
2006 JavaOneSM Conference | Session TS-4915 |

TS-4915

Simpler, Faster, Better:
Concurrency Utilities in
JDK™ Software Version 5.0
Brian Goetz
Principal Consultant, Quiotix Corp
David Holmes
Staff Engineer, Sun Microsystems Inc.

2006 JavaOneSM Conference | Session TS-4915 | 2

Goal

Learn how to use the new concurrency
utilities (the java.util.concurrent
package) to replace error-prone or
inefficient code and to better structure
applications

2006 JavaOneSM Conference | Session TS-4915 | 3

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 4

Rationale for

● The built-in concurrency primitives—wait(),
notify(), and synchronized—
Are, well, primitive
● Hard to use correctly
● Easy to use incorrectly
● Specified at too low a level for most applications
● Can lead to poor performance if used incorrectly

● Too much wheel-reinventing!

Developing Concurrent Classes Was Just Too Hard
java.util.concurrent

2006 JavaOneSM Conference | Session TS-4915 | 5

Simplify Development of Concurrent Applications
Goals for
● Provide a set of basic concurrency building blocks
● Something for everyone

● Make some problems trivial to solve by everyone
● Develop thread-safe classes, such as servlets, built on

concurrent building blocks like ConcurrentHashMap
● Make some problems easier to solve by

concurrent programmers
● Develop concurrent applications using thread pools, barriers,

latches, and blocking queues
● Make some problems possible to solve by

concurrency experts
● Develop custom locking classes, lock-free algorithms

java.util.concurrent

2006 JavaOneSM Conference | Session TS-4915 | 6

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 7

Concurrent vs. Synchronized
Concurrent Collections
● Pre Java™ 5 platform: thread-safe but not

concurrent classes
● Thread-safe synchronized collections

● Hashtable, Vector,
Collections.synchronizedMap

● Monitor is source of contention under concurrent access
● Often require locking during iteration

● Concurrent collections
● Allow multiple operations to overlap each other

● Big performance advantage
● At the cost of some slight differences in semantics

● Might not support atomic operations

2006 JavaOneSM Conference | Session TS-4915 | 8

Concurrent Collections
● ConcurrentHashMap

● Concurrent (scalable) replacement for Hashtable
or Collections.synchronizedMap

● Allows reads to overlap each other
● Allows reads to overlap writes
● Allows up to 16 writes to overlap
● Iterators don't throw ConcurrentModificationException

● CopyOnWriteArrayList
● Optimized for case where iteration is much more frequent

than insertion or removal
● Ideal for event listeners

2006 JavaOneSM Conference | Session TS-4915 | 9

Concurrent Collections

● Synchronized collection iteration broken by
concurrent changes in another thread
● Throws ConcurrentModificationException
● Locking a collection during iteration hurts scalability

● Concurrent collections can be modified
concurrently during iteration
● Without locking the whole collection
● Without ConcurrentModificationException
● But changes may not be seen

Iteration Semantics

2006 JavaOneSM Conference | Session TS-4915 | 10

Concurrent Collection Performance

Java 6 B77
8-way system
40% read only
60% insert
2% removals

Throughput in Thread-safe Maps

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 32 40 48

Threads

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

ConcurrentHashMap
ConcurrentSkipListMap
SynchronizedHashMap
SynchronizedTreeMap

2006 JavaOneSM Conference | Session TS-4915 | 11

Queues

 interface Queue<E> extends Collection<E> {
 boolean offer(E x);
 E poll();
 E remove() throws NoSuchElementException;
 E peek();
 E element() throws NoSuchElementException;
}

● Retrofit (non-thread-safe)–implemented by LinkedList
● Add (non-thread-safe) PriorityQueue
● Fast thread-safe non-blocking ConcurrentLinkedQueue
● Better performance than LinkedList is possible as

random-access requirement has been removed

New Interface Added to java.util

Should concurrent… be courier new?

2006 JavaOneSM Conference | Session TS-4915 | 12

Blocking Queues

● Extends Queue to provides blocking operations
● Retrieval: take—Wait for queue to become nonempty
● Insertion: put—Wait for capacity to become available

● Several implementations:
● LinkedBlockingQueue

● Ordered FIFO, may be bounded, two-lock algorithm
● PriorityBlockingQueue

● Unordered but retrieves least element, unbounded, lock-based
● ArrayBlockingQueue

● Ordered FIFO, bounded, lock-based
● SynchronousQueue

● Rendezvous channel, lock-based in Java 5 platform, lock-free in
Java 6 platform

