The JBossS
Extensible Server

Marc Fleury
The JBoss Group, LLC | e .j.g .
: ‘ [—1 —
» Francisco Reverbel | ¢ o ErouR
\ 4
CS Department, University of Sdo Paulo
Marc Fleury & Francisco Reverbel 1 Middleware 2003 — Rio de Janeiro — June 2003
L L
: Thoss

Qutline

e Introduction
e JMX Foundation
e Service Components

e Meta-Level Architecture for Generalized EJBs

e Ongoing and Future Work
e Related Work
e Concluding Remarks

Marc Fleury & Francisco Reverbel 2

Middleware 2003 — Rio de Janeiro — June 2003

Introduction

0®*®

¢ ThNss
o0 Group

Marc Fleury & Francisco Reverbel 3 Middleware 2003 — Rio de Janeiro — June 2003

[.e
s hoss

Application Servers ‘oo

e Middleware platforms for development and
deployment of component-based software

e Application component models
e J2EE (Servlets/JSP and EJB), .NET, CCM

e Component-based techniques should not be
applied on user applications only
e Component-based application servers
e Dynamically deployable middleware components

e Two kinds of components
Middleware components and application components

Marc Fleury & Francisco Reverbel 4 Middleware 2003 — Rio de Janeiro — June 2003

f.'

el = | m |

JBoss oo

e Extensible, reflective, and dynamically
reconfigurable Java application server

e At the confluence of research areas such as
e Component-based software development
e Reflective middleware
e Aspect-oriented programming

e Open-source and free (LGPL)
e 2M downloads in 2002, 1.5M so far in 2003

e Includes a set of components that implement
the J2EE specification

Marc Fleury & Francisco Reverbel 5 Middleware 2003 — Rio de Janeiro — June 2003

f.'
s hoss

JBoss: Open-Ended Middleware “se

e Users can extend middleware services by
dynamically deploying new components into a
running server

e The foundation
Java Management Extensions (JMX) specification
Architecture for dynamic management of application,
system or network resources

e The building

Service components

= A JMX-based model for middleware components

The EJB subsystem

= Invokers, containers, dynamic proxies, and interceptors

Marc Fleury & Francisco Reverbel 6 Middleware 2003 — Rio de Janeiro — June 2003

JMX Foundation

Marc Fleury & Francisco Reverbel

o®*
° Thnss

[N
o0 Croup

Middleware 2003 - Rio de Janeiro — June 2003

JMX Architecture

l.-

* Tho=s=s
-

9

Java Virtual Machine

Mgmt
Client

Browser

Distributed
Services Level

Connector

. Protocol
™., Adapter

Agent Level

Agent
Services

(as MBeans)

Instrumentation
Level

Managed
Resources
(as MBeans)

Marc Fleury & Francisco Reverbel

Middleware 2003 — Rio de Janeiro — June 2003

f.'

el = | m |

The JIMX Component Model ‘e

e The instrumentation and agent levels define an
in-process component model

e The MBean server provides a registry for IMX
components (MBeans)

e Each MBean is assigned an object name that
IS unique in the context of the MBean server

e Clients use object names to refer to MBeans

e MBean operation invocations always go
through the MBean server

Marc Fleury & Francisco Reverbel 9 Middleware 2003 — Rio de Janeiro — June 2003

:' Il:IIZIIZEE
Method invocation on a dynamic MBean *®

Java Virtual Machine

invoke (objectName targetName,
String operationName,
object[] params,

invoke (String operationName,
object[] params,
String[] signature)

MBean
Registry

e The client holds no direct Java references to the MBean
e |t does not need to know the MBean’s Java class/interfaces
e This very simple arrangement favors adaptation

Marc Fleury & Francisco Reverbel 10 Middleware 2003 — Rio de Janeiro — June 2003

"
el = | m |

Dynamic and Standard MBeans “se

e JMX defines two kinds of MBeans

e A dynamic MBean implements a predefined Java
interface and relies on metadata to specify its
management interface

e A standard MBean implements a Java interface
defined after — and determined by — the MBean'’s
management interface

e The kind of an MBean is an implementation
detail hidden from clients

Marc Fleury & Francisco Reverbel 11 Middleware 2003 — Rio de Janeiro — June 2003

f.'

