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Basic concepts

RSA

The RSA cryptosystem

The RSA cryptosystem consists of 3 algorithms

1.-Algorithm to generate the keys

N =
u∏

i=1
ri ed = 1 mod φ(N)

Public key pk〈N, e〉
Private key sk〈N, d〉

2.- Algorithm to encrypt

M ∈ ZN , pk〈N, e〉

C = Me mod N

2.- Algorithm to decrypt

C, sk〈N, d〉

M = Cd mod N

RSA versions

case u = 2 known as Basic RSA cryptosystem

case u ≥ 3 known as Multi-prime RSA cryptosystem

R. Terada Factoring a multi-prime modulus N with random bits 4/ 30



Factoring a multi-prime modulus N with random bits

Basic concepts

PKCS

PKCS - Public Key Cryptography Standards

PKCS is a set of standards published by RSA Labs

PKCS contains specifications to speed-up software implementations of public
key cryptosystems.

Where

PKCS #1 is a standard with recommendations for RSA implementation.

Representation of the RSA public key according to PKCS #1

pk〈N, e〉 → C = Me mod N .

Representation of the RSA private key according to PKCS #1

pk〈N, d〉 →M = Cd mod N .

sk〈r1, r2, d1, d2, r−1
2 , 〈r3, d3, t3〉, .., 〈ru, du, tu〉〉 → CRTa.

aChinese Remainder Theorem
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Basic concepts

PKCS

PKCS #1 - RSA (Recomendation for RSA implementations)

ANS.1 representation of the RSA keys according to PKCS #1.

High redundancy in the private key is noticeable.

sk〈N, e, d, r1, r2, d1, d2, r−1
2 , 〈r3, d3, t3〉, .., 〈ru, du, tu〉〉.
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Paper goals

Previous works

J. A. Halderman (2008) showed it is possible to recover bits due to the data
remanent property of DRAM memory (Cold Boot attacks).

N. Heninger and H. Shacham published an algorithm to reconstruct the
private key (only for the Basic RSA) that uses the redundancy of the secret
key in the PCKS #1 standard.

sk s̃k(δ) sk

ColdBoot
Attack
→

Heninger et al.′s
Algorithm

→

Kogure et al. proved a general theorem to factor a multi-power modulus
N = rm1 r2 with random bits of its prime factors. The particular cases of
Takagi’s variant of RSA and Paillier Cryptosystem are addressed. The
bounds for expected values in our cryptanalysis are derived directly, without
applying their theorem.
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Paper goals

Paper goals

Our goals

To factor integer N =
∏u

i=1 ri given a fraction δ of random bits of its primes.

Generalize the Heninger and Shacham’s algorithm to recover the RSA key sk
given a fraction δ of the s̃k key bits.
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Prime factorization of N

Introduction

N =
u∏

i=1

ri

Idea of the algorithm

f(x1, x2, ..., xu) = N −
u∏

i=1

xi
solution

=⇒ f(r1, r2, ..., ru) = 0

Let us suppose we have

f(r′1, r
′
2, ..., r

′
u) (mod 2j) =⇒ f(x1, x2, ..., xu) (mod 2j+1)

How the algorithm works:

f (mod 2)⇒f (mod 22)⇒...⇒ f (mod 2j)⇒ f (mod 2j+1)⇒ ...⇒ f (mod 2
n
u )

Notice that the primes ri have the same bit length: lg(ri) = n
u

f(r1, r2, ..., ru) ∈ f (mod 2
n
u )
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Prime factorization of N

Hensel’s Lemma

Hensel’s Lemma

Multivariate Hensel’s Lemma

One root r = (r1, r2, ..., ru) of the polynom f(x1, x2, ..., xu) mod πj can be used
to generate a root r + b mod πj+1 if b = (b1πj , b2πj , ..., buπj), 0 ≤ bi ≤ π − 1,
that is a solution for the equation

f(r + b) = f(r) +
∑

i biπ
jfxi (r) ≡ 0 (mod πj+1)

(where, fxj is a partial derivative of f with respect to xj)

With r(r′1, r
′
2, ..., r

′
u) that is a root of the polynom f(x1, x2, ..., xu) (mod 2j), we can

obtain the root r(r′1 +2jb1, r′2 +2jb2, ..., r′u +2jbu) that is a root of f(x1, x2, ..., xu)
(mod 2j+1) (

N −
u∏

i=1

r′i

)
[j] =

u∑
i=1

bi (mod 2)

Observe that for a root of f (mod 2j) can generate a total of 2u−1 roots of f
(mod 2j+1)

R. Terada Factoring a multi-prime modulus N with random bits 12/ 30



Factoring a multi-prime modulus N with random bits

Prime factorization of N

Algorithm 1 to factor a multiprime N

Algorithm to factor a multiprime N

Define

root[j − 1] = 〈r′1, r′2, ..., r′u〉 ∈ f (mod 2)j

where root[0] = 〈1, 1, ..., 1〉

root[0]⇒...⇒ root[j − 1]⇒ root[j]⇒ ...⇒ root
[n
u

]
From the solutions root[j− 1] = 〈r′1, r′2, ..., r′u〉, the solutions root[j] are obtained as
follows

root[j] = 〈r′1 + 2jr1[j], r′2 + 2jr2[j], ..., r′u + 2jru[j]〉

where the following should be satisfied

(
N −

u∏
i=1

r′i

)
[j] =

u∑
i=1

ri[j] (mod 2)
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Prime factorization of N

