
IMPROVED WEIL AND TATE PAIRINGS FOR ELLIPTIC

AND HYPERELLIPTIC CURVES

KIRSTEN EISENTRÄGER, KRISTIN LAUTER, AND PETER L. MONTGOMERY

Abstract. We present algorithms for computing the squared Weil and
Tate pairings on an elliptic curve and the squared Tate pairing for hy-
perelliptic curves. The squared pairings introduced in this paper have
the advantage that our algorithms for evaluating them are deterministic
and do not depend on a random choice of points. Our pairings save
about 20-30% over the usual pairings.

1. Introduction

The Weil and Tate pairings have been proposed for use in many aspects of
cryptography, including one-round 3-way key establishment, identity-based
encryption, and short signatures [7]. For a fixed positive integer m, the
Weil pairing em is a bilinear map that takes as input two m-torsion points
on an elliptic curve, and outputs an mth root of unity in the field. For
elliptic curves, the Tate pairing is related to the Weil pairing by the fact
that the Weil pairing is a quotient of the output of two applications of the
Tate pairing, except that the Tate pairing needs an exponentiation which
the Weil pairing omits.

For cryptographic applications, the objective is to have a bilinear map
with a specific recipe for efficient evaluation, and no clear way to invert.
The Weil and Tate pairings provide such tools, since each has a practical
definition which involves finding functions with prescribed zeros and poles
on the curve, and evaluating those functions at pairs of points.

For elliptic curves, Miller [8] gave an algorithm for the Weil pairing. (See
also the Appendix B to [2], for a probabilistic implementation of Miller’s
algorithm which recursively generates and evaluates the required functions
based on a random choice of points.) For Jacobians of hyperelliptic curves,
Frey and Rück [5] gave a recursive algorithm to generate the required func-
tions, assuming the knowledge of intermediate functions having prescribed
zeros and poles.

For elliptic curves, we present an improved algorithm for computing the
squared Weil pairing, em(P,Q)2. Our deterministic algorithm does not de-
pend on a random choice of points for evaluation of the pairing. Our algo-
rithm saves about 20% over the standard implementation of the Weil pairing

The research for this paper was done while the first author was visiting Microsoft
Research.

1



2 EISENTRÄGER, LAUTER, AND MONTGOMERY

[2]. We use the same idea to obtain an improved algorithm for computing
the squared Tate pairing for elliptic and hyperelliptic curves. The Tate
pairing is already more efficient to implement than the Weil pairing. Our
new squared Tate pairing is more efficient than the standard implementa-
tion of the Tate pairing for elliptic curves, again saving roughly 20%. For
the pairings on special families of elliptic curves in characteristics 2 and 3,
some implementation improvements were given in [6] and [1]. A different
deterministic algorithm was also given in [1].

For hyperelliptic curves, we use Cantor’s algorithm to produce the inter-
mediate functions assumed by Frey and Rück. We define a squared Tate
pairing for hyperelliptic curves, and use the knowledge of these intermediate
functions to implement the pairing and give examples. Our analysis shows
that using the squared Tate pairing saves roughly 30% over the standard
Tate pairing for genus 2 curves. The squared Weil pairing or the squared
Tate pairing can be substituted for the Weil or Tate pairing in many of the
above cryptographic applications.

The paper is organized as follows. Section 2 provides background on
the Weil pairing for elliptic curves and gives the algorithm for computing
the squared Weil pairing. Section 3 does the same for the squared Tate
pairing for elliptic curves. Section 4 presents the squared Tate pairing for
hyperelliptic curves and shows how to implement it. Section 5 gives an
example of the hyperelliptic pairing.

2. Weil pairings for elliptic curves

Let E : y2 = x3 + ax + b be an elliptic curve over a finite field Fq, not
of characteristic 2 or 3. In the following O denotes the point at infinity on
E. If P is a point on E, then x(P ) and y(P ) denote the rational functions
mapping P to its affine x and y-coordinates.

2.1. Definition of the Weil pairing. Let m be a positive integer such
that E has two independent points of order m over some field of definition
Fq. The definition of the Weil pairing which is used in practice is given in [9,
p. 107]. To compute em(P,Q), given two distinct m-torsion points P and Q
on E, pick two divisors AP and AQ which are equivalent to (P ) − (O) and
(Q)−(O), respectively, and such that AP and AQ have disjoint support. Let
fAP

be a function on E whose divisor of zeros and poles is (fAP
) = m · AP .

Similarly, let fAQ
be a function on E whose divisor of zeros and poles is

(fAQ
) = m · AQ. Then

em(P,Q) =
fAP

(AQ)

fAQ
(AP )

.

2.2. Rational functions needed in the evaluation of the pairing. Fix
an integer m > 0 and an m-torsion point P on an elliptic curve E. Let AP

be a divisor equivalent to (P )− (O). For a positive integer j, let fj,AP
be a



IMPROVED WEIL AND TATE PAIRINGS 3

rational function on E with divisor

(fj,AP
) = jAP − (jP ) + (O)

This means that fj,AP
has j-fold zeros and poles at the points in AP , as

well as a simple pole at jP and a simple zero at O, and no other zeros
or poles. Since mP = O, it follows that fm,AP

has divisor mAP , so in
fact fAP

= fm,AP
. Throughout the paper the notation fj,P will be used to

denote the function fj,AP
with AP = (P ) − (O).