BlockingQueue Interface

2006 JavaOneSM Conference | Session TS-4915 | 13

BlockingQueue Example
 class LogWriter {

 final BlockingQueue msgQ = new LinkedBlockingQueue();
 public void writeMessage(String msg) throws IE {
 msgQ.put(msg); }
 // run in background thread
 public void logServer() { try {
 while (true) {
 System.out.println(msqQ.take());
 } }
 catch(InterruptedException ie) { ... }
 }}

Producer

Blocking
Queue

Consumer

2006 JavaOneSM Conference | Session TS-4915 | 14

Producer-Consumer Pattern

● LogWriter example illustrates the producer-
consumer pattern
● Ubiquitous concurrency pattern, nearly always relies

on some form of blocking queue
● Decouples identification of work from doing the work

● Simpler and more flexible

● LogWriter had many producers, one consumer
● Thread pool has many producers, many consumers

● LogWriter moves IO from caller to log thread
● Shorter code paths, fewer context switches, no

contention for IO locks → more efficient

2006 JavaOneSM Conference | Session TS-4915 | 15

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 16

Framework for Asynchronous Execution
Executors
● Standardize asynchronous invocation

● Framework to execute Runnable and Callable tasks
● Separate submission from execution policy

● Use anExecutor.execute(aRunnable)
● Not new Thread(aRunnable).start()

● Cancellation and shutdown support
● Usually created via Executors factory class

● Configures flexible ThreadPoolExecutor
● Customize shutdown methods, before/after hooks,

saturation policies, queuing

2006 JavaOneSM Conference | Session TS-4915 | 17

Decouple Submission From Execution Policy
Executors

● Code which submits a task doesn't have to know
in what thread the task will run
● Could run in the calling thread, in a thread pool, in a

single background thread (or even in another JVM™
software!)

● Executor implementation determines execution policy
● Execution policy controls resource utilization, saturation

policy, thread usage, logging, security, etc
● Calling code need not know the execution policy

 public interface Executor {
 void execute(Runnable command);
}

2006 JavaOneSM Conference | Session TS-4915 | 18

ExecutorService Adds Lifecycle Management
Executor and ExecutorService
● ExecutorService supports both graceful and

immediate shutdown
 public interface ExecutorService extends Executor {

 void shutdown();
 List<Runnable> shutdownNow();
 boolean isShutdown();
 boolean isTerminated();
 boolean awaitTermination(long time,TimeUnit unit)
 throws InterruptedException

 // other convenience methods for submitting tasks
}

● Many useful utility methods too

2006 JavaOneSM Conference | Session TS-4915 | 19

Factory Methods in the Executors Class
Creating Executors
 public class Executors {

 static ExecutorService
 newSingleThreadedExecutor();
 static ExecutorService
 newFixedThreadPool(int poolSize);
 static ExecutorService
 newCachedThreadPool();
 static ScheduledExecutorService
 newScheduledThreadPool(int corePoolSize);
 // additional versions specifying ThreadFactory
 // additional utility methods
}

2006 JavaOneSM Conference | Session TS-4915 | 20

Executors Example
 class UnstableWebServer {

 public static void main(String[] args) {
 ServerSocket socket = new ServerSocket(80);
 while (true) {
 final Socket connection = socket.accept();
 Runnable r = new Runnable() {
 public void run() {
 handleRequest(connection);
 }
 };
 // Don't do this!
 new Thread(r).start();
 }
 }
}

Web Server—Poor Resource Management

2006 JavaOneSM Conference | Session TS-4915 | 21

Web Server—Better Resource Management
Executors Example
 class BetterWebServer {

 Executor pool = Executors.newFixedThreadPool(7);
 public static void main(String[] args) {
 ServerSocket socket = new ServerSocket(80);
 while (true) {
 final Socket connection = socket.accept();
 Runnable r = new Runnable() {
 public void run() {
 handleRequest(connection);
 }
 };
 pool.execute(r);
 }
 }
}

2006 JavaOneSM Conference | Session TS-4915 | 22

Saturation Policies
● An Executor which execute tasks in a thread pool

● Can guarantee you will not run out of threads
● Can manage thread competition for CPU resources

● There is still a risk of running out of memory
● Tasks could queue up without bound

● Solution: Use a bounded task queue
● Just so happens that JUC provides several of these…

● If queue fills up, the saturation policy is applied
● Policies available: Throw, discard oldest, discard newest,

or run-in-calling-thread
● The last has the benefit of throttling the load

2006 JavaOneSM Conference | Session TS-4915 | 23

Representing Asynchronous Tasks
Futures and Callables

● Callable is functional analog of Runnable
 interface Callable<V> {

 V call() throws Exception;
 }

● Future holds result of asynchronous call,
normally a Callable

 interface Future<V> {
 V get() throws InterruptedException,
 ExecutionException;
 V get(long timeout, TimeUnit unit) throws ...;
 boolean cancel(boolean mayInterrupt);
 boolean isCancelled();
 boolean isDone();
 }

