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Abstract. RC6 has been submitted as a candidate for the Advanced
Encryption Standard (AES). Two important features of RC6 that were
absent from its predecessor RC5 are a quadratic function and a fixed
rotation. By examining simplified variants that omit these features we
clarify their essential contribution to the overall security of RC6.

1 Introduction

RC6 is an evolutionary improvement of the block cipher RC5 [9] that was de-
signed to meet the requirements of the Advanced Encryption Standard (AES).
Like RC5, RC6 makes essential use of data-dependent rotations, but it also in-
cludes new features such as the use of four working registers instead of two, and
the inclusion of integer multiplication as an additional primitive operation. Two
components of RC6 that were absent from RC5 are a quadratic function to mix
bits in a word more effectively and a fixed rotation that is used both to hinder the
construction of good differentials and linear approximations and also to ensure
that subsequent data dependent rotation amounts are more likely to be affected
by any ongoing avalanche of change.

An initial analysis of the security of RC6 and its resistance to the basic
forms of differential and linear cryptanalysis was given in [3]. Here we further
illustrate how these new operations contribute to the security of RC6 by studying
simplified variants (that is, intentionally weakened forms) of RC6. In particular,
our approach is to find the best attack on the weakened forms and then try to
adapt the attack to the full cipher. Since one of the design principles of RC6
was to build on the experience gained with RC5, the focus of our analysis will
be in assessing the relevance to RC6 of the best existing cryptanalytic attacks
on RC5. We will often refer to the work of Knudsen and Meier [8] and that
of Biryukov and Kushilevitz [2]. These authors in particular have made very
significant advances in understanding the security of RC5.

Our work splits naturally into two parts. The first focuses on the usefulness of
the fixed rotation and the second on the quadratic function. While our analysis
is targeted at RC6 and its simplified variants, some of the results might well be
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of independent interest. Our analysis starts by considering some of the weakened
variants of RC6 that were introduced in [3]. More specifically, by dropping the
fixed rotation we derive a cipher that we will denote by RC6-NFR (where NFR
stands for no fixed rotation), by dropping the quadratic function we obtain RC6-
I (where I stands for the identity function), and by dropping both operations we
have RC6-I-NFR.

We will consider characteristics and differentials for RC6-I-NFR and RC6-
NFR that have already been described in [3]. We study the relations between
certain values of the subkeys and the probability of a characteristic and/or dif-
ferential. Such phenomena are similar to the “differentially-weak keys” of RC5
observed by Knudsen and Meier [8]. We describe our observations and provide a
thorough analysis which suggests that inclusion of the fixed rotation destroys the
structure required for such dependencies to form. As a consequence RC6-I and
RC6 itself seem to be immune from any direct extension of the results previously
obtained on RC5.

Second, we examine the diffusive properties of the quadratic function and
other operations that are used in RC6. In this analysis we track the Hamming
weight (the number of 1’s) of the exclusive-or difference between two quantities as
they are encrypted. Quite naturally this leads to the idea of differentials that are
constructed using such a measure of difference and this notion is very similar
in spirit to earlier work on RC5 [2,8]. We show that the quadratic function
drastically increases the Hamming weight of some input difference when the
Hamming weight of an input difference is small. This indicates that the use
of both the quadratic function and data-dependent rotations in RC6 make it
unlikely that differential attacks similar to those that were useful for RC5 [2,8]
can be effectively extended to RC6.

2 Description of RC6 and Variants

A version of RC6 is specified as RC6-w/r/b where the word size is w bits, en-
cryption consists of a nonnegative number of rounds r, and b denotes the length
of the encryption key in bytes. Throughout this paper we will set w = 32, r = 20,
b = 16, 24, or 32 and we will use RC6 to refer to this particular version. The
base-two logarithm of w will be denoted by lg w and RC6 uses the following six
basic operations:

a + b integer addition modulo 2w

a − b integer subtraction modulo 2w

a ⊕ b bitwise exclusive-or of w-bit words
a × b integer multiplication modulo 2w

a <<< b rotate the w-bit word a to the left by the amount
given by the least significant lg w bits of b

a >>> b rotate the w-bit word a to the right by the amount
given by the least significant lg w bits of b

The user supplies a key of length k bytes which is then expanded to a set
of subkeys. The key schedule of RC6 is described in [10]. Since here we are
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only concerned with encryption, we will assume that the subkeys S[0], . . ., S[43]
are independent and chosen at random. RC6 works with four w-bit registers
A, B, C, D which contain the initial input plaintext as well as the output cipher-
text at the end of encryption. We use (A, B, C, D) = (B, C, D, A) to mean the
parallel assignment of values on the right to registers on the left.