Corollary 3.5 on page 67 of [9] asserts that these functions exist. Each
fi,AP

is unique up to a nonzero multiplicative scalar. Miller’s algorithm
gives an iterative construction of these functions (see for example [1]). The
construction of f1,AP

depends on AP . Given fi,AP
and fj,AP

, one constructs
fi+j,AP

as the product

(1) fi+j,AP
= fi,AP

· fj,AP
·
giP,jP

g(i+j)P
.

Here the notation gU,V (two subscripts) denotes the line passing through the
points U and V on E. The notation gU (one subscript) denotes the vertical
line through U and −U . For more details on efficiently computing fm,AP

,
see [4].

2.3. Squared Weil pairing for elliptic curves. The purpose of this sec-
tion is to construct a new pairing, which we call the ‘squared Weil pairing’,
and which has the advantage of being more efficient to compute than Miller’s
algorithm for the original Weil pairing. Our algorithm also has the advan-
tage that it is guaranteed to output the correct answer and does not depend
on inputting a randomly chosen point. In contrast Miller’s algorithm may
restart, since the randomly chosen point can cause the algorithm to fail.

2.4. Algorithm for em(P,Q)2. Fix a positive integer m and the curve E.
Given two m-torsion points P and Q on E, we want to compute em(P,Q)2.

Start with an addition-subtraction chain for m. That is, after an initial
1, every element in the chain is a sum or difference of two earlier elements in
the chain, until an m appears. Well-known techniques give a chain of length
O(log(m)).

For each j in the addition-subtraction chain, form a tuple

tj = [jP, jQ, nj, dj ]

such that

(2)
nj

dj
=
fj,P (Q) fj,Q(−P )

fj,P (−Q) fj,Q(P )
.

Start with t1 = [P, Q, 1, 1]. Given tj and tk, this procedure gets tj+k:

(1) Form the elliptic curve sums jP + kP = (j + k)P and jQ + kQ =
(j + k)Q.

(2) Find coefficients of the line gjP,kP (X) = c0 + c1x(X) + c2y(X).



4 EISENTRÄGER, LAUTER, AND MONTGOMERY

(3) Find coefficients of the line gjQ,kQ(X) = c′0 + c′1x(X) + c′2y(X).
(4) Set

nj+k = njnk(c0 + c1x(Q) + c2y(Q))(c′0 + c′1x(P ) − c′2y(P ))

dj+k = djdk(c0 + c1x(Q) − c2y(Q))(c′0 + c′1x(P ) + c′2y(P )).

A similar construction gives tj−k from tj and tk. The vertical lines through
(j + k)P and (j + k)Q do not appear in the formulae for nj+k and dj+k,
because the contributions from Q and −Q (or from P and −P ) are equal.

When j + k = m, one can further simplify this to nj+k = njnk and
dj+k = djdk, since c2 and c′2 will be zero.

procedure Squared Weil Pairing(m, P, Q)
Issue an error if m is not a positive integer.
if (P = O or Q = O or P = ±Q) then

return 1;
else

t1 = [P, Q, 1, 1];
Use an addition-subtraction chain to get

tm = [mP, mQ, nm, dm];
Issue an error if mP or mQ is not O.
if (nm = 0 or dm = 0) then

return 1;
else

return −nm/dm;
end if;

end if;
When nm and dm are nonzero, then the computation

nm

dm
=
fm,P (Q) fm,Q(−P )

fm,P (−Q) fm,Q(P )
.

has been successful, and we have the correct output. If, however, nm or dm

is zero, then some factor such as c0 + c1x(Q) + c2y(Q) must have vanished.
That line was chosen to pass through jP , kP , and (−j − k)P , for some j
and k. It does not vanish at any other point on the elliptic curve. Therefore
this factor can vanish only if Q = jP or Q = kP or Q = (−j − k)P . In all
of these cases Q will be a multiple of P , ensuring em(P,Q) = 1.

2.5. Correctness proof.

Theorem 1 (Squared Weil Pairing Formula). Let m be a positive integer.
Suppose P and Q are m-torsion points on E, with neither being the identity
and P not equal to ±Q. Then

fm,P (Q) · fm,Q(−P )

fm,P (−Q) · fm,Q(P )
= (−1)mem(P,Q)2,

where em denotes the Weil-pairing.



IMPROVED WEIL AND TATE PAIRINGS 5

Proof. Let R1, R2 be two points on E such that the divisors

AP := (P +R1) − (R1) and AQ := (Q+R2) − (R2)

have disjoint support. Let A−Q := (−Q+R2)− (R2). Let fAP
and fAQ

be
as above. Then

em(P,Q) =
fAP

((Q+R2) − (R2))

fAQ
((P +R1) − (R1))

=
fAP

(Q+R2)

fAP
(R2)

·
fAQ

(R1)

fAQ
(P +R1)

.

If we denote g(X) = fm,P (X −R1), then

(g) = m(P +R1) −m(R1) = mAP = (fAP
),

This implies g(X)/fAP
(X) is constant and

fAP
(Q+R2)

fAP
(R2)

=
g(Q+R2)

g(R2)
=
fm,P (Q+R2 −R1)

fm,P (R2 −R1)
.