s Ihoss

Dynamic MBeans o
7

interface DynamicMBean {
Object getAttribute(Strina attrName);
AttributeList getAttributes(stringl]l attrNames);
void setAttribute(Attribute attr);
AttributeList setAttributes(AttributeList attrs);
Object invoke(String operationName,
Object[] params,
String[] signature):
MBeanInfo getMBeanInfo();
}

e The metadata class MBeanlInfo supports MBean introspection

¢ Management attributes and operations does not need to
correspond to Java fields and methods

Marc Fleury & Francisco Reverbel 12 Middleware 2003 — Rio de Janeiro — June 2003

f.'

¢ oSS

Standard MBeans o
e A standard MBean A)
exposes its class Foo implements FooMBean {
management

attributes and
operations by
implementing a Java
interface named
after the MBean’s
Java class, with the
suffix MBean

interface FooMBean {
int getCount();
void setCount(int C);
double dosomething(long param);

}

e The FooMBean interface follows JavaBean-like rules to
represent management attributes and operations

Marc Fleury & Francisco Reverbel 13 Middleware 2003 — Rio de Janeiro — June 2003
:.- bhoss
MBean Server Interface oo
7

interface MBeanServer {
ObjectInstance registerMBean(Object Object, ObjectName name);
void unregisterMBean(ObjectName name);

object getAttribute(ObjectName name, String attrName);
AttributeList getAttributes(objectName name, String[] attrNames);
void setAttribute(ObjectName name, Attribute attr);
AttributeList setAttributes(oObjectName name, AttributeList attrs);
object invoke(ObjectName name, String operationName,

oObject[] params, String[] signature):
MBeanInfo getMBeanInfo(ObijectName name);

Marc Fleury & Francisco Reverbel 14 Middleware 2003 — Rio de Janeiro — June 2003

Service Components

0®*®

° ThDss
< o0 GCroup

Marc Fleury & Francisco Reverbel 15 Middleware 2003 — Rio de Janeiro — June 2003

s Ihoss

Issues not covered by JMX “eo

e Dependencies between MBeans

e Service lifecycle
e Packaging and deployment of MBeans

JBoss addresses these issues with the notions
of service MBean and deployable MBean

Marc Fleury & Francisco Reverbel 16 Middleware 2003 — Rio de Janeiro — June 2003

f.'

el = | m |

The JBoss Component Model ‘e

e Service MBeans:
e MBeans whose management interfaces include
service lifecycle operations
e Also called service components

e Deployable MBeans:

e Service MBeans packaged according to EJB-like
conventions, in deployment units called service
archives (SARS)

A SAR includes a service descriptor, an XML file that
conveys information needed at deployment time

e Also called deployable services
They are a JBoss geecific extension to JMX

Marc Fleury & Francisco Reverbel 17 Middleware 2003 — Rio de Janeiro — June 2003

f.'
s hoss

Service Lifecycle T

e A service component may be in the stopped
state or in the started state

e At each state transition one of the following
lifecycle operations is invoked on the MBean:

Create

start

stop

destroy

Marc Fleury & Francisco Reverbel 18 Middleware 2003 — Rio de Janeiro — June 2003

a*"*
el = | m |

A Service Descriptor File (10f3) ‘ee
]

<server>

<!-- web server for class loading -->
<mbean code="org.jboss.web.webService"
name="jboss:service=WebService">
<attribute name="Port">8083</attribute>
<attribute name="DownloadServerClasses">true</attribute>
</mbean>

<!-- XID factory =
<mbean code="org.jboss.tm.XidFactory"
name="jboss:service=XidFactory">
<attribute name="Pad">true</attribute>
</mbean>