Encryption with RC6-w/20/b

Input: Plaintext stored in four w-bit input registers A, B, C, D
w-bit round keys S[0, . . . , 43]

Output: Ciphertext stored in A, B, C, D

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to 20 do

{
t = (B × (2B + 1))<<< lg w
u = (D × (2D + 1))<<< lg w
A = ((A ⊕ t) <<< u) + S[2i]
C = ((C ⊕ u) <<< t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

}
A = A + S[42]
C = C + S[43]

The three simplified variants of RC6 that we will consider throughout the
paper are distinguished from RC6 in the way the values of t and u are assigned.
These differences are summarized in the following table.

The assignment of t and u in RC6 and some weakened variants

RC6-I-NFR RC6-I RC6-NFR RC6
t = B B <<< lg w B × (2B + 1) (B × (2B + 1))<<< lg w
u = D D <<< lg w D × (2D + 1) (D × (2D + 1))<<< lg w

3 The Fixed Rotation

In [8] Knudsen and Meier show that the values of some of the subkeys in RC5
can have a direct effect on the probability of whether some differential holds. In
this section we show that a similar phenomenon can be observed in weakened
variants of RC6 that do not use the fixed rotation. This should perhaps come as
little surprise since while the structure of RC6-I-NFR is very different to that of
RC5, it uses the same operations and might be expected to have similar behavior
at times. We will then consider the role of the fixed rotation used in RC6 and we
will demonstrate by analysis and experimentation that the effects seen in RC5
and some simplified variants of RC6 do not seem to exist within RC6 itself.
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3.1 Existing Analysis on RC6-I-NFR and RC6-NFR

In [3] one potentially useful six-round iterative characteristic was provided for
attacking both RC6-I-NFR and RC6-NFR. This is given in Table 1. Here et is
used to denote the 32-bit word that has all bits set to zero except bit t where
t = 0 for the least significant bit. We use Ai (respectively Bi, Ci and Di) to
denote the values of registers A (respectively B, C, and D) at the beginning of
round i. As an example, A1, B1, C1, and D1 contain the plaintext input after
pre-whitening and for the six-round variants of the cipher, A7, B7, C7 and D7
contain the output prior to post-whitening. According to [3], when averaged
over all possible subkeys, the expected probability that this characteristic holds
is 2−30 for both RC6-I-NFR and RC6-I.

3.2 Refined Analysis of RC6-I-NFR and RC6-NFR

Closer analysis of the characteristic probabilities for RC6-I-NFR and RC6-NFR
suggests that the values of some of the subkeys during encryption are important.
In particular, the characteristic of interest for RC6-I-NFR and RC6-NFR given
in Table 1 can only occur if certain subkey conditions are met. Further, once
these subkey conditions hold then the characteristic occurs with probability 2−20,
which is much higher than the initial estimate of 2−30 that was obtained by
averaging over all subkeys.

i Ai Bi Ci Di

1 e31 e31 0 0
↓

2 e31 0 0 0
↓

3 0 0 0 e31

↓
4 0 e31 e31 0

↓
5 e31 e31 0 e31

↓
6 e31 e31 e31 0

↓
7 e31 e31 0 0

Table 1. A characteristic for RC6-I-NFR and RC6-NFR.

In the analysis that follows we will concentrate on RC6-NFR. The same
arguments and results can be applied to RC6-I-NFR by replacing f(x) = x ×
(2x+1) with the identity function f(x) = x. We will use the fact that x mod 2i

uniquely determines (x×(2x+1)) mod 2i. Furthermore, the notation “=32” will
be used to indicate when two values are congruent modulo 32.
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Lemma 1. If the characteristic given in Table 1 holds for RC6-NFR, then the
following two conditions on the subkeys must hold:

f(−S[9]) =32 −S[7],
f(S[8]) =32 −S[11].

Proof. First we observe that if the characteristic is to hold, then certain rotation
amounts derived from the B and D registers must be zero. Note that we always
have that Bi = Ai+1 and that Di = Ci+1. As a consequence, for the characteristic
to hold we must have

D2 =32 C3 =32 0, B3 =32 A4 =32 0,
B4 =32 A5 =32 0, D4 =32 C5 =32 0,
B5 =32 A6 =32 0, B6 =32 A7 =32 0.

Using the fact that the rotation amounts are 0, we get the following two
equations from rounds three and four and rounds four and five.