Similarly
fAQ

(R1)

fAQ
(P +R1)

=
fm,Q(R1 −R2)

fm,Q(P +R1 −R2)
.

Plugging these into Miller’s formula gives

em(P,Q) =
fm,P (Q+R2 −R1)

fm,P (R2 −R1)

fm,Q(R1 −R2)

fm,Q(P +R1 −R2)
.

Using the same argument for em(P,−Q) we obtain

em(P,−Q) =
fm,P (−Q+R2 −R1)

fm,P (R2 −R1)

fm,−Q(R1 −R2)

fm,−Q(P +R1 −R2)

=
fm,P (−Q+R2 −R1)

fm,P (R2 −R1)

fm,Q(−R1 +R2)

fm,Q(−P −R1 +R2)

Hence we can simplify em(P,Q)2 to

em(P,Q)2 =
em(P,Q)

em(P,−Q)

=
fm,P (Q+R2 −R1) fm,Q(R1 −R2) fm,Q(−P −R1 +R2)

fm,P (−Q+R2 −R1) fm,Q(−(R1 −R2)) fm,Q(P +R1 −R2)
.(3)

Let R := R2 −R1. Equation (3) becomes

em(P,Q)2 =
fm,P (Q+R) fm,Q(−R) fm,Q(−P +R)

fm,P (−Q+R) fm,Q(R) fm,Q(P −R)
.

Fix two linearly independent m-torsion points P and Q. Consider the
right side as a rational function of R, and call it ψ = ψ(R). Since fm,P only
has zeros and poles at P and O and fm,Q only has zeros and poles at Q
and O, this function ψ(R) can only have zeros or poles at R = −Q,Q,P −

Q,P + Q,P , and O. By looking at the factors of ψ we can check that at
each of these points, the value of ψ(R) is well-defined, because the zeros
and poles cancel each other out. Since ψ is a rational function on an elliptic
curve which does not have any zeros or poles, ψ must be constant. Since



6 EISENTRÄGER, LAUTER, AND MONTGOMERY

for certain values of R, ψ(R) = em(P,Q)2, this must be the case for all
values of R. Hence we may in particular choose R = O, or equivalently

R1 = R2. So let R1 = R2. By Lemma 2 below,
fm,Q(R1−R2)

fm,Q(−(R1−R2))
= (−1)m,

and by assumption fm,P does not have a zero or pole at Q and fm,Q does
not have a zero or pole at P . Hence expression (3) simplifies to

(4) em(P,Q)2 = (−1)m
fm,P (Q) fm,Q(−P )

fm,P (−Q) fm,Q(P )
.

�

Lemma 2. Let f : E → Fq be a rational function on E with a zero of
order m (or a pole of order −m) at O. Define g : E → Fq by g(X) =
f(X)/f(−X). Then g(O) is finite and g(O) = (−1)m.

Proof of lemma. The rational function h(X) = x(X)/y(X) has a zero of
order 1 at X = O and satisfies h(−X) = −h(X). The function f1 = f/hm

has neither a pole nor a zero at X = O, so f1(O) is finite and nonzero.
We can easily check that the rational function φ(X) = h(X)/h(−X) has no
zeros and poles on E. Hence φ is constant, and by computing φ(X) for a
finite point X = (x, y) on E with x, y 6= 0, we see that φ is equal to −1.
Hence

g(X) =
f(X)

f(−X)
=

h(X)mf1(X)

h(−X)mf1(−X)
= (−1)m

f(X)

f(−X)
,

and g(O) = (−1)m. �

2.6. Estimated Savings. In this section we will compare our algorithm
for the squared Weil pairing to Miller’s algorithm for the Weil pairing. We
count operations in the underlying finite field, counting field squarings as
field multiplications throughout.

In practice, some of these arithmetic operations may be over a base field
and others over an extension field. This issue is discussed in more detail
in [6]. Without knowing the precise context of the application, we don’t
distinguish these, although individual costs may differ considerably.
Miller’s algorithm. Miller’s algorithm chooses two points R1, R2 on E,
and lets AP = (P + R1) − (R1) and AQ = (P +R2) − (R2). Recall that in
the notation of Section 2.1, fAP

is a function whose divisor is mAP . As in
Section 2.2, let fj,AP

be a function whose divisor is

(fj,AP
) = j(P +R1) − j(R1) − (jP ) + (O).

This is the function fj in the notation of [2, p. 611f.]. Then fm,AP
= fAP

.
As pointed out in Equation (B.1) of [2, p. 612], (1) leads to the recurrence

fi+j,AP
(AQ) = fi,AP

(AQ) · fj,AP
(AQ) ·

giP,jP (AQ)

g(i+j)P (AQ)
.(5)

During the computations, each fj,AP
(AQ) is a known field element, un-

like the unevaluated rational functions fj,AP
. Since AQ has degree 0, the



IMPROVED WEIL AND TATE PAIRINGS 7

value of fj,AP
(AQ) is unambiguous, whereas fj,AP

is defined only up to a
multiplicative scale factor.

To compute the Weil pairing we need

em(P,Q) =
fAP

(Q+R2)

fAP
(R2)

fAQ
(R1)

fAQ
(P +R1)

=
fm,AP

(Q+R2)

fm,AP
(R2)

fm,AQ
(R1)

fm,AQ
(P +R1)

.