Algorithm 1 to factor a multiprime N

Algorithm to factor a multiprime N

if ri[j] is known then there is only one fixed value.

if ri[j] is not known then there are two possible values, 0 or 1.
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Prime factorization of N

Complexity analysis of Algorithm 1

Complexity of Algorithm 1 to factor a multiprime N

Behavior of Algorithm 1

Complexity analysis of Algorithm 1

G: Number of incorrect roots lifted by a good root.

B: Number of incorrect roots lifted by a incorrect root.

Xj : Number of incorrect roots lifted at level j.
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of roots lifted by a good root

Have a good root of root[j − 1]

Have some known bits of 〈r1[j], r2[j], ..., ru[j]〉 (have a fraction δ of known
bits in 〈r̃1, r̃2, ..., r̃u〉)(

N −
u∏

i=1
r′i

)
[j] =

u∑
i=1

ri[j] (mod 2)

Number of roots lifted by a good root

Let h be the number of unknown bits in 〈r1[j], r2[j], ..., ru[j]〉

Cases Number of roots lifted

1 ≤ h ≤ u 2h−1

h = 0 1

Notice that a good root of root[j − 1] always produces a good root of root[j] (that
is unique at any level).
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of incorrect roots lifted by a good root (B)

Number of incorrect roots lifted by a good root (B)

Cases Number of incorrect solutions lifted

1 ≤ h ≤ u 2h−1 − 1
h = 0 0

Expected Value of G (E[G])

E[G] =
u∑

h=1

(2h−1 − 1)P (bu = h)

=
u∑

h=1

(2h−1 − 1)
(u
h

)
(1− δ)h(δ)u−h

with P (bu = h) = P (bitsunknown = h)
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of incorrect roots lifted by an incorrect root

Define

c1 =

(
N −

u∏
i=1

r′i

)
[j]

that is computed by a good root in root[j − 1].

Types of incorrect roots in root[j − 1]

There are two types of incorrect roots

c1 ≡
(
N −

u∏
i=1

r′i

)
[j] =

u∑
i=1

ri[j] (mod 2)

c1 ≡
(
N −

u∏
i=1

r′i

)
[j] =

u∑
i=1

ri[j] (mod 2)
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of incorrect roots lifted by an incorrect root

Number of incorrect roots lifted by an incorrect root

Number of known bits c1 ≡
(
N −

u∏
i=1

r′i

)
[j] c1 ≡

(
N −

u∏
i=1

r′i

)
[j]

1 ≤ h ≤ u 2h−1 2h−1

h = 0 1 0

Expected Value of B (E[B])

E[B] =
u∑

h=1

2h−1P (bu = h)P (c1) +
u∑

h=1

2h−1P (bu = h)P (c1) + P (bu = 0)P (c1)

=
(2− δ)u

2

where P (c1) ≈ P (c1) ≈ P

((
N −

u∏
i=1

r′i

)
[j] = 1

)
≈ P

((
N −

u∏
i=1

r′i

)
[j] = 0

)
≈

1
2

.
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of Incorrect Solutions Generated at level j

Recurrence function: Xj = Xj−1B +G

Expected Value of Xj

E[Xj ] =E[G]
1− E[B]j

1− E[B]

Var[Xj ] =E[B]2(j−1)

[
−
E[G][E[B2]− E[B] + E[B]E[G]]E[B]

(1− E[B])(1− E[B]2)

]
+ E[G]

1− E[B]j

1− E[B]

− E[B]j−1

[
E[G][E[B2]− E[B] + 2E[B]E[G]]

(1− E[B])2

]
−
[
E[G]

1− E[B]j

1− E[B]

]2
1

1− E[B]2

[
E[G][E[B2]− E[B] + E[B]E[G]]

1− E[B]

]
The definition of E[Xj ] and Var[Xj ] are functions of j and δ.
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of incorrect roots analyzed by Algorithm 1

E

 n
u∑

j=1

Xj

 =

n
u∑

j=1

E [Xj ] =

n
u∑

j=1

E[G]
1− E[B]j

1− E[B]

=
n

u

E[G]

1− E[B]
+

E[G]E[B](E[B]
n
u − 1)

(E[B]− 1)2

Var

 n
u∑

j=1

Xj

 =

n
u∑

l=1

n
u∑

j=1

Cov(Xl, Xj) ≤

n
u∑

l=1

n
u∑

j=1

√
Var[Xl]Var[Xj ]

≤

n
u∑

l=1

n
u∑

j=1

√
max(Var[X1], ..,Var[Xn

u
])2

≤
(n
u

)2
max(Var[X1], ..,Var[Xn

u
])
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Prime factorization of N