Marc Fleury & Francisco Reverbel 19 Middleware 2003 — Rio de Janeiro — June 2003

_ | o
A Service Descriptor File (20f3) “ee ==

<!-- Transaction manager -->
<mbean code="org.jboss.tm.TransactionManagerService"
name="jboss:service=TransactionManager">
<attribute name="TransactionTimeout">300</attribute>
<depends optional-attribute name="XidFactory">
jboss:service=XidFactory</depends>

</mbean>

<!-- EJB deployer -->
<mbean code="org.jboss.ejb.EJBDeployer"
name="jboss.ejb:service=EJIBDeployer">
<attribute name="VerifyDeployments'>true</attribute>
<depends>jboss:service=TransactionManager</depends>
<depends>jboss:service=WebService</depends>
</mbean>

Marc Fleury & Francisco Reverbel 20 Middleware 2003 — Rio de Janeiro — June 2003

10

"
el = | m |

A Service Descriptor File (30f3) ‘ee

=7

<!-- RMI/IRMP invoker -->
<mbean code="org.jboss.invocation.jrmp.server.IRMPInvoker"
name="jboss:service=Invoker, type=jrmp">
<attribute name="RMIObjectPort'">4444</attribute>
<depends>jboss:service=TransactionManager</depends>
</mbean>

</server>

e Note the “depends” elements

e JBoss manages dependencies between deployable
MBeans

Marc Fleury & Francisco Reverbel 21 Middleware 2003 — Rio de Janeiro — June 2003

"
s Ihoss

Dependency Management ‘oo

e JBoss employs a variant of the component
configurator pattern to control the lifecycle of
deployable services

e Deployment of SAR files with service MBeans are
handled by a SARDeployer

e The SARDeployer plays the role of component
configurator

e AServicecController plays the role of
component repository
e Deployment/undeployment events drive the
lifecycle of deployable services

Marc Fleury & Francisco Reverbel 22 Middleware 2003 — Rio de Janeiro — June 2003

11

el = | m |

Deployment and Undeployment ‘e

e AMainDeployer handles all deployment

units (SARs, JARs, EJB-JARs, WARS, RARS,
etc.) by delegating the actual deployment tasks
to sub-deployers:

e SARDeployer, JARDeployer, EJBDeployer, ...
e The set of sub-deployers is open-ended

e Sub-deployers are service MBeans

They register themselves with the MainDeployer,
which is also a service MBean

MainDeployer, JARDeployer, and SARDeployer
are not deployable components

All other deployers are deployable MBeans

Marc Fleury & Francisco Reverbel 23 Middleware 2003 — Rio de Janeiro — June 2003

Ma_nagement interface of the ¢ pv—
MainDeployer °e
7

interface MainDeployerMBean

: C.

extends ServiceMBean {
void addbeployer(SubDeployer deployer);
void removeDeployer(SubDeployer deployer);
Collection listDeployers();
void deploy(URL url);
void undeploy(URL url);
boolean isbDeployed(URL url);
Collection 1listDeployed();

Marc Fleury & Francisco Reverbel 24 Middleware 2003 — Rio de Janeiro — June 2003

12

f.'
s Thoss

Hot Deployment ‘oo

e Just drop deployment units into a well-known
directory

e A DeploymentScanner monitors the files in
this directory
e The DeployamentScanner is a deployable
MBean itself

e A thread started by this MBean repeatedly scans
the deployment directory and invokes the
MainDeployer whenever it detects a change

Class visibility is a function of time!

Marc Fleury & Francisco Reverbel 25 Middleware 2003 — Rio de Janeiro — June 2003

f.'
s hoss

Class Loading Issues ‘oo

e A number of application servers use variants of
a class loading approach that could be called
loader-per-deployment

e This approach creates a namespace per
deployment unit

e It hinders local interactions between separately
deployed parts

e Acceptable for application components

e Unsuitable for the dynamically deployed parts of an
extensible system such as JBoss