For integers j in an addition-subtraction chain for m, we construct tj =
[jP, jQ, nj, dj] where nj and dj satisfy

nj

dj
=
fj,AP

(Q+R2)

fj,AP
(R2)

fj,AQ
(R1)

fj,AQ
(P +R1)

.

To compute ti+j from ti and tj, one uses the above recurrence (5) to derive
the following expression for ni+j/di+j :

ni+j

di+j
=
ni

di
·
nj

dj
·
giP,jP (Q+R2)

giP,jP (R2)
·

g(i+j)P (R2)

g(i+j)P (Q+R2)

·
giQ,jQ(R1)

giQ,jQ(P +R1)
·
g(i+j)Q(P +R1)

g(i+j)Q(R1)
.(6)

To evaluate, for example, giP,jP (Q +R2)/giP,jP (R2), start with the elliptic
curve addition iP + jP = (i + j)P . This costs one field division and two
field multiplications in the generic case where iP and jP have distinct x-
coordinates and neither is O. Save the slope λ of the line

giP,jP (X) = y(X) − y(iP ) − λ(x(X) − x(iP ))

through iP and jP . Two field multiplications suffice to evaluate

giP,jP (Q+R2) and giP,jP (R2).

Given Q+R2 and R2, no more field multiplications or divisions are needed
to compute the numerator and denominator of

g(i+j)P (R2)

g(i+j)P (Q+R2)
=

x(R2) − x((i+ j)P )

x(Q+R2) − x((i+ j)P )
.

Repeat this once more to evaluate the last two fractions in (6). Overall
these evaluations cost 8 field multiplications and 2 field divisions. We need
10 multiplications to multiply the six fractions, for an overall cost of 18
multiplications and 2 divisions.
Squared pairing. The squared pairing needs nm/dm where nj/dj is given
by (2). The recurrence formula is

(7)
ni+j

di+j
=
ni

di

nj

dj

giP,jP (Q)

giP,jP (−Q)

g(i+j)P (−Q)

g(i+j)P (Q)

giQ,jQ(−P )

giQ,jQ(P )

g(i+j)Q(P )

g(i+j)Q(−P )
.

This time the update from ti = [iP, iQ, ni, di] and tj to ti+j needs two ellip-
tic curve additions. Each elliptic curve addition needs two multiplications



8 EISENTRÄGER, LAUTER, AND MONTGOMERY

and one division in the generic case. We can evaluate the numerator and
denominator of

giP,jP (Q)

giP,jP (−Q)
=

y(Q) − y(iP ) − λ(x(Q) − x(iP ))

y(−Q) − y(iP ) − λ(x(−Q) − x(iP ))

with only one multiplication, since x(Q) = x(−Q).
The fraction g(i+j)P (−Q)/g(i+j)P (Q) simplifies to 1 since g(i+j)P (X) de-

pends only on x(X), not y(X). Overall six multiplications and two divisions
suffice to evaluate the numerators and denominators of the six fractions
in (7). We multiply the four non-unit fractions with six field multiplica-
tions.

Overall, the squared Weil pairing advances from ti and tj to i + j with
12 field multiplications and 2 field divisions in the generic case, compared
to 18 field multiplications and 2 field divisions for Miller’s method. When
i = j, each algorithm needs two additional field multiplications due to the
elliptic curve doublings. Estimating one division as five multiplications, this
is roughly a 20% savings.

3. Squared Tate pairing for elliptic curves

3.1. Squared Tate pairing formula. Let m be a positive integer. Assume
that E is defined over Fq, where q = pn and m divides q − 1. Suppose P is
an m-torsion point on E over Fq (notation: P ∈ E(Fq)[m]), and Q is a point
on the curve over Fq, with neither being the identity and P not equal to a
multiple of Q. The Tate pairing φm(P,Q) on E(Fq)[m] × E(Fq)/mE(Fq) is
defined as

φm(P,Q) := (fAP
(AQ))(q−1)/m ,

with the notation and evaluation as for the Weil pairing above. Now we
define

vm(P,Q) :=

(

fm,P (Q)

fm,P (−Q)

)(q−1)/m

,

where fm,P is as above, and call vm the squared Tate-pairing. To justify
this terminology, we will show below that

vm(P,Q) = φm(P,Q)2.

3.2. Algorithm for vm(P,Q). Fix a positive integer m and the curve E.
Given an m-torsion point P on E and a point Q on E, we want to compute
vm(P,Q). As before, start with an addition-subtraction chain for m. For
each j in the addition-subtraction chain, form a tuple tj = [jP, nj, dj ] such
that

nj

dj
=

fj,P (Q)

fj,P (−Q)
.

Start with t1 = [P, 1, 1]. Given tj and tk, this procedure gets tj+k:

(1) Form the elliptic curve sum jP + kP = (j + k)P .
(2) Find the line gjP,kP (X) = c0 + c1x(X) + c2y(X).