B4 = (C3 ⊕ f(D3)) + S[7], (1)
B5 = (C4 ⊕ f(D4)) + S[9]. (2)

Since B4 =32 0, C3 =32 0, B5 =32 0 and D4 =32 0, we have S[7] =32 −f(D3)
and C4 =32 −S[9]. Since C4 = D3, we obtain the first condition on subkeys
S[7] =32 −f(−S[9]).

Similarly, looking at the computation from rounds four and five and rounds
five and six, we get the following two equations.

D5 = A4 ⊕ f(B4) + S[8], (3)
B6 = C5 ⊕ f(D5) + S[11]. (4)

Since A4 =32 0, B4 =32 0, B6 =32 0 and C5 =32 0, we have D5 =32 S[8] and
S[11] =32 −f(D5), and so S[11] =32 −f(S[8]). 2

The subkey dependencies in Lemma 1 were obtained using only four equati-
ons (those for B4, B5, D5 and B6). In total, one could write down 12 equa-
tions of the form Bi+1 = (((Ci ⊕ f(Di))<<<f(Bi)) + S[2i + 1] and Di+1 =
(((Ai ⊕ f(Bi))<<<f(Di)) + S[2i] for this characteristic. Although there might
be dependencies involving other equations, the four given above will be the fo-
cus of the rest of this section. Essentially, each equation involves four variables
and the aim is to combine equations to obtain two expressions with a single
variable. If the two expressions involve the same variable then we can obtain
conditions on the subkeys involved. The four equations we use are the only ones
from the set of twelve that allow us to do this.

It is worth noting that given such conditions on the subkeys involved not
only does the characteristic hold, but it does so with a higher probability than
the expected value given in [3].

Lemma 2. Assume that the characteristic given in Table 1 holds up to round
five. Furthermore suppose that f(−S[9]) =32 −S[7] and f(S[8]) =32 −S[11].
Then B5 =32 0 and B6 =32 0.
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Proof. From Lemma 1, we have that S[7] =32 −f(D3). This is equivalent to
−S[7] =32 f(C4). Also, we have that B5 =32 C4+S[9]. So, if −S[7] =32 f(−S[9])
then f(C4) =32 f(−S[9]) which implies that C4 =32 −S[9] and so B5 =32 0. A
similar argument can be used to show that B6 =32 0. 2

Lemma 2 shows that when the subkey conditions hold, B5 =32 0 and B6 =32
0. In this case the probability of the characteristic will be 2−30 ×25 ×25 = 2−20,
since two of the rotation amounts are always zero. Recall that the estimated
probability for the characteristic when averaged over all keys is 2−30 [3]. Here we
have shown (Lemmas 1 and 2) that there is some irregularity in the distribution
of the probability: For a fraction of 2−10 keys the probability is 2−20, and for the
rest of the keys the probability is much smaller than 2−30. This kind of irregular
distribution can sometimes be exploited as was demonstrated by Knudsen and
Meier with RC5 [8] who showed some techniques for using it in a differential
attack. We would expect the same to apply here. Similar subkey dependencies
can be observed for some of the other characteristics for RC6-I-NFR and RC6-
NFR given in [3]. However in some cases the characteristic must be iterated more
than once before dependencies exist.

Note that the behavior of the differential associated with some characteristic
is typically of more importance in a differential attack. For RC6-I-NFR, while the
characteristic displays the irregular behavior already described, the associated
differential has been experimentally verified to hold with the expected probabi-
lity [3]. However the associated differential for RC6-NFR appears to have the
same irregular behavior as the characteristic. Why is there this discrepancy? In
[3] it is shown how the introduction of the quadratic function helps to reduce the
additional effect of differentials. In short, for RC6-I-NFR there are many equally
viable paths that match the beginning and end-points of the characteristic. If the
characteristic fails to hold because of some choice of subkey values, other cha-
racteristics hold instead thereby maintaining the probability of the differential.
However, with RC6-NFR we introduce the quadratic function and this typically
reduces differentials to being dominated by the action of a single characteristic.
Irregular behavior in the characteristic will therefore manifest itself as irregular
behavior in the differential.

3.3 Differential Characteristics in RC6-I and RC6

Let us now consider the role of the fixed rotation that was omitted in RC6-I-
NFR and RC6-NFR. We will find that this single operation removes the kind of
subkey dependencies that occurred in these two variants.

We will focus on RC6-I in the analysis for simplicity, and the same arguments
also apply to the full RC6. We will need to make some heuristic assumptions to
make headway with our analysis. Nevertheless our experimental results confirm
that the differential behavior of RC6-I is pretty much as expected. It also closely
matches the behavior described in [3].

