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Some conventions and definitions:

Λ will always denote an Artin algebra.(
If you prefer, you can consider Λ as a
finite dimensional algebra over a field.

)

mod Λ is the category of finitely generated (right) Λ-modules.

If C is a subcategory of mod Λ, then add C is the subcategory of mod Λ
consisting of the direct summands of finite direct sums of objects of C.

If C has only one object X , then we denote add C = addX .

n will always be a positive integer.
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What is higher Auslander–Reiten theory?

Here is a short answer:
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Auslander–Reiten theory: (1970s, Maurice Auslander and Idun Reiten.)

We work with the category mod Λ.

We study almost split sequences in mod Λ.

Higher Auslander–Reiten theory: (2000s, Osamu Iyama.)

We work with a convenient subcategory C of mod Λ.

We study n-almost split sequences in C.

(We recover the classical case by taking n = 1.)
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Higher homological algebra! (2010s)

(n + 2)-angulated categories.

n-abelian and n-exact categories.

(We recover the classical cases by taking n = 1.)
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We say that a short exact sequence

0 X Y Z 0f g

in mod Λ is an almost split sequence in mod Λ if

g is right almost split in mod Λ,

f is left almost split in mod Λ.
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Let C be a convenient subcategory of mod Λ. We say that an exact sequence

0 X Yn · · · Y1 Z 0
fn+1 fn f2 f1

in mod Λ of length n with terms in C is an n-almost split sequence in C if

f1 is right almost split in C,

fn+1 is left almost split in C,

fi ∈ radC for each 2 6 i 6 n.
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How to understand the theory?

Through the functorial approach!
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Let Γ be a ring and Ab be the category of abelian groups.

We can view Γ as a preadditive category C consisting of only one object
X and such that C(X ,X ) = Γ.

If F is a contravariant additive functor from C to Ab, then F (X ) is a
right Γ-module:

γ ∈ Γ, z ∈ F (X ) ⇒ z · γ = F (γ)(z)

The category (Cop,Ab) consisting of the contravariant additive functors
from C to Ab is isomorphic to Mod Γ.

“module = functor”
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Let C be a skeletally small preadditive category.

C is a “ring with several objects”. (Barry Mitchell)

We call a contravariant additive functor from C to Ab a C-module.

We denote (Cop,Ab) = Mod C (the category of C-modules).

“C-module = right C-module”.

A left C-module is a covariant additive functor from C to Ab.

A left C-module is the same as a right Cop-module.

Hence we have (C,Ab) = Mod Cop (the category of left C-modules).
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An example of a (right) C-module:

The contravariant functor C(−,X ) : C → Ab for some X ∈ C.

An example of a left C-module:

The covariant functor C(X ,−) : C → Ab for some X ∈ C.
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In this talk we will also assume that C is a Krull–Schmidt category, i.e.

C is an additive category,

Every object X ∈ C can be written as

X ' X1 ⊕ · · · ⊕ Xm

with the endomorphism ring of each Xi being local.
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Some facts and definitions:

A C-module F is finitely generated and projective if and only if
F ' C(−,X ) for some X ∈ C.

If F ∈ Mod C, then we say that F is finitely presented if there is an
exact sequence

C(−,Y ) C(−,X ) F 0
C(−,f )

in Mod C with X ,Y ∈ C.

We denote by mod C the subcategory of Mod C consisting of the finitely
presented C-modules.
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Why are we doing this?

If Γ is a ring, then we may study Mod Γ to understand Γ.

If C is a (...) category, then we may study Mod C to understand C.

If Λ is an Artin algebra, then we may study mod Λ to understand Λ.

Furthermore, we may study Mod(mod Λ) to understand mod Λ.

We will give more attention to mod(mod Λ).

Auslander–Reiten theory!
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More facts and definitions:

If F ∈ Mod C, then we denote its Jacobson radical by radC F .

radC C(−,X ) = radC(−,X ) for X ∈ C.

A C-module F is simple if and only if

F ' C(−,Z )

radC(−,Z )
= SZ

for some indecomposable Z ∈ C.

A left C-module G is simple if and only if

G ' C(X ,−)

radC(X ,−)
= SX

for some indecomposable X ∈ C.
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Proposition

An exact sequence

0 X Y Z 0f g

in mod Λ is an almost split sequence in mod Λ if and only if X and Z are
indecomposable and if

0 HomΛ(−,X ) HomΛ(−,Y ) HomΛ(−,Z) SZ 0
HomΛ(−,f ) HomΛ(−,g)

and

0 HomΛ(Z ,−) HomΛ(Y ,−) HomΛ(X ,−) SX 0
HomΛ(g,−) HomΛ(f ,−)

are minimal projective resolutions of SZ in Mod(mod Λ) and of SX

Mod(mod Λ)op, respectively.
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Let C be subcategory of mod Λ such that add C = C. We say that an exact
sequence

0 X Yn · · · Y1 Z 0
fn+1 fn f2 f1

in mod Λ of length n with terms in C is an n-almost split sequence in C if
X and Z are indecomposable and if

0 C(−,X ) C(−,Yn) · · ·

C(−,Y1) C(−,Z) SZ 0

C(−,fn+1) C(−,fn) C(−,f2)

C(−,f1)

and

0 C(Z ,−) C(Y1,−) · · ·

C(Yn,−) C(X ,−) SX 0

C(f1,−) C(f2,−) C(fn,−)

C(fn+1,−)

are minimal projective resolutions of SZ in Mod C and of SX Mod Cop,
respectively.
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Proposition