IMPROVED WEIL AND TATE PAIRINGS 9

(3) Set

nj+k = nj · nk · (c0 + c1x(Q) + c2y(Q)),

dj+k = dj · dk · (c0 + c1x(Q) − c2y(Q))

A similar construction gives tj−k from tj and tk. The vertical lines through
(j + k)P and (j + k)Q do not appear in the formulae for nj+k and dj+k,
because the contributions from Q and −Q are equal. When j + k = m, one
can further simplify this to nj+k = nj · nk and dj+k = dj · dk, since c2 will
be zero. When nm and dm are nonzero, then the computation

nm

dm
=

fm,P (Q)

fm,P (−Q)

is successful, and after raising to the (q − 1)/m power, we have the correct
output. If some nm or dm were zero, then some factor such as c0 + c1x(Q)+
c2y(Q) must have vanished. That line was chosen to pass through jP , kP ,
and (−j − k)P , for some j and k. It does not vanish at any other point
on the elliptic curve. Therefore this factor can vanish only if Q = jP or
Q = kP or Q = (−j − k)P for some j and k. In all of these cases Q would
be a multiple of P , contrary to our assumption.

3.3. Correctness proof.

Theorem 3. Let m be a positive integer. Suppose P is an m-torsion point
on E, and Q ∈ E with neither being the identity and P not equal to ±Q.
Then

(

fm,P (Q)

fm,P (−Q)

)(q−1)/m

= φm(P,Q)2,

where φm denotes the Tate-pairing.

Proof. Let R1, R2 be two points on E such that the divisors

(AP ) = (P +R1) − (R1) and (AQ) = (Q+R2) − (R2)

have disjoint support. By the definition of the Tate pairing and the discus-
sion in the proof of the correctness of the squared Weil pairing, we have

φm(P,Q) =

(

fAP
(Q+R2)

fAP
(R2)

)(q−1)/m

=

(

fm,P (Q+R2 −R1)

fm,P (R2 −R1)

)(q−1)/m

,

and

φm(P,−Q) =

(

fAP
(−Q+R2)

fAP
(R2)

)(q−1)/m

=

(

fm,P (−Q+R2 −R1)

fm,P (R2 −R1)

)(q−1)/m

.



10 EISENTRÄGER, LAUTER, AND MONTGOMERY

Then

φm(P,Q)2 =
φm(P,Q)

φm(P,−Q)

=

(

fm,P (Q+R2 −R1)fm,P (R2 −R1)

fm,P (R2 −R1)fm,P (−Q+R2 −R1)

)(q−1)/m

=

(

fm,P (Q+R2 −R1)

fm,P (−Q+R2 −R1)

)(q−1)/m

.

By the same argument as in the proof for the Weil pairing we may choose
R2 = R1. This gives us

φm(P,Q)2 =

(

fm,P (Q)

fm,P (−Q)

)(q−1)/m

.

�

3.4. Estimated Savings. The analysis of the improvement we obtain from
the squared Tate pairing is almost identical to the comparison for the Weil
pairing given in Section 2.6 above.

When analyzing Miller’s algorithm for the Tate pairing, the main dif-
ference from Section 2.6 is that the formula analogous to (6) has 2 fewer
fractions to evaluate and combine. One elliptic curve addition costs 1 divi-
sion and 2 multiplications, while 2 multiplications are needed to evaluate the
numerators and denominators of the two fractions. Then 6 multiplications
are needed to multiply together the numerators and denominators of the 4
fractions. The total cost for each iterative step of Miller’s algorithm where
an addition is performed is 1 division and 10 multiplications.

For the squared Tate pairing, the formula analogous to (7) also has 2
fewer fractions in it. One elliptic curve addition costs 1 division and 2 mul-
tiplications, while only 1 multiplication is needed to evaluate the numerators
and denominators of the two fractions. Then 4 multiplications are needed
to multiply together the numerators and denominators of the 3 non-unit
fractions. The total cost for each iterative step of the squared Tate pairing
where an addition is performed is 1 division and 7 multiplications.

Overall, the squared Tate pairing advances from ti and tj to i+ j with 7
field multiplications and 1 field division in the generic case, compared to 10
field multiplications and 1 field division for Miller’s method applied to the
usual Tate pairing. When i = j, each algorithm needs one additional field
multiplication due to the elliptic curve doubling. Estimating one division as
five multiplications, this is roughly a 20% savings.

4. Squared Tate pairing for hyperelliptic curves

Let C : y2 = f(x) be a hyperelliptic curve of genus g over a finite field Fq

not of characteristic 2. For simplicity we assume that the degree of f is odd



IMPROVED WEIL AND TATE PAIRINGS 11

so that C has one point P∞ at infinity. The case where f has even degree
can be handled similarly.

4.1. Notation. Let J = J(C) be the Jacobian of C, and let Div0(C) denote
the group of divisors of degree 0 on C. If P = (x, y) is a point on C, then
P ′ will denote the point P ′ := (x,−y). We will denote the identity element
of J by id.

The theorem of Riemann and Roch assures that each element D of J
contains a representative of the form A−gP∞, where A is an effective divisor
of degree g. In the following we will always work with representatives of this
form with the additional property that if a point P = (x, y) occurs in A, then
P ′ := (x,−y) does not occur in A. The effective divisor in the representative
for the identity id will be gP∞. For an element D of J , a representative for
iD will be Ai − gP∞, where Ai is effective of degree g with the additional
property above.

