
CHAPTER 6

The Dynamic Typing Interlude

In the prior chapter, we began exploring Python’s core object types in depth with a
look at Python numbers. We’ll resume our object type tour in the next chapter, but
before we move on, it’s important that you get a handle on what may be the most
fundamental idea in Python programming and is certainly the basis of much of both
the conciseness and flexibility of the Python language—dynamic typing, and the poly-
morphism it yields.

As you’ll see here and later in this book, in Python, we do not declare the specific types
of the objects our scripts use. In fact, programs should not even care about specific
types; in exchange, they are naturally applicable in more contexts than we can some-
times even plan ahead for. Because dynamic typing is the root of this flexibility, let’s
take a brief look at the model here.

The Case of the Missing Declaration Statements
If you have a background in compiled or statically typed languages like C, C++, or Java,
you might find yourself a bit perplexed at this point in the book. So far, we’ve been
using variables without declaring their existence or their types, and it somehow works.
When we type a = 3 in an interactive session or program file, for instance, how does
Python know that a should stand for an integer? For that matter, how does Python
know what a is at all?

Once you start asking such questions, you’ve crossed over into the domain of Python’s
dynamic typing model. In Python, types are determined automatically at runtime, not
in response to declarations in your code. This means that you never declare variables
ahead of time (a concept that is perhaps simpler to grasp if you keep in mind that it all
boils down to variables, objects, and the links between them).
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Variables, Objects, and References
As you’ve seen in many of the examples used so far in this book, when you run an
assignment statement such as a = 3 in Python, it works even if you’ve never told Python
to use the name a as a variable, or that a should stand for an integer-type object. In the
Python language, this all pans out in a very natural way, as follows:

Variable creation
A variable (i.e., name), like a, is created when your code first assigns it a value.
Future assignments change the value of the already created name. Technically,
Python detects some names before your code runs, but you can think of it as though
initial assignments make variables.

Variable types
A variable never has any type information or constraints associated with it. The
notion of type lives with objects, not names. Variables are generic in nature; they
always simply refer to a particular object at a particular point in time.

Variable use
When a variable appears in an expression, it is immediately replaced with the object
that it currently refers to, whatever that may be. Further, all variables must be
explicitly assigned before they can be used; referencing unassigned variables results
in errors.

In sum, variables are created when assigned, can reference any type of object, and must
be assigned before they are referenced. This means that you never need to declare names
used by your script, but you must initialize names before you can update them; coun-
ters, for example, must be initialized to zero before you can add to them.

This dynamic typing model is strikingly different from the typing model of traditional
languages. When you are first starting out, the model is usually easier to understand if
you keep clear the distinction between names and objects. For example, when we say
this:

>>> a = 3

at least conceptually, Python will perform three distinct steps to carry out the request.
These steps reflect the operation of all assignments in the Python language:

1. Create an object to represent the value 3.

2. Create the variable a, if it does not yet exist.

3. Link the variable a to the new object 3.

The net result will be a structure inside Python that resembles Figure 6-1. As sketched,
variables and objects are stored in different parts of memory and are associated by links
(the link is shown as a pointer in the figure). Variables always link to objects and never
to other variables, but larger objects may link to other objects (for instance, a list object
has links to the objects it contains).
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These links from variables to objects are called references in Python—that is, a reference
is a kind of association, implemented as a pointer in memory.* Whenever the variables
are later used (i.e., referenced), Python automatically follows the variable-to-object
links. This is all simpler than the terminology may imply. In concrete terms:

• Variables are entries in a system table, with spaces for links to objects.

• Objects are pieces of allocated memory, with enough space to represent the values
for which they stand.

• References are automatically followed pointers from variables to objects.

At least conceptually, each time you generate a new value in your script by running an
expression, Python creates a new object (i.e., a chunk of memory) to represent that
value. Internally, as an optimization, Python caches and reuses certain kinds of un-
changeable objects, such as small integers and strings (each 0 is not really a new piece
of memory—more on this caching behavior later). But, from a logical perspective, it
works as though each expression’s result value is a distinct object and each object is a
distinct piece of memory.