Consider the characteristic given in Table 2. This is the characteristic which
seemed to be one of the most useful for attacking RC6-I [3]. We first argue that
there are no subkey dependencies of the form we described in Section 3.2 for
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this characteristic and we then broaden our discussion to include other, more
general, characteristics.

i Ai Bi Ci Di

1 e16 e11 0 0
↓

2 e11 0 0 0
↓

3 0 0 0 e26

↓
4 0 e26 e26 0

↓
5 e26 e21 0 e26

↓
6 e21 e16 e26 0

↓
7 e16 e11 0 0

Table 2. A useful characteristic for RC6-I.

At this stage we need some new notation and the exponent n will be used to
denote when some quantity has been rotated to the left by n bit positions. For
example, D5

2 =32 15 means that when D2 is rotated five bits to the left, then the
decimal value of the least significant five bits is 15. Of course, this is the same
as saying that the most significant five bits of D2 take the value 15.

For simplicity, we will assume that (x + y)j = xj + yj where j denotes a
rotation amount. This is true if, and only if, there is no carry-out when adding
the top j bits and no carry-out when adding the bottom 32 − j bits. For the
sake of our analysis however we make this assumption, since it should actually
facilitate the construction of any potential subkey dependencies!

Following the arguments in Lemma 1, for the characteristic in Table 2 to
hold the following rotation amounts must take the values indicated:

D5
2 =32 C5

3 =32 15, B5
3 =32 A5

4 =32 27,
B5

4 =32 A5
5 =32 27, D5

4 =32 C5
5 =32 27,

B5
5 =32 A5

6 =32 17, B5
6 =32 A5

7 =32 17.

We wish to write down four equations similar to Equations (1), (2), (3)
and (4) which cause subkey dependencies in RC6-NFR. From round three to four,
the difference e26 is copied from register D3, is changed to e31 by the action of the
fixed rotation, and then exclusive-ored into the C strand. For it to become the
e26 that appears in B4, the data dependent rotation B5

3 must have the value 27.
Hence, we must have B5

3 =32 27 and B4 = (C3 ⊕D5
3)

27 +S[7] = C27
3 ⊕D3 +S[7].
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In a similar way other equations can be derived:

B4 = C27
3 ⊕ D3 + S[7], (5)

B5 = C27
4 ⊕ D4 + S[9], (6)

D5 = A27
4 ⊕ B4 + S[8], (7)

B6 = C17
5 ⊕ D22

5 + S[11]. (8)

In Lemma 1 we observed a subkey dependency by combining the analogous
equations to (5) and (6), and another dependency from combining the analogous
equations to (7) and (8). In the case of RC6-I we can demonstrate that neither
approach now works.

We first consider Equations (5) and (6). For Equation (6) we know that the
values of B5

5 mod 32, D5
4 mod 32, and S[9]5 mod 32 are fixed. This implies a

condition on the least significant five bits of C4. Since C4 is the same as D3,
we have a condition on D3 mod 32. We now have conditions on all the registers
in Equation (5), namely, B5

4 mod 32, C5
3 mod 32, and D3 mod 32. However the

bits from different words involved in this equation are from different positions.
They don’t lead to any constraints on S[9], and there appear to be no subkey
dependencies as a result.

Similarly arguments also apply to Equations (7) and (8). One may also try
to combine Equations (5) and (7), since they have the quantity B4 in common,
or Equations (6) and (8), since they have C5 = D4 in common. However, these
combinations once again fail to give any subkey dependencies.

We performed experiments on RC6-I to assess the probability of the charac-
teristics given in Table 2. These results confirmed that the distribution of the
characteristic probability was as expected, and there was no indication of any
subkey dependencies for the characteristic.

i Ai Bi Ci Di

1 et+5 et 0 0
↓

2 et 0 0 0
↓

3 0 0 0 es

↓
4 0 eu es 0

↓
5 eu eu−5 0 ev

↓
6 eu−5 eu−10 ev 0

↓
7 eu−10 eu−15 0 0

Table 3. A generalized characteristic for RC6-I.
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More generally, we might consider characteristics of the form given in Table 3.
The values which we need to fix if the characteristic is going to hold are

D5
2 =32 C5

3 =32 s − t, B5
3 =32 A5

4 =32 u − 5 − s,

B5
4 =32 A5

5 =32 u − 5 − s, D5
4 =32 C5

5 =32 v − u − 5,

B5
5 =32 A5

6 =32 u − 15 − v, B5
6 =32 A5

7 =32 u − 15 − v.