To a representative Ai − gP∞ we can associate two polynomials (ai, bi)
which represent the divisor. The first polynomial, ai(x), is monic and has
as its zeros the x-coordinates of the points in the support of the divisor
Ai. The second polynomial, bi(x), has degree less than the degree of ai(x),
and has the property that its graph passes through the finite points in the
support of the divisor Ai.

4.2. Definition of the Tate Pairing. Fix a positive integer m and assume
that Fq contains an mth root of unity ζm. There exists a pairing φm:

J(Fq)[m] × J(Fq)/mJ(Fq) → F
∗
q/F

∗
q
m ∼=< ζm >

with the following explicit description: Let D ∈ J(Fq)[m], and E ∈ J(Fq).
Now E is a divisor on the curve C, not an elliptic curve, and we assume
that the support of E does not contain P∞ and that E is prime to the
Ai’s which were defined above. Actually E only needs to be prime to those
representatives which will be used in the addition-subtraction chain for m,
so to about logm divisors. Let hm,D be a function on C such that the divisor
of hm,D satisfies (hm,D) = mD. Then

φm(D,E) := hm,D(E)
q−1

m ∈< ζm >

Remark: The value hm,D(E) is defined only up to mth powers. Hence we

raise the result to the power q−1
m to eliminate all mth powers.

This pairing is called the Tate pairing, and it is known to be well-defined,
bilinear, and non-degenerate [5, p. 871].

4.3. Evaluation of the Tate Pairing. In [5, pp. 872–873] it is shown how
to evaluate the Tate pairing on the Jacobian of a curve assuming an explicit
reduction algorithm for divisors on a curve. For hyperelliptic curves, such
an algorithm can be found in Cantor [3]. In Section 4.6 below, we will
use Cantor’s algorithm to explicitly compute the necessary intermediate



12 EISENTRÄGER, LAUTER, AND MONTGOMERY

functions. They will be used to evaluate the squared Tate pairing, but they
could just as well be used to evaluate the usual Tate pairing.

4.4. Functions needed in the evaluation of the pairings. Let D be
an m-torsion element of J . For any integer j, let hj,D denote a rational
function on C with divisor

(hj,D) = jA1 −Aj − (j − 1)gP∞.

Since D is an m-torsion element, we have that Am = gP∞, so the divisor of
hm,D is (hm,D) = mA1 −m · gP∞. For each j, hj,D is well-defined up to a
multiplicative constant.

Using Cantor’s algorithm we can, given positive divisors of degree g, as
well as Ai and Aj , find a positive divisor Ai+j of degree g and determine a
function ui,j such that the divisor of ui,j is equal to

(ui,j) = Ai +Aj −Ai+j − gP∞.

Now we can show how to iteratively construct hj,D(E). For j = 1, let
h1,D be 1. Suppose we have Ai, Aj, hi,D(E) and hj,D(E). Let ui,j be the
above function on C. Then

hi+j,D(E) = hi,D(E) · hj,D(E) · ui,j(E).

4.5. Squared Tate pairing vm for hyperelliptic curves. Given an m-
torsion element D of J and an element E of J , with representatives

D = (P1) + (P2) + · · · + (Pg) − (gP∞)

and
E = (Q1) + (Q2) + · · · + (Qg) − (gP∞),

respectively, with Pi not equal to Qj or Q′
j for all i, j define

vm(D,E) :=
(

hm,D(Q1 −Q′
1 +Q2 −Q′

2 + · · · +Qg −Q′
g)

)(q−1)/m
.

Then it will be shown below that

vm(D,E) = ±φm(D,E)2,

where φm(D,E) is the Tate pairing on J [m] × J/mJ .

4.6. Algorithm to compute vm(D,E). Assume for simplicity that g =
2. Let D and E be as above. Form an addition-subtraction chain for m.
For each j in the addition-subtraction chain we need to form a tuple tj =
[Aj , nj, dj ] such that jD has representative Aj − 2P∞ and

nj

dj
=
hj,D(Q1) hj,D(Q2)

hj,D(Q′
1) hj,D(Q′

2)
.

Start with t1 = [A1, 1, 1]. Given ti and tj, let (ai, bi) and (aj , bj) be the
polynomials corresponding to the divisors Ai and Aj . Do a composition step
as, for example, in Cantor’s algorithm to obtain (anew, bnew) corresponding
to Ai +Aj without performing the reduction step. Let d(x) be the greatest
common divisor of the three polynomials (ai(x), aj(x), bi(x) + bj(x)) as in



IMPROVED WEIL AND TATE PAIRINGS 13

Cantor. The polynomial d(x) depends on i and j, but we will omit the
subscripts here for ease of notation. If d(x) = 1, then anew(x) is just the
product of ai(x) and aj(x), and bnew(x) is the cubic polynomial passing
through the four distinct finite points in the support of Ai and Aj . The
output polynomials satisfy

bnew(x)2 ≡ f(x) (mod anew(x)).

Case i. If the degree of anew is greater than 2, Cantor’s algorithm performs
a reduction step. In this case, we can let

ui,j(P ) :=
anew(x(P ))

bnew(x(P )) + y(P )
· d(x(P )).