Marc Fleury & Francisco Reverbel 26 Middleware 2003 — Rio de Janeiro — June 2003

13

What is bad about the Parent

el = | m |

Delegation Model? ‘oo

e Middleware components need to share non-
system classes in order to interact within a VM

e So they must be loaded by a set of class
loaders with a common ancestor, which loads
the classes they share

e This leads to a hierarchical deployment
process (a “deployment tree”)

e Cumbersome in dynamic environments

e Does not match the DAG nature of component
dependencies

Marc Fleury & Francisco Reverbel 27 Middleware 2003 — Rio de Janeiro — June 2003

f.'

s Ihoss

Unified Class Loaders ‘eo

e A collection of unified class loaders acts as a
single class loader

e It places in a single (flat) namespace all classes
it loads

e This is a significant departure from the hierarchical
class loading model introduced in JDK 1.2

e Instances of UnifiedClassLoader are
registered with a UnifiedLoaderRepository

e They behave as a single URLClassLoader that
allows its collection of URLSs to be updated at any time

Marc Fleury & Francisco Reverbel 28 Middleware 2003 — Rio de Janeiro — June 2003

14

"
el = | m |

Dynamic Proxy Usage ‘oo

e A dynamic proxy is an object adapter that
converts the type-independent interface of its
invocation handler into a list of interfaces
specified at runtime

e Dynamic proxies bridge the gap between the
interfaces that are application-specific and
those exposed by middleware components

Marc Fleury & Francisco Reverbel 29 Middleware 2003 — Rio de Janeiro — June 2003

f.'

s Ihoss

The Dynamic Stub Idiom ‘co

e In Java RMI:
e Serializable types are normally passed by value
e Remote types are normally passed by reference

e What about a remote object that is also serializable?

If it has not been exported through the RMI system, then it
will be passed by value (in serialized form)

This allows the creation of custom stubs, which interact
over a custom protocol with the remote objects they
represent

e JBoss uses dynamic proxies as custom stubs
e The dynamic proxy implements application interfaces
e Its customized part is the invocation handler

Marc Fleury & Francisco Reverbel 30 Middleware 2003 — Rio de Janeiro — June 2003

15

Meta-Level
Architecture for
Generalized EJBs

o®*®

¢ Thnss"
< o0 GCroup

Marc Fleury & Francisco Reverbel 31 Middleware 2003 — Rio de Janeiro — June 2003

Meta-Level Architecture e e

Client Virtual Machine Server Virtual Machine
. . Invoker

Client-Side MBean preessess

Proxy ——..; i Container
MBean

Invoker
Proxy
Client-Side
Interceptors .
Server-Side
Interceptors
Invocation
Handler ‘
Veta Level \ EJB
eta Leve i
_|..__Dynamic : | Rt ISR B cemeiel
Prox
y f Base Level
EJB Client o
Component
Marc Fleury & Francisco Reverbel 32 Middleware 2003 — Rio de Janeiro — June 2003

16

el = | m |

Reified Method Invocations ‘oo

‘?fng Invocation {
Object objectName;
java.lang.reflect.Method method;
Object[] args;
InvocationContext invocationContext;
java.util.map payload;
java.util.map as_is_payload; // marshalled “as is”
java.util.map transient_payload; // not sent to other VMs
... // methods not shown
}

e No interface along the reified invocation path depends
on base-level application types

Marc Fleury & Francisco Reverbel 33 Middleware 2003 — Rio de Janeiro — June 2003

f.'

s Ihoss

Invoker Architecture (1 of 3) ‘oo

e A powerful and flexible remote invocation
architecture

e EJB containers expose a type-independent invoke
operation

e Protocol-specific invoker MBeans make this
operation accessible to remote clients through
various protocols (JRMP, [IOP, HTTP, SOAP)

e Client-side stubs are dynamic proxy instances

e They convert calls to the typed interfaces seen by
clients into invoke calls on remote invokers