Complexity analysis of Algorithm 1

Number of incorrect roots analyzed by Algorithm 1

Where the behavior of E
[∑n

u
j=1Xj

]
and Var

[∑n
u
j=1Xj

]
can be:

Exponential (E[B] > 1 because lim
n→∞

E[B]
n
u = +∞)

Polynomial (E[B] < 1 because lim
n→∞

E[B]
n
u = 0 < 1)

With E[B] < 1 we get

E

 n
u∑

j=1

Xj

 =
n

u

E[G]

1− E[B]
+

E[G]E[B](E[B]
n
u − 1)

(E[B]− 1)2
<
n

u

E[G]

1− E[B]

Var

 n
u∑

j=1

Xj

 ≤ (n
u

)2
max(Var[X1], ..,Var[Xn

u
]),

where the values for E
[∑n

u
j=1Xj

]
and Var

[∑n
u
j=1Xj

]
are bounded by

polynomial functions.
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Prime factorization of N

Complexity analysis of Algorithm 1

Analysis of expected behavior of Algorithm 1

Chebyshev’s Theorem

The Chebyshev’s inequality provides a probability of how many standard
deviations of a random variable is far from the expected value.

P (E[X]− cσ < X < E[X] + cσ) ≥ 1− 1
c2

The probability that any random variable is c standard deviations far from the
expected value is at least 1− 1

c2
.

Applying Chebyshev’s inequality, we have that the probability of Algorithm 1 to
analyze more than

E[
∑n

u
j=1Xj ] + n

√
Var[

∑n
u
j=1Xj ] ≤ n

u
E[G]

1−E[B]
+
(
n
u

)2
max(Var[X1], ..,Var[Xn

u
])

incorrect roots is less than 1
n2 .
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Prime factorization of N

Complexity analysis of Algorithm 1

Algorithm to factor a multiprime N

Result of the complexity analysis of Algorithm 1

To factor a multiprime N =
∏u

i=1 ri in polynomial time, O(n2), with probability

greater than 1− 1
n2 the ratio δ of known random bits of 〈r̃1, r̃2, ..., r̃u〉 is greater

than 2− 2
1
u (δ > 2− 2

1
u ).

Summary:

E[B] =
(2− δ)u

2
< 1 ⇒ δ > 2− 2

1
u .

Some examples

To factor N =
∏2

i=1 ri should have δ > 2− 2
1
2 = 0.5857 (δ ≥ 0.59)

To factor N =
∏3

i=1 ri should have δ > 2− 2
1
3 = 0.7401 (δ ≥ 0.75)

To factor N =
∏4

i=1 ri should have δ > 2− 2
1
4 = 0.8108 (δ ≥ 0.82)
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Implementation of Algorithm 1

Besides the analysis, we also did an implementation of Algorithm 1 to validate it.

Algorithm 1 was implemented in C language with theRelic-toolkit library on a
Intel Core I3 2.4 Ghz with 3 Mb of cache and 4 Gb of DDR3 memory.

The experiments were done with N 2048 bits long and specific δ values.

For each δ, 100 integers N were lifted.

For each integer N , 100 inputs with δ fraction of correct bits were lifted.

The experiments were done for integers N =
∏u

i=1 ri with 2 ≤ u ≤ 4.
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Experiments

For N =
∏2

i=1 ri 2048 bits δ = 0.59 less than 15n+ 15n2 roots were analyzed.

Number of analyzed roots # Exp. Time (sec)
δ Min Max Average (> 1M) Average

0.62 1861 347138 3709 0 0.047510
0.61 1983 945728 4949 0 0.115277
0.60 2233 789608 6344 0 0.119484
0.59 2411 928829 8953 2 0.187600

0.58 2631 987577 14736 7 0.250224
0.57 3436 994640 24281 29 0.531079
0.56 4012 998414 42231 134 0.722388
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Experiments

For N =
∏3

i=1 ri 2048 bits δ = 0.75 less than 3n+ 4n2 roots were analyzed.

Number of analyzed roots # Exp. Time (sec)
δ Min Max Average (> 1M) Average

0.78 985 35509 1676 0 0.032866
0.77 1128 171142 2022 0 0.033884
0.76 1205 323228 2777 0 0.049238
0.75 1380 177293 3723 1 0.099373

0.74 1607 571189 5941 1 0.197553
0.73 1681 999766 11470 11 0.281414
0.72 2087 983404 23826 50 0.995017
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Experiments

For N =
∏4

i=1 ri 2048 bits, δ = 0.82 less than 2n+ 2n2 roots were analyzed.

Number of analyzed roots # Exp. Time (sec)
δ Min Max Average (> 1M) Average

0.85 692 32620 1026 0 0.019939
0.84 716 31447 1245 0 0.024748
0.83 823 67456 1649 0 0.040714
0.82 931 217391 2424 0 0.063754

0.81 1044 558521 4408 1 0.111688
0.80 1249 994386 9571 14 0.236320
0.79 1632 972196 24085 58 0.609435
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Experiments - Algorithm 1
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Prime factorization of N

Implementation of Algorithm 1 to factor N

Thanks for yor attention!!!
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