Let r1 = u − 5 − s, r2 = v − u − 5, and r3 = u − 15 − v. Then the subkey
dependencies we observed would be produced by the following equations:

B4 = Cr1
3 ⊕ D5+r1

3 + S[7],
B5 = Cr1

4 ⊕ D5+r1
4 + S[9],

D5 = Ar2
4 ⊕ B5+r2

4 + S[8],
B6 = Cr3

5 ⊕ D5+r3
5 + S[11].

Following similar arguments to those presented earlier, it can be verified that
there is no choice for r1, r2, and r3 that makes the characteristic depend upon
the values of the subkeys. In particular, the most promising values to try are
r1 = 0; r1 = 27; r3 = 0 and r2 = 22; and r3 = 0, r2 = 27, and r1 = 27.

The fixed rotation is an important component of RC6. Not only does it help
to hinder the construction of good differentials and linear approximations [3]
but it helps to disturb the build-up of any inter-round dependencies. Here the
fixed rotation ensures that equations can simultaneously hold without forcing
any restriction on the values of the quantities involved.

4 The Quadratic Function

In this section, we examine the diffusive properties of the quadratic function
and other operations used in RC6. Both the work of Knudsen and Meier [8] and
that of Biryukov and Kushilevitz [2] rely on the following fact about RC5: It
has a relatively slow avalanche of change from one round to the next, unless
the difference in two words is in the bits used to determine a data-dependent
rotation. When that happens, the amount of change in one round to the other
can be dramatic, but until then the rate of change tends to be rather modest.
This can be exploited to a limited degree in attacks on RC5 [2,8].

We will choose a measure of diffusion that complements naturally the work
given in [2,8]. We will use the Hamming weight of the exclusive-or difference
between two words as a measure of the difference, rather than the actual value of
the difference as we would in differential cryptanalysis [1] or part of the difference
as we would in truncated differential cryptanalysis [7]. It is straightforward to
envisage using this notion of difference in a differential-style attack, something we
call Hamming weight differentials, and this is very similar to some of the earlier
analysis of RC5 [2,8]. While this earlier work focused on how to effectively use
such differentials to attack RC5, the focus of our work will be on assessing the
likely impact of the quadratic function in thwarting such attacks.
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Even for a simple operation it can be difficult to fully characterize the pro-
bability distribution of the Hamming weight of some output difference given the
Hamming weight of the input differences. We will study the problem by ana-
lyzing the expected Hamming weight of such an output difference and it turns
out that such an approach provides a good insight into the role of the different
operations.

Our analysis shows that the quadratic function drastically increases the Ham-
ming weight of some difference especially when the Hamming weight of the input
difference is small. This illustrates a nice effect whereby the use of the quadratic
function complements that of the data-dependent rotation. As we have men-
tioned, the data-dependent rotation becomes an effective agent of change only
when there is a difference in the rotation amount. With a small Hamming weight
difference, it is less likely that non-zero difference bits appear in positions that
affect a rotation amount. However, the quadratic function helps to drastically
increase the avalanche of change so that the full benefit of the data-dependent
rotations can be gained as soon as possible.

4.1 Definitions and Assumptions

We introduce some useful notation and definitions. For a w-bit binary vector X,
let |X| denote the Hamming weight of X, i.e., |X| is the number of 1’s in X.
Throughout this paper we will be continually referring to RC6 and so we will
assume that the word size w = 32. We will let X ′ = X1 ⊕X2, Y ′ = Y1 ⊕Y2, and
Z ′ = Z1 ⊕Z2 and we use x, y, z to denote the Hamming weight of the differences
|X ′|, |Y ′|, |Z ′|, respectively.

Let us consider the following two conditions that may be imposed on some
difference that has Hamming weight x.

A: There is a single block of consecutive 1’s of length x, and the block is
distributed randomly at some position in the input difference.

B: There are t > 1 blocks of consecutive 1’s of length x1, x2, ..., xt such that
x1 +x2 + · · ·+xt = x. In addition, each block is distributed randomly across
the input difference.

Condition B is actually a good characterization for the differences in the inter-
mediate rounds of RC6 and its variants. In each round (of RC6 or its variants)
any difference in the A and C strands are rotated by a random amount due to
the data-dependent rotations. Hence each block of 1’s within the differences is
distributed randomly. Condition A is a special case of Condition B. In the next
two sections when we examine the diffusive properties of individual operations,
we will first consider the special case Condition A and then generalize the results
to Condition B.