Then (ui,j) = Ai +Aj −Ai+j − 2P∞, and

ui,j(P )

ui,j(P ′)
=

anew(x(P ))

anew(x(P ′))
·
bnew(x(P ′)) + y(P ′)

bnew(x(P )) + y(P )
·
d(x(P ))

d(x(P ′))

=
bnew(x(P ′)) + y(P ′)

bnew(x(P )) + y(P )
.

Let

(8) ni+j := ni · nj · (bnew + y)(Q′
1) · (bnew + y)(Q′

2),

and

(9) di+j := di · dj · (bnew + y)(Q1) · (bnew + y)(Q2).

There is no contribution from anew in ni+j and di+j because the contribu-
tions from Qi and Q′

i are equal. This is an improvement over the algorithm
for the Tate pairing from [5].

Case ii. If on the other hand the degree of anew is less than or equal to 2,
then one can let ui,j(P ) = d(x(P )).

Note that if we evaluate at intermediate steps then it is not enough to
assume that the divisors D and E are coprime. Instead, E must also be
coprime to Ai for all i which occur in the addition chain for m. One way
to ensure this condition is to require that E and D be linearly independent
and that the polynomial a(x) in the pair (a(x), b(x)) representing E be
irreducible. There are other ways possible to achieve this, like changing the
addition chain for m.

4.7. Correctness proof. Assume for simplicity of notation now that the
genus of C is 2. Let D ∈ J(Fq)[m] and E ∈ J(Fq), where

D = P1 + P2 − 2P∞

and

E = Q1 +Q2 − 2P∞.

Recall that if P1 is a point on C, say P1 = (x, y), then P ′
1 is the point

(x, −y). Similarly, if D = P1 + P2 − 2P∞, let D′ = P ′
1 + P ′

2 − 2P∞. For the
proof, we will compute φm(2D, 2E).



14 EISENTRÄGER, LAUTER, AND MONTGOMERY

First observe that

Q1 −Q′
1 +Q2 −Q′

2 ∼ 2E

in the Jacobian of C. Let hm,D denote the rational function on C with
divisor

(hm,D) = mP1 +mP2 − 2mP∞

as above. Then the divisor of hm,D/hm,D′ is of the form
(

hm,D

hm,D′

)

= mP1 −mP ′
1 +mP2 −mP ′

2,

so

(hm,D/hm,D′) ∼ 2mD

in the Jacobian. That means we can use hm,D/hm,D′ to compute the pairing
φm(2D, 2E). If Q is any point on C, then it is easy to see that hm,D(Q) =
c · hm,D′(Q′), where c is a constant which does not depend on Q. We can
see that by comparing the divisors of the two functions.

Hence

φm(2D, 2E) =

(

hm,D(Q1 −Q′
1 +Q2 −Q′

2)

hm,D′(Q1 −Q′
1 +Q2 −Q′

2)

)(q−1)/m

=

(

hm,D(Q1 −Q′
1 +Q2 −Q′

2)

hm,D(Q′
1 −Q1 +Q′

2 −Q2)

)(q−1)/m

=
(

hm,D(Q1 −Q′
1 +Q2 −Q′

2)
2
)(q−1)/m

Since φm(2D, 2E) = φm(D, E)4, it follows that

φm(P, Q)2 = ±(hm,D(Q1 −Q′
1 +Q2 −Q′

2))
(q−1)/m.

4.8. Estimated Savings. According to a straightforward implementation
of Cantor’s algorithm, the total costs for doubling and addition on the Jaco-
bian of a hyperelliptic curve of genus 2 in odd characteristic, C : y2 = f(x),
where f has degree 5, are as follows: doubling an element costs 34 multi-
plications and 2 inversions; adding two distinct elements of J costs 26 mul-
tiplications and 2 inversions. More efficient implementations of the group
law may alter the total impact of our algorithm. Different field multiplica-
tion/inversion ratios and field sizes, as well as differing costs in an extension
field will also affect the analysis, but these costs are chosen as representative
for the purpose of estimating the savings.

4.8.1. Analysis of standard algorithm. The standard algorithm described by
Frey and Rück [5] proceeds as follows: Let D := P1 + P2 − 2P∞, and let
R1, R2, R3, R4 be four points on C such that

Q1 +Q2 − 2P∞ ∼ R1 +R2 −R3 −R4



IMPROVED WEIL AND TATE PAIRINGS 15

in J . We keep the notation from before. The algorithm computes ti+j from
ti and tj, where ti = [Ai, nj, dj ] and

nj

dj
=
hj,D(R1) hj,D(R2)

hj,D(R3) hj,D(R4)
.

The expression for ni+j/di+j becomes

ni+j

di+j
=
ni

di

nj

dj

ui,j(R1) ui,j(R2)

ui,j(R3) ui,j(R4)
.

To form ui,j, we have to perform an addition or doubling step to obtain
Ai+j from Ai and Aj . This costs 34 multiplications and 2 inversions for a
doubling, 26 multiplications and 2 inversions for an addition. Then

ui,j(P ) =
anew(x(P ))

bnew(x(P )) + y(P )
,

and to compute (ni+j , di+j), we need to evaluate ui,j at four different points.
Each evaluation of anew(x(P )) costs 2 multiplications in a doubling step, 3
multiplications in an addition step. Evaluation of bnew(x(P )) costs 3 mul-
tiplications. Finally we multiply the partial numerators and denominators
out, using 5 multiplications each, including the multiplications with ni, nj,
di, and dj . So the total cost for an addition step is 60 multiplications and
2 inversions, and the total cost for a doubling is 64 multiplications and 2
inversions.