Marc Fleury & Francisco Reverbel 34 Middleware 2003 — Rio de Janeiro — June 2003

17

"
el = | m |

Invoker Architecture (2 of 3) ‘oo

e Each client-side proxy has an invocation handler
that performs remote calls on a given invoker, over
the protocol supported by the invoker

e Client side proxies and their invocation handlers are
instantiated by the server and dynamically sent out
to clients as serialized objects

e Interface exposed by the JRMP invoker:

interface Invoker extends javax.rmi.Remote {
String getServerHostNameQ) ;
Object invoke(Invocation invocation):

Marc Fleury & Francisco Reverbel 35 Middleware 2003 — Rio de Janeiro — June 2003

f.'

s Ihoss

Invoker Architecture (3 of 3) ‘o

e A client-side proxy (or, more precisely, its
invocation handler) must “know a remote
invoker”

e This knowledge is protocol-specific

e |t is encapsulated within an invoker proxy

e A local invoker handles the case of in-process
calls in an optimized way

e |IOP is treated as a special case in JBoss

e Reason: interoperability with clients written in other
languages

Marc Fleury & Francisco Reverbel 36 Middleware 2003 — Rio de Janeiro — June 2003

18

"
el = | m |

Generalized EJB Containers “ee

e A container MBean is created when an EJB is
deployed
e It provides middleware services to its EJB

(instance pooling, instance caching, persistence, security, transactions...)
e ... by merely aggregating aspects that do the
real work
e Container configurations (XML files)
e For standard kinds of EJBs
e For JBoss-specific extensions
e Customized containers for generalized EJBs

Marc Fleury & Francisco Reverbel 37 Middleware 2003 — Rio de Janeiro — June 2003

"
s Ihoss

Interceptors o

e Weavable aspects

e Interceptor chains interposed at the client-side
and at the server side

e Client-side interceptors
Aspects that involve some form of context propagations
(e.g., transactions and security)

Handle certain invocations that can be fully processed at
the client side

e Server-side interceptors

Transaction, security, logging, gathering of statistical data,
entity instance locking, detection of reentrant calls,
management of relationships between entities

Marc Fleury & Francisco Reverbel 38 Middleware 2003 — Rio de Janeiro — June 2003

19

Ongoing and Future
Work

0®*®

° ThDss
< o0 GCroup

Marc Fleury & Francisco Reverbel 39 Middleware 2003 — Rio de Janeiro — June 2003

[.e
s hoss

Ongoing Work and Next Steps ‘s

e EJB 2.1 compliance
e Performance optimizations

e AOP framework (JBoss 4.0)

e Class, method, field, and constructor pointcuts can
be dynamically attached to any POJO

e Extensions to the meta-object protocol
supported by generalized EJB containers

Marc Fleury & Francisco Reverbel 40 Middleware 2003 — Rio de Janeiro — June 2003

20

Related Work

o®*
° JIbhDss
\‘.El"l:ll.ll:l
JBoss owes a lotto many
* Jboss
systems... oo

e Flexinet (Hayton et al)

e Flexible remote invocation paths

e Dynamic stubs
e Yasmin (Deri)

e Hot-deployable components (“droplets”)
e OpenCOM (Clarke et al)

e Lightweight component model

e Based on a subset of COM

e Dependence management, reconfiguration, method
call interception

Marc Fleury & Francisco Reverbel 42 Middleware 2003 — Rio de Janeiro — June 2003

21

Concluding Remarks

0®*®

° ThDss
< o0 GCroup

Marc Fleury & Francisco Reverbel 43 Middleware 2003 — Rio de Janeiro — June 2003

[.e
s hoss

JBoss... ‘ce

e Demonstrates that application servers can be
built out of dynamically deployed components
that provide middleware services to application
components

e Brings reflective middleware to the world of
mainstream computing

Marc Fleury & Francisco Reverbel 44 Middleware 2003 — Rio de Janeiro — June 2003

22

f.'

el = | m |

Thank you for your attention! o
e Q&A..
Marc Fleury
marc@jboss.org
Francisco Reverbel
reverbel@ime.usp.br
http://www.jboss.org
Marc Fleury & Francisco Reverbel 45 Middleware 2003 — Rio de Janeiro — June 2003

23