4.2 Diffusive Properties of the Basic Operations

Here we analyze the basic operations of exclusive-or, addition, and rotation. The
more complicated quadratic function will be considered in the next section.
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Lemma 3. (exclusive-or) For i = 1, 2 let Zi = Xi ⊕ Yi. If X ′ and Y ′ satisfy
Condition A, then E(z) = x + y − 2xy

w .

Proof. Since the block of 1’s in X ′ and Y ′ is distributed randomly, each bit “1” in
X ′ overlaps with each bit “1” in Y ′ with probability 1

w . So the expected length
of overlap in the output difference is xy

w , implying that the expected Hamming
weight of the output is x + y − 2xy

w . 2

Corollary 4. (exclusive-or) For i = 1, 2 let Zi = Xi ⊕Yi. If X ′ and Y ′ satisfy
Condition B then E(z) = x + y − 2xy

w .

Proof. Follows directly from the proof of Lemma 3. 2

Note that the expected overlap between the quantities X ′ and Y ′ is similar to
the number of “corrections” used by Biryukov and Kushilevitz in their analysis of
corrected Fibonacci sequences [2]. There an explicit formula was not provided [2]
but all sequences with a “reasonable” number of corrections were experimentally
generated and this was used as an estimate in their work.

Lemma 5. (addition) For i = 1, 2 let Zi = Xi+S, where S is the subkey. If X ′

satisfies Condition A then averaging over all possible X1, X2, S, E(z) = c + x+1
2

where c ∈ [0, 1] and depends on X ′.

Proof. We start with the special case where |X ′| = w, that is, X1 and X2 differ
in all bits. We first prove that when averaging over all possible X1, X2, S,

prob(X1 + S < 2w and X2 + S ≥ 2w) =
1
4
. (9)

Given any X1 ∈ {0, 1}w, we define

d(X1) = |S : S ∈ {0, 1}w, s.t. X1 + S < 2w and X2 + S ≥ 2w|.

If X1 < 2w−1, we have d(X1) = X2 −X1 = (X1 ⊕ (2w −1))−X1 = 2w −1−2X1.
(If X1 ≥ 2w−1, d(X1) = 0.) Hence,

prob(X1 + S < 2w and X2 + S ≥ 2w) =

∑2w−1−1
X1=0 d(X1)
2w × 2w

=
1
4
.

Note that for Equation 9 the particular value of w is unimportant. So we can
consider the least significant j bits of X1, X2, S. More precisely, for 1 ≤ j ≤ w,
define X1(j) = X1 mod 2j , X2(j) = X2 mod 2j , S(j) = S mod 2j . Then,

prob(X1(j) + S(j) < 2j and X2(j) + S(j) ≥ 2j) =
1
4
. (10)

By symmetry,

prob(X1(j) + S(j) ≥ 2j and X2(j) + S(j) < 2j) =
1
4
. (11)
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From Equations 10 and 11, we know that with probability 1/2, exactly one of
the two addition operations (X1 + S and X2 + S) produces a carry into bit j. If
this happens, Z1 and Z2 will be the same in bit j. Therefore, with probability
1/2, the jth bit (j ≥ 1) of Z ′ = Z1 ⊕ Z2 is 1. Since bit 0 of Z ′ is always 1, the
expected Hamming weight of Z ′ is w−1

2 +1 = w+1
2 = c+ w+1

2 for c = 0. We have
proved the Lemma for the special case where |X ′| = w.

Let us now consider the general case where |X ′| = x for some 1 ≤ x ≤ w.
Let v be the index of the most significant 1 in X ′. So X1 and X2 are the same
in bits v + 1 through w − 1. When computing Z1 = X1 + S and Z2 = X2 + S,
it is possible that one or both of the carries will propagate into bits v + 1 and
higher. It is not hard to show that the “extra” number of bit differences between
Z1 and Z2 due to this carry effect has an expectation c for some 0 ≤ c ≤ 1. So
the expected Hamming weight of the output difference is c + x+1

2 . 2

Corollary 6. (addition) For i = 1, 2 let Zi = Xi + S, where S is the subkey.
Suppose that X ′ satisfies Condition B and there are t blocks of 1’s in X ′. Then
averaging over all possible keys S, E(z) ≤ t + x+t

2 .

Proof. Follows from Lemma 5. 2

The fixed rotation Z = X<<< lg w always preserves the Hamming weight of
the input difference in the output difference. For data-dependent rotations, it
is straightforward to see that provided the input difference does not affect the
rotation amount, then the Hamming weight of the difference is preserved. We
can state this simple fact in the following lemma.