Technically speaking, objects have more structure than just enough space to represent
their values. Each object also has two standard header fields: a type designator used to
mark the type of the object, and a reference counter used to determine when it’s OK to
reclaim the object. To understand how these two header fields factor into the model,
we need to move on.

Types Live with Objects, Not Variables
To see how object types come into play, watch what happens if we assign a variable
multiple times:

Figure 6-1. Names and objects after running the assignment a = 3. Variable a becomes a reference to
the object 3. Internally, the variable is really a pointer to the object’s memory space created by running
the literal expression 3.

* Readers with a background in C may find Python references similar to C pointers (memory addresses). In
fact, references are implemented as pointers, and they often serve the same roles, especially with objects that
can be changed in-place (more on this later). However, because references are always automatically
dereferenced when used, you can never actually do anything useful with a reference itself; this is a feature
that eliminates a vast category of C bugs. You can think of Python references as C “void*” pointers, which
are automatically followed whenever used.
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>>> a = 3             # It's an integer
>>> a = 'spam'        # Now it's a string
>>> a = 1.23          # Now it's a floating point

This isn’t typical Python code, but it does work—a starts out as an integer, then be-
comes a string, and finally becomes a floating-point number. This example tends to
look especially odd to ex-C programmers, as it appears as though the type of a changes
from integer to string when we say a = 'spam'.

However, that’s not really what’s happening. In Python, things work more simply.
Names have no types; as stated earlier, types live with objects, not names. In the pre-
ceding listing, we’ve simply changed a to reference different objects. Because variables
have no type, we haven’t actually changed the type of the variable a; we’ve simply made
the variable reference a different type of object. In fact, again, all we can ever say about
a variable in Python is that it references a particular object at a particular point in time.

Objects, on the other hand, know what type they are—each object contains a header
field that tags the object with its type. The integer object 3, for example, will contain
the value 3, plus a designator that tells Python that the object is an integer (strictly
speaking, a pointer to an object called int, the name of the integer type). The type
designator of the 'spam' string object points to the string type (called str) instead.
Because objects know their types, variables don’t have to.

To recap, types are associated with objects in Python, not with variables. In typical
code, a given variable usually will reference just one kind of object. Because this isn’t
a requirement, though, you’ll find that Python code tends to be much more flexible
than you may be accustomed to—if you use Python well, your code might work on
many types automatically.

I mentioned that objects have two header fields, a type designator and a reference
counter. To understand the latter of these, we need to move on and take a brief look
at what happens at the end of an object’s life.

Objects Are Garbage-Collected
In the prior section’s listings, we assigned the variable a to different types of objects in
each assignment. But when we reassign a variable, what happens to the value it was
previously referencing? For example, after the following statements, what happens to
the object 3?

>>> a = 3
>>> a = 'spam'

The answer is that in Python, whenever a name is assigned to a new object, the space
held by the prior object is reclaimed (if it is not referenced by any other name or object).
This automatic reclamation of objects’ space is known as garbage collection.

To illustrate, consider the following example, which sets the name x to a different object
on each assignment:
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>>> x = 42
>>> x = 'shrubbery'          # Reclaim 42 now (unless referenced elsewhere)
>>> x = 3.1415               # Reclaim 'shrubbery' now
>>> x = [1, 2, 3]            # Reclaim 3.1415 now

First, notice that x is set to a different type of object each time. Again, though this is
not really the case, the effect is as though the type of x is changing over time. Remember,
in Python types live with objects, not names. Because names are just generic references
to objects, this sort of code works naturally.

Second, notice that references to objects are discarded along the way. Each time x is
assigned to a new object, Python reclaims the prior object’s space. For instance, when
it is assigned the string 'shrubbery', the object 42 is immediately reclaimed (assuming
it is not referenced anywhere else)—that is, the object’s space is automatically thrown
back into the free space pool, to be reused for a future object.

Internally, Python accomplishes this feat by keeping a counter in every object that keeps
track of the number of references currently pointing to that object. As soon as (and
exactly when) this counter drops to zero, the object’s memory space is automatically
reclaimed. In the preceding listing, we’re assuming that each time x is assigned to a new
object, the prior object’s reference counter drops to zero, causing it to be reclaimed.