2006 JavaOneSM Conference | Session TS-4915 | 24

Implementing a Concurrent Cache
Futures Example
 public class Cache<K, V> { final ConcurrentMap<K, FutureTask<V>> map = new ConcurrentHashMap<K, FutureTask<V>>();
 public V get(final K key) throws InterruptedException { FutureTask<V> f = map.get(key); if (f == null) { Callable<V> c = new Callable<V>() { public V call() { // return value associated with key } }; f = new FutureTask<V>(c); FutureTask<V> old = map.putIfAbsent(key, f); if (old == null) f.run(); else f = old; } try { return f.get(); } catch(ExecutionException ex) { // rethrow ex.getCause() } }}

2006 JavaOneSM Conference | Session TS-4915 | 25

Deferred and Recurring Tasks
ScheduledExecutorService
● ScheduledExecutorService can be used to:

● Schedule a Callable or Runnable to run once with
a fixed delay after submission

● Schedule a Runnable to run periodically at a
fixed rate

● Schedule a Runnable to run periodically with a fixed
delay between executions

● Submission returns a ScheduledFutureTask
handle which can be used to cancel the task

● Like java.util.Timer, but supports pooling

2006 JavaOneSM Conference | Session TS-4915 | 26

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | 27

Locks
● Use of monitor synchronization is just fine for most

applications, but it has some shortcomings
● Single wait-set per lock
● No way to interrupt or time-out when waiting for a lock
● Locking must be block-structured

● Inconvenient to acquire a variable number of locks at once
● Advanced techniques, such as hand-over-hand locking, are not

possible

● Lock objects address these limitations
● But harder to use: Need finally block to ensure release
● So if you don't need them, stick with synchronized

2006 JavaOneSM Conference | Session TS-4915 | 28

Framework for Flexible Locking
● interface Lock {

 void lock();
 void lockInterruptibly() throws
 InterruptedException;
 boolean tryLock();
 boolean tryLock(long time,TimeUnit unit) throws
 InterruptedException;
 void unlock();
 Condition newCondition() throws
 UnsupportedOperationException;
}

● High-performance implementation: ReentrantLock
● Basic semantics same as use of synchronized
● Condition object semantics like wait/notify

2006 JavaOneSM Conference | Session TS-4915 | 29

● Used extensively within java.util.concurrent
 final Lock lock = new ReentrantLock();
...
lock.lock();
try {
 // perform operations protected by lock
}
catch(Exception ex) {
 // restore invariants & rethrow
}
finally {
 lock.unlock();
}

● Must manually ensure lock is released

Simple ExampleLock

2006 JavaOneSM Conference | Session TS-4915 | 30

Monitor-like Operations for Working With Locks
● Condition is an abstraction of wait/notify
 interface Condition {

 void await() throws InterruptedException;
 boolean await(long time, TimeUnit unit)
 throws InterruptedException;
 long awaitNanos(long nanosTimeout)
 throws InterruptedException;
 boolean awaitUntil(Date deadline)
 throws InterruptedException;
 void awaitUninterruptibly();
 void signal();
 void signalAll();
}
● Timed await versions report reason for return

Conditions

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Condition Example
class BoundedBuffer {
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();
 ...
 void put(Object x)throws InterruptedException {
 lock.lock(); try {
 while (isFull()) notFull.await();
 doPut(x);
 notEmpty.signal();
 } finally { lock.unlock(); }
 }
 Object take() throws InterruptedException {
 lock.lock(); try {
 while (isEmpty()) notEmpty.await();
 notFull.signal();
 return doTake();
 } finally { lock.unlock(); }
 }
}

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Synchronizers

● Semaphore—Dijkstra counting semaphore,
managing a specified number of permits

● CountDownLatch—allows one or more threads
to wait for a set of threads to complete an action

● CyclicBarrier—allows a set of threads to
wait until they all reach a specified barrier point

● Exchanger—allows two threads to rendezvous
and exchange data
● Such as exchanging an empty buffer for a full one

Utility Classes for Coordinating Access and Control

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Semaphore Example

public class ExecutorProxy implements Executor {
 private final Semaphore tasks;
 private final Executor master;
 ExecutorProxy(Executor master, int limit) {
 this.master = master;
 tasks = new Semaphore(limit);
 }
 public void execute(Runnable r) {
 tasks.acquireUninterruptibly(); // for simplicity
 try {
 master.execute(r);
 }
 finally {
 tasks.release();
 }
 }
}