Lemma 7. (data-dependent rotation) For i = 1, 2 let Zi = Xi<<<Yi. If
Y ′ =w 0, then z = x.

The more interesting case is when Y ′ 6=w 0. It has previously been shown [4,
6] that once a difference in the amount of rotation is experienced then the output
difference is distributed in an essentially random manner over a very large set.
This essentially makes any differential-style attack impossible since in this case
there is a very substantial diffusive effect. So depending on the difference Y ′, a
data-dependent rotation can either preserve the Hamming weight or increase the
Hamming weight by a significant amount. The probability of the latter case oc-
curring is closely related to the Hamming weight of Y ′ and we have the following
lemma that characterizes such a relation for the special case.

Lemma 8. Let y = |Y ′| and let p be the probability that Y ′ 6=w 0. If Y ′ satisfies
Condition A then p = min

(
y+lg w−1

w , 1
)
.

For the more general case when Y ′ satisfies Condition B it is not so simple to
derive a precise formula similar to the one given above. However it is clearly the
case that the heavier the Hamming weight of Y ′, the larger the probability that
some part of the non-zero input difference will have an effect on the rotation
amount.
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4.3 Diffusive Properties of the Quadratic Function

Here we consider the diffusive properties of the quadratic function Z = f(X), an
important new operation in RC6. First, we restate a lemma regarding the qua-
dratic function that first appeared in [3]. This lemma characterizes the behavior
of the output when a single bit of some input is flipped.

Lemma 9. [3] Given an input X1 chosen uniformly at random from {0, 1}32,
let gi,j denote the probability that flipping bit i of X1 will flip bit j of Z1 = f(X1).
Then,

gi,j =




0 for j < i,
1 for j = i,
1 for j = 1 and i = 0, and

gi,j ∈ [1/4, 3/4] for j > i ≥ 1 or j ≥ 2 and i = 0.

For the last case, gi,j is close to 3/4 if j = 2i + 2, and for most of the other i, j
pairs gi,j is close to 1/2.

Put descriptively this lemma shows that flipping bit i of some input X will
always flip bit i of the output and will, in most cases, also flip bit j where j > i
of the output with probability around 1/2.

We can extend the lemma to the more general case where multiple bits of
the input are flipped and we obtain a similar result: Let i be the bit position
of the least significant 1 in X ′. Then flipping bit i of the input X1 will always
flip bit i of the output and will, in most cases, flip bit j for j > i of the output
with probability around 1/2. Experiments confirm both this intuition and also
the following, perhaps surprising, result.

Lemma 10. (quadratic function) For i = 1, 2 let Zi = f(Xi). Let x = |X ′|
and z = |Z ′|. If X ′ satisfies Condition A then E(z) ≈ 1 + x+w−2

4 .

Proof. Let i be the index of the least significant 1 in X ′. For a fixed i, the
expected value of z is roughly 1+ (w − 1− i)/2. If X ′ satisfies Condition A then
i is uniformly distributed between 0 and (w − x). Hence,

E(z) ≈ 1
(w − x) + 1

w−x∑
i=0

(
1 +

w − 1 − i

2

)
= 1 +

x + w − 2
4

.

2

Corollary 11. (quadratic function) For i = 1, 2 let Zi = f(Xi). Let x = |X ′|
and z = |Z ′|. If X ′ satisfies Condition B and there are t blocks of 1’s in X ′,
then E(z) ≥ 1 + x+w+t−3

4 .

Proof. Similar to the proof of Lemma 10. 2

Lemma 10 shows that even when the difference in some input to the quadratic
function has Hamming weight 1, the average Hamming weight of the difference in



14 S. Contini et al.

the output is 8.75. This is a very important result. All the other basic operations
in RC6, as well as those used in RC5, generally provide little or no additional
change to the output difference if the Hamming weight of the input difference is
very low.

We can illustrate the effect of including the quadratic function in the following
way. We experimentally measure the probability that the rotation amounts1 at
the end of a given number of rounds are unaffected by a single bit change in the
first word of the input to the cipher. We consider rotation amounts in this exercise
because current differential-style attacks on RC5 and RC6 require any difference
propagating through the cipher to leave the rotation amounts unchanged. We
use “-” to indicate that experimentally the probability is approximately (2−20),
which is indistinguishable from random noise.

