C}}$ for each $2 \leqslant i \leqslant n$.

We say that C has n-almost split sequences if

• For every indecomposable and nonprojective $Z \in \mathcal{C}$ there is an n-almost split sequence

$$0 \longrightarrow X \longrightarrow Y_n \longrightarrow \cdots \longrightarrow Y_1 \longrightarrow Z \longrightarrow 0$$

in C.

• For every indecomposable and noninjective $X \in \mathcal{C}$ there is an n-almost split sequence

$$0 \longrightarrow X \longrightarrow Y_n \longrightarrow \cdots \longrightarrow Y_1 \longrightarrow Z \longrightarrow 0$$

in C.

Which subcategories of mod \(\Lambda \) have \(n\)-almost splits sequences?

Well, if we impose some conditions on C, then we can guarantee that it has n-almost split sequences.

Theorem

Let $\mathcal C$ be a subcategory of mod Λ such that add $\mathcal C=\mathcal C$. If $\mathcal C$ satisfies the conditions below, then it has n-almost split sequences.

- $\bullet \ \operatorname{Ext}\nolimits_{\Lambda}^{i}(X,Y) = 0 \text{ for every } X,Y \in \mathcal{C} \text{ and } 0 < i < n,$
- $\ \ \mathcal{C}$ is functorially finite in mod Λ ,
- ③ If $X \in \text{mod } \Lambda$ satisfies that $\text{Ext}_{\Lambda}^{i}(X, Y) = 0$ for every $Y \in \mathcal{C}$ and 0 < i < n, then $X \in \mathcal{C}$,
- If Y ∈ mod Λ satisfies that $\operatorname{Ext}^i_{\Lambda}(X,Y) = 0$ for every X ∈ C and 0 < i < n, then Y ∈ C.
 </p>

Such a subcategory is called an n-cluster tilting subcategory of $mod \Lambda$.

What do these properties mean?

- 2 implies that mod C and $mod C^{op}$ are abelian categories.
- **③** implies* that $\mathcal{P}(\Lambda) \subseteq \mathcal{C}$ and that gl. dim(mod \mathcal{C}) ≤ n + 1.
- implies* that $\mathcal{I}(\Lambda) \subseteq \mathcal{C}$ and that gl. dim(mod \mathcal{C}^{op}) $\leqslant n+1$.

Let $\mathcal C$ be a subcategory of mod Λ such that add $\mathcal C=\mathcal C$ and define

$$^{\perp n}\mathcal{C} = \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X,Y) = 0 \text{ for all } 0 < i < n \text{ and } Y \in \mathcal{C}\},$$

$$\mathcal{C}^{\perp n} = \{Y \in \operatorname{mod} \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X,Y) = 0 \text{ for all } 0 < i < n \text{ and } X \in \mathcal{C}\}.$$

Then to say that $\mathcal C$ is an *n*-cluster tilting subcategory of mod Λ means that $\mathcal C$ is functorially finite in mod Λ , $^{\perp n}\mathcal C=\mathcal C$ and $\mathcal C=\mathcal C^{\perp n}$.

Proposition

Let \mathcal{C} be a subcategory of mod Λ such that add $\mathcal{C}=\mathcal{C}$. If \mathcal{C} is functorially finite in mod Λ , then the following are equivalent:

- **①** \mathcal{C} is an *n*-cluster tilting subcategory of mod Λ .
- $\mathcal{C} = \mathcal{C}^{\perp n}$ and $\mathcal{P}(\Lambda) \subseteq \mathcal{C}$.
- \bullet $^{\perp n}\mathcal{C} = \mathcal{C}$ and $\mathcal{I}(\Lambda) \subseteq \mathcal{C}$.

If $M \in \text{mod } \Lambda$ satisfies that add M is an n-cluster tilting subcategory of $\text{mod } \Lambda$, then we say that M is an n-cluster tilting module over Λ .

However, we have the following result:

Proposition

If $M \in \text{mod } \Lambda$, then add M is functorially finite in $\text{mod } \Lambda$.

Therefore, for $M \in \text{mod } \Lambda$ the following are equivalent:

- **1** M is an n-cluster tilting module over Λ .

An example: (Gustavo Jasso / Laertis Vaso)

Consider the quiver

$$Q: \qquad 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} 4 \xrightarrow{\alpha_4} 5 \xrightarrow{\alpha_5} 6 \xrightarrow{\alpha_6} 7$$

and take $\Lambda = KQ/(\operatorname{rad} KQ)^2$, where K is a field. Then the Auslander-Reiten quiver of Λ is given by:

- Obviously, mod Λ is a 1-cluster tilting subcategory of mod Λ .
- Moreover, mod Λ has the following *n*-cluster tilting subcategories:

Some open problems:

Problem (1)

When does mod Λ contain an *n*-cluster tilting subcategory (module)?

Problem (2)

Is every *n*-cluster tilting subcategory of mod Λ with $n \ge 2$ of finite type?

We can verify that if $1 \le \text{gl. dim } \Lambda < \infty$ and if mod Λ has an n-cluster tilting subcategory, then $n \le \text{gl. dim } \Lambda$.

Problem (3)

If gl. dim $\Lambda = \infty$, then are there only finitely many positive integers n such that mod Λ admits an n-cluster tilting module?

Thank you!