The most immediately tangible benefit of garbage collection is that it means you can
use objects liberally without ever needing to free up space in your script. Python will
clean up unused space for you as your program runs. In practice, this eliminates a
substantial amount of bookkeeping code required in lower-level languages such as C
and C++.

Technically speaking, Python’s garbage collection is based mainly upon 
reference counters, as described here; however, it also has a component
that detects and reclaims objects with cyclic references in time. This
component can be disabled if you’re sure that your code doesn’t create
cycles, but it is enabled by default.

Because references are implemented as pointers, it’s possible for an ob-
ject to reference itself, or reference another object that does. For exam-
ple, exercise 3 at the end of Part I and its solution in Appendix B show
how to create a cycle by embedding a reference to a list within itself.
The same phenomenon can occur for assignments to attributes of ob-
jects created from user-defined classes. Though relatively rare, because
the reference counts for such objects never drop to zero, they must be
treated specially.

For more details on Python’s cycle detector, see the documentation for
the gc module in Python’s library manual. Also note that this description
of Python’s garbage collector applies to the standard CPython only; Jy-
thon and IronPython may use different schemes, though the net effect
in all is similar—unused space is reclaimed for you automatically.
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Shared References
So far, we’ve seen what happens as a single variable is assigned references to objects.
Now let’s introduce another variable into our interaction and watch what happens to
its names and objects:

>>> a = 3
>>> b = a

Typing these two statements generates the scene captured in Figure 6-2. The second
line causes Python to create the variable b; the variable a is being used and not assigned
here, so it is replaced with the object it references (3), and b is made to reference that
object. The net effect is that the variables a and b wind up referencing the same object
(that is, pointing to the same chunk of memory). This scenario, with multiple names
referencing the same object, is called a shared reference in Python.

Figure 6-2. Names and objects after next running the assignment b = a. Variable b becomes a reference
to the object 3. Internally, the variable is really a pointer to the object’s memory space created by
running the literal expression 3.

Next, suppose we extend the session with one more statement:

>>> a = 3
>>> b = a
>>> a = 'spam'

As with all Python assignments, this statement simply makes a new object to represent
the string value 'spam' and sets a to reference this new object. It does not, however,
change the value of b; b still references the original object, the integer 3. The resulting
reference structure is shown in Figure 6-3.

The same sort of thing would happen if we changed b to 'spam' instead—the assignment
would change only b, not a. This behavior also occurs if there are no type differences
at all. For example, consider these three statements:

>>> a = 3
>>> b = a
>>> a = a + 2
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In this sequence, the same events transpire. Python makes the variable a reference the
object 3 and makes b reference the same object as a, as in Figure 6-2; as before, the last
assignment then sets a to a completely different object (in this case, the integer 5, which
is the result of the + expression). It does not change b as a side effect. In fact, there is
no way to ever overwrite the value of the object 3—as introduced in Chapter 4, integers
are immutable and thus can never be changed in-place.

One way to think of this is that, unlike in some languages, in Python variables are always
pointers to objects, not labels of changeable memory areas: setting a variable to a new
value does not alter the original object, but rather causes the variable to reference an
entirely different object. The net effect is that assignment to a variable can impact only
the single variable being assigned. When mutable objects and in-place changes enter
the equation, though, the picture changes somewhat; to see how, let’s move on.

Shared References and In-Place Changes
As you’ll see later in this part’s chapters, there are objects and operations that perform
in-place object changes. For instance, an assignment to an offset in a list actually
changes the list object itself in-place, rather than generating a brand new list object.
For objects that support such in-place changes, you need to be more aware of shared
references, since a change from one name may impact others.