Rounds RC6-I-NFR RC6-I RC6-NFR RC6
2 2−0.54 2−0.64 2−1.32 2−10.27

4 2−2.15 2−2.45 2−6.27 -
6 2−6.14 2−7.04 2−14.30 -
8 2−12.76 2−14.97 - -
10 2−19.07 - - -

For an increased number of rounds, the probability of unchanged rotation
amounts gives a good illustration of the relative diffusive effect of RC6 and its
weakened variants. It also illustrates the role of the quadratic function in the
security of RC6.

Basic differential-style attacks attempt to predict and control the change
from one round to the next during encryption [5]. Improved attacks on RC5 [2,
8] do not attempt to predict the difference quite so closely. Instead, they rely on
the relatively slow diffusive effect of RC5 to ensure that any change propagating
through the cipher remains manageable and to some extent predictable. Even
though single-bit starting differences might be used, differentials with an ending
difference of Hamming weight 15, for example, can still be useful [2,8].

The quadratic function was added to RC6 to address this particular short-
coming of RC5 and our work suggests that the quadratic function is likely to
hinder attacks that rely on a modest avalanche of change from one round to the
next.

5 Conclusions

In this paper we have considered the role of two operations in RC6 that diffe-
rentiate it from RC5. Both operations are essential to the security of RC6. It
is interesting to observe that RC6-I-NFR, a simplified variant of RC6 without
either of these operations, has some of the behavior of RC5. RC6-I-NFR tends
1 By “rotation amounts” we mean the low five bits of the registers for RC6-I-NFR

and RC6-NFR, the high five bits of the registers for RC6-I, and the high five bits of
the output of f(x) for RC6.
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to have a slow rate of diffusion thereby potentially providing opportunities to
mount differential attacks similar to those described for RC5 [2,8]. Further, RC6-
I-NFR demonstrates some of the differentially-weak key phenomena that has also
been observed in RC5 [8]. The introduction of both the fixed rotation and the
quadratic function makes RC6 resistant to such shortcomings.

We stress the importance of simplicity when designing a cipher. Unnecessary
complexity makes it hard to perform a systematic examination of the true se-
curity offered. By contrast, the exceptional simplicity of RC5 invites others to
assess its security. This tradition continues with RC6 with a design that encou-
rages the researcher and aims to facilitate a deep understanding of the cipher.

Acknowledgements

We would like to thank Yuan Ma for his insightful contributions.

References

1. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, New York, 1993.

2. A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5. In K. Nyberg,
editor, Advances in Cryptology — Eurocrypt ’98, volume 1403 Lecture Notes in
Computer Science, pages 85–99, 1998. Springer Verlag.

3. S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. The Security of the RC6
Block Cipher. v1.0, August 20, 1998. Available at www.rsa.com/rsalabs/aes/.

4. S. Contini and Y.L. Yin. On differential properties of data-dependent rotations
and their use in MARS and RC6. To appear.

5. B.S. Kaliski and Y.L. Yin. On differential and linear cryptanalysis of the RC5 en-
cryption algorithm. In D. Coppersmith, editor, Advances in Cryptology — Crypto
’95, volume 963 of Lecture Notes in Computer Science, pages 171–184, 1995. Sprin-
ger Verlag.

6. B.S. Kaliski and Y.L. Yin. On the Security of the RC5 Encryption Algorithm.
RSA Laboratories Technical Report TR-602. Available at
www.rsa.com/rsalabs/aes/.

7. L.R. Knudsen. Applications of higher order differentials and partial differentials.
In B. Preneel, editor, Fast Software Encryption, volume 1008 of Lecture Notes in
Computer Science, pages 196–211, 1995. Springer Verlag.

8. L.R. Knudsen and W. Meier. Improved differential attacks on RC5. In N. Koblitz,
editor, Advances in Cryptology — Crypto ’96, volume 1109 of Lecture Notes in
Computer Science, pages 216–228, 1996. Springer Verlag.

9. R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software
Encryption, volume 1008 of Lecture Notes in Computer Science, pages 86–96, 1995.
Springer Verlag.

10. R.L. Rivest, M.J.B. Robshaw R. Sidney and Y.L. Yin. The RC6 Block Cipher.
v1.1, August 20, 1998. Available at www.rsa.com/rsalabs/aes/.


	Introduction
	Description of RC6 and Variants
	The Fixed Rotation
	Existing Analysis on RC6-I-NFR and RC6-NFR
	Refined Analysis of RC6-I-NFR and RC6-NFR
	Differential Characteristics in RC6-I and RC6

	The Quadratic Function
	Definitions and Assumptions
	Diffusive Properties of the Basic Operations
	Diffusive Properties of the Quadratic Function

	Conclusions