Bound the Submission of Tasks to an Executor

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Agenda

Overview of java.util.concurrent
Concurrent Collections
Threads Pools and Task Scheduling
Locks, Conditions and Synchronizers
Atomic Variables

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Atomic Variables

● Support atomic operations
● Compare-and-set (CAS)
● Get, set and arithmetic operations (where applicable)

● Increment, decrement operations

● Abstraction of volatile variables
● Nine main classes:

● { int, long, reference } X { value, field, array }
● e.g. AtomicInteger useful for counters,

sequence numbers, statistics gathering

Holder Classes for Scalars, References and Fields

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

AtomicInteger Example

● Replace this: class Service {
 static int services; public Service() {
 synchronized(Service.class) {
 services++;
 }

 } // ...
 }

● With this: class Service {
 static AtomicInteger services =
 new AtomicInteger(); public Service() {
 services.getAndIncrement();
 }
 // ... }

Construction Counter for Monitoring/Management

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Atomic Compare-and-Set (CAS)
●

● Atomically sets value to update if currently expected
● Returns true on successful update

● Direct hardware support in all modern processors
● CAS, cmpxchg, ll/sc

● High-performance on multi-processors
● No locks, so no lock contention and no blocking
● But can fail

● So algorithms must implement retry loop

● Foundation of many concurrent algorithms

boolean compareAndSet(int expected, int update)

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Sneak Preview of Java 6 Platform
(Code-Named Mustang)

● Double-ended queues: Deque, BlockingDeque
● Implementations: ArrayDeque, LinkedBlockingDeque,
ConcurrentLinkedDeque

● Concurrent skiplists: ConcurrentSkipList{Map|
Set}

● Enhanced navigation of sorted maps/sets
● Navigable{Map|Set}

● Miscellaneous algorithmic enhancements
● More use of lock-free algorithms in utilities
● VM performance improvements for intrinsic locking

● M&M support for locks and conditions

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

java.util.concurrent
● Executors

• Executor
• ExecutorService
• ScheduledExecutorService
• Callable
• Future
• ScheduledFuture
• Delayed
• CompletionService
• ThreadPoolExecutor
• ScheduledThreadPoolExecutor
• AbstractExecutorService
• Executors
• FutureTask
• ExecutorCompletionService

● Queues
• BlockingQueue
• ConcurrentLinkedQueue
• LinkedBlockingQueue
• ArrayBlockingQueue
• SynchronousQueue
• PriorityBlockingQueue
• DelayQueue

● Concurrent collections
● ConcurrentMap
● ConcurrentHashMap
● CopyOnWriteArray{List,Set}

● Synchronizers
● CountDownLatch
● Semaphore
● Exchanger
● CyclicBarrier

● Locks: java.util.concurrent.locks
● Lock
● Condition
● ReadWriteLock
● AbstractQueuedSynchronizer
● LockSupport
● ReentrantLock
● ReentrantReadWriteLock

● Atomics: java.util.concurrent.atomic
● Atomic[Type]
● Atomic[Type]Array
● Atomic[Type]FieldUpdater
● Atomic{Markable,Stampable}Reference

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Summary

● Whenever you are about to use
● Object.wait, notify, notifyAll
● new Thread(aRunnable).start();
● synchronized

● Check first in java.util.concurrent if there
is a class that …
● Does it already, or
● Let's you do it a simpler, or better way, or
● Provides a better starting point for your own solution

● Don't reinvent the wheel!

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

For More Information

● Javadoc™ tool for java.util.concurrent—
In JDK™ 5.0 software download or on Sun website

● Doug Lea’s concurrency-interest mailing list
● http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

● Concurrent Programming in Java (Lea)
● Addison-Wesley, 1999 ISBN 0-201-31009-0

● Java Concurrency in Practice (Goetz, et al)
● Addison-Wesley, 2006, ISBN 0-321-34960-1

● JUC Backport to JDK 1.4 software
● http://www.mathcs.emory.edu/dcl/util/backport-util-

concurrent/

2006 JavaOneSM Conference | Session TS-4915 | <num ber>

Q&A
Brian Goetz
David Holmes

2006 JavaOneSM Conference | Session TS-4915 |

TS-4915

Simpler, Faster, Better:
Concurrency Utilities in
JDK™ Software Version 5.0
Brian Goetz
Principal Consultant, Quiotix Corp
David Holmes
Staff Engineer, Sun Microsystems Inc.