4.8.2. Squared Tate Pairing. The squared Tate pairing works with the di-
visor Q1 −Q′

1 +Q2 −Q′
2 ∼ 2Q1 − 2Q2 − 4P∞. After adding Ai and Aj to

obtain Ai+j as above, we need to form

ni+j

di+j
=
ni

di

nj

dj

ui,j(Q1) ui,j(Q
′
1)

ui,j(Q2) ui,j(Q′
2)
.

As can be seen from (8) and (9) above, no evaluations of anew(x(P )) are
needed. For i = 1, 2, we need to evaluate bnew(x(Qi)) and bnew(x(Q′

i)). This
costs only 3 multiplications for each i, since the x-coordinates of Qi and
Q′

i are the same. Finally, we have to multiply the partial numerators and
denominators, for a total cost of 12 multiplications for either a doubling or
an addition.

So the total cost for an addition step is 38 multiplications and 2 inversions,
and the total cost for a doubling is 46 multiplications and 2 inversions.
Estimating one inversion as 4 multiplications this is a 25% improvement in
the doubling case and a 33% improvement in the addition case.

5. Examples

5.1. g = 2, p = 31, m = 5. In this section, we evaluate the squared Tate
pairing for 5-torsion on the Jacobian of a genus 2 hyperelliptic curve over a
field of 31 elements.



16 EISENTRÄGER, LAUTER, AND MONTGOMERY

Take the hyperelliptic curve C defined by the affine model y2 = f(x)
where

f(x) = x5 + 13x4 + 2x3 + 4x2 + 11x+ 1.

The group of points on the Jacobian of C over F31 has order N = 1040.
Let D be the 5-torsion element of the Jacobian of C given by the pair of
polynomials

D = [x2 + 23x+ 15, 13x + 28].

Let E be the element of the Jacobian of C of order 260 given by the pair

E = [x2 + 4x+ 2, 29x + 20].

Then the squared Tate pairing evaluated at D and E is

v5(D,E) = 4,

where

h5,D =
(x+ 26)2(x4 + 19x3 + 23x2 + 16x+ 19)(x2 + 23x+ 15)

x3 + 6x2 + 9x+ 21 + y
.

To see the bilinearity of this pairing, look for example at

2D = [x2 + 25x+ 9, 10x + 6],

3D = [x2 + 25x + 9, 21x + 25],

and

2E = [x2 + x+ 3, 26x + 3].

Then we compute that indeed

v5(2D,E) = 16 = v5(D,E)2,

with

h5,2D =
(x+ 26)(x4 + 19x3 + 23x2 + 16x+ 19)2(x2 + 25x+ 9)

(x3 + 6x2 + 9x+ 21 + y)2
,

and

v5(D, 2E) = 16 = v5(D,E)2,

with h5,D as above. Also

v5(3D,E) = 2 = v5(D,E)3 (mod 31),

with

h5,3D =
(x+ 26)(x4 + 19x3 + 23x2 + 16x+ 19)2(x2 + 25x+ 9)

(30x3 + 25x2 + 22x+ 10 + y)2
.



IMPROVED WEIL AND TATE PAIRINGS 17

References

[1] Paulo S.L.M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algorithms
for pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology – Crypto

2002, pages 354–368. LNCS 2442, Springer-Verlag, 2002.
[2] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing.

SIAM J. Comput., 32(3):586–615 (electronic), 2003.
[3] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,

48(177):95–101, 1987.
[4] Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic curve

arithmetic and improved Weil pairing evaluation. In Marc Joye, editor, Topics in

Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference 2003,

San Francisco, CA, USA, April 13-17, 2003, Proceedings, pages 343–354. LNCS 2612,
Springer-Verlag, 2003.

[5] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the dis-
crete logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
1994.

[6] Steven Galbraith, Keith Harrison, and David Soldera. Implementing the Tate Pairing.
In Claus Fieker and David R. Kohel, editors, Algorithmic Number Theory, 5th In-

ternational Symposium ANTS-V, Sydney, Australia, July 7-12, 2002, pages 324–337.
LNCS 2369, Springer-Verlag, 2002.

[7] Antoine Joux. The Weil and Tate pairings as building blocks for public key cryp-
tosystems (survey). In Claus Fieker and David R. Kohel, editors, Algorithmic Number

Theory, 5th International Symposium ANTS-V, Sydney, Australia, July 7-12, 2002,
pages 20–32. LNCS 2369, Springer-Verlag, 2002.

[8] Victor S. Miller. Short programs for functions on curves. Unpublished manuscript,
1986.

[9] Joseph Silverman. The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, 1986.

School of Mathematics, Institute for Advanced Study, Einstein Drive,

Princeton, NJ 08540

E-mail address: eisentra@ias.edu

Microsoft Research, One Microsoft Way, Redmond, WA 98052

E-mail address: klauter@microsoft.com

Microsoft Research, 780 Las Colindas Road, San Rafael, CA 94903–2346

E-mail address: petmon@microsoft.com