An exact sequence

0 X Yn · · · Y1 Z 0
fn+1 fn f2 f1

in mod Λ of length n with terms in C is an n-almost split sequence in C if
and only if

f1 is right almost split in C,

fn+1 is left almost split in C,

fi ∈ radC for each 2 6 i 6 n,

The sequences

0 C(−,X ) C(−,Yn) · · · C(−,Y1) C(−,Z)
C(−,fn+1) C(−,fn) C(−,f2) C(−,f1)

and

0 C(Z ,−) C(Y1,−) · · · C(Yn,−) C(X ,−)C(f1,−) C(f2,−) C(fn,−) C(fn+1,−)

are exact in Mod C and in Mod Cop, respectively.
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It would be interesting to have the following property:

“If

0 X Yn · · · Y1 Z 0
fn+1 fn f2 f1

is an exact sequence in mod Λ of length n with terms in C, then

0 C(−,X ) C(−,Yn) · · · C(−,Y1) C(−,Z)
C(−,fn+1) C(−,fn) C(−,f2) C(−,f1)

and

0 C(Z ,−) C(Y1,−) · · · C(Yn,−) C(X ,−)C(f1,−) C(f2,−) C(fn,−) C(fn+1,−)

are exact in Mod C and Mod Cop, respectively.”

To have this property it is sufficient to suppose that

ExtiΛ(X ,Y ) = 0

for every X ,Y ∈ C and 0 < i < n.
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Proposition

Suppose that ExtiΛ(X ,Y ) = 0 for every X ,Y ∈ C and 0 < i < n. Then an
exact sequence

0 X Yn · · · Y1 Z 0
fn+1 fn f2 f1

in mod Λ of length n with terms in C is an n-almost split sequence in C if
and only if

f1 is right almost split in C,

fn+1 is left almost split in C,

fi ∈ radC for each 2 6 i 6 n.
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We say that C has n-almost split sequences if

For every indecomposable and nonprojective Z ∈ C there is an n-almost
split sequence

0 X Yn · · · Y1 Z 0

in C.

For every indecomposable and noninjective X ∈ C there is an n-almost
split sequence

0 X Yn · · · Y1 Z 0

in C.
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Which subcategories of mod Λ have n-almost splits sequences?

Well, if we impose some conditions on C, then we
can guarantee that it has n-almost split sequences.
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Theorem

Let C be a subcategory of mod Λ such that add C = C. If C satisfies the
conditions below, then it has n-almost split sequences.

1 ExtiΛ(X ,Y ) = 0 for every X ,Y ∈ C and 0 < i < n,

2 C is functorially finite in mod Λ,

3 If X ∈ mod Λ satisfies that ExtiΛ(X ,Y ) = 0 for every Y ∈ C and
0 < i < n, then X ∈ C,

4 If Y ∈ mod Λ satisfies that ExtiΛ(X ,Y ) = 0 for every X ∈ C and
0 < i < n, then Y ∈ C.

Such a subcategory is called an n-cluster tilting subcategory of mod Λ.

What do these properties mean?

2 implies that mod C and mod Cop are abelian categories.

3 implies∗ that P(Λ) ⊆ C and that gl. dim(mod C) 6 n + 1.

4 implies∗ that I(Λ) ⊆ C and that gl. dim(mod Cop) 6 n + 1.
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Let C be a subcategory of mod Λ such that add C = C and define

⊥nC = {X ∈ mod Λ | ExtiΛ(X ,Y ) = 0 for all 0 < i < n and Y ∈ C},
C⊥n = {Y ∈ mod Λ | ExtiΛ(X ,Y ) = 0 for all 0 < i < n and X ∈ C}.

Then to say that C is an n-cluster tilting subcategory of mod Λ means that
C is functorially finite in mod Λ, ⊥nC = C and C = C⊥n.

Proposition

Let C be a subcategory of mod Λ such that add C = C. If C is functorially
finite in mod Λ, then the following are equivalent:

1 C is an n-cluster tilting subcategory of mod Λ.

2 C = C⊥n and P(Λ) ⊆ C.

3 ⊥nC = C and I(Λ) ⊆ C.
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If M ∈ mod Λ satisfies that addM is an n-cluster tilting subcategory of
mod Λ, then we say that M is an n-cluster tilting module over Λ.

However, we have the following result:

Proposition

If M ∈ mod Λ, then addM is functorially finite in mod Λ.

Therefore, for M ∈ mod Λ the following are equivalent:

1 M is an n-cluster tilting module over Λ.

2 ⊥n(addM) = addM and addM = (addM)⊥n.
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An example: (Gustavo Jasso / Laertis Vaso)

Consider the quiver

Q : 1 2 3 4 5 6 7
α1 α2 α3 α4 α5 α6

and take Λ = KQ/(radKQ)2, where K is a field. Then the Auslander-Reiten
quiver of Λ is given by:

P6 P5 P4 P3 P2 P1

P7 S6 S5 S4 S3 S2 S1

Obviously, mod Λ is a 1-cluster tilting subcategory of mod Λ.

Moreover, mod Λ has the following n-cluster tilting subcategories:
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n = 6:
P6 P5 P4 P3 P2 P1

P7 S6 S5 S4 S3 S2 S1

n = 3:
P6 P5 P4 P3 P2 P1

P7 S6 S5 S4 S3 S2 S1

n = 2:
P6 P5 P4 P3 P2 P1

P7 S6 S5 S4 S3 S2 S1
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Some open problems:

Problem (1)

When does mod Λ contain an n-cluster tilting subcategory (module)?

Problem (2)

Is every n-cluster tilting subcategory of mod Λ with n > 2 of finite type?

We can verify that if 1 6 gl. dim Λ <∞ and if mod Λ has an n-cluster tilting
subcategory, then n 6 gl. dim Λ.

Problem (3)

If gl. dim Λ =∞, then are there only finitely many positive integers n such
that mod Λ admits an n-cluster tilting module?
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Thank you!
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