To further illustrate, let’s take another look at the list objects introduced in Chap-
ter 4. Recall that lists, which do support in-place assignments to positions, are simply
collections of other objects, coded in square brackets:

>>> L1 = [2, 3, 4]
>>> L2 = L1

Figure 6-3. Names and objects after finally running the assignment a = ‘spam’. Variable a references
the new object (i.e., piece of memory) created by running the literal expression ‘spam’, but variable b
still refers to the original object 3. Because this assignment is not an in-place change to the object 3,
it changes only variable a, not b.
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L1 here is a list containing the objects 2, 3, and 4. Items inside a list are accessed by their
positions, so L1[0] refers to object 2, the first item in the list L1. Of course, lists are also
objects in their own right, just like integers and strings. After running the two prior
assignments, L1 and L2 reference the same object, just like a and b in the prior example
(see Figure 6-2). Now say that, as before, we extend this interaction to say the following:

>>> L1 = 24

This assignment simply sets L1 is to a different object; L2 still references the original
list. If we change this statement’s syntax slightly, however, it has a radically different
effect:

>>> L1 = [2, 3, 4]        # A mutable object
>>> L2 = L1               # Make a reference to the same object
>>> L1[0] = 24            # An in-place change

>>> L1                    # L1 is different
[24, 3, 4]
>>> L2                    # But so is L2!
[24, 3, 4]

Really, we haven’t changed L1 itself here; we’ve changed a component of the object that
L1 references. This sort of change overwrites part of the list object in-place. Because the
list object is shared by (referenced from) other variables, though, an in-place change
like this doesn’t only affect L1—that is, you must be aware that when you make such
changes, they can impact other parts of your program. In this example, the effect shows
up in L2 as well because it references the same object as L1. Again, we haven’t actually
changed L2, either, but its value will appear different because it has been overwritten.

This behavior is usually what you want, but you should be aware of how it works, so
that it’s expected. It’s also just the default: if you don’t want such behavior, you can
request that Python copy objects instead of making references. There are a variety of
ways to copy a list, including using the built-in list function and the standard library
copy module. Perhaps the most common way is to slice from start to finish (see Chapters
4 and 7 for more on slicing):

>>> L1 = [2, 3, 4]
>>> L2 = L1[:]            # Make a copy of L1
>>> L1[0] = 24

>>> L1
[24, 3, 4]
>>> L2                    # L2 is not changed
[2, 3, 4]

Here, the change made through L1 is not reflected in L2 because L2 references a copy
of the object L1 references; that is, the two variables point to different pieces of memory.
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Note that this slicing technique won’t work on the other major mutable core types,
dictionaries and sets, because they are not sequences—to copy a dictionary or set,
instead use their X.copy() method call. Also, note that the standard library copy module
has a call for copying any object type generically, as well as a call for copying nested
object structures (a dictionary with nested lists, for example):

import copy
X = copy.copy(Y)          # Make top-level "shallow" copy of any object Y
X = copy.deepcopy(Y)      # Make deep copy of any object Y: copy all nested parts

We’ll explore lists and dictionaries in more depth, and revisit the concept of shared
references and copies, in Chapters 8 and 9. For now, keep in mind that objects that can
be changed in-place (that is, mutable objects) are always open to these kinds of effects.
In Python, this includes lists, dictionaries, and some objects defined with class state-
ments. If this is not the desired behavior, you can simply copy your objects as needed.

Shared References and Equality
In the interest of full disclosure, I should point out that the garbage-collection behavior
described earlier in this chapter may be more conceptual than literal for certain types.
Consider these statements:

>>> x = 42
>>> x = 'shrubbery'       # Reclaim 42 now?

Because Python caches and reuses small integers and small strings, as mentioned earlier,
the object 42 here is probably not literally reclaimed; instead, it will likely remain in a
system table to be reused the next time you generate a 42 in your code. Most kinds of
objects, though, are reclaimed immediately when they are no longer referenced; for
those that are not, the caching mechanism is irrelevant to your code.

For instance, because of Python’s reference model, there are two different ways to check
for equality in a Python program. Let’s create a shared reference to demonstrate:

>>> L = [1, 2, 3]
>>> M = L                 # M and L reference the same object
>>> L == M                # Same value
True
>>> L is M                # Same object
True

The first technique here, the == operator, tests whether the two referenced objects have
the same values; this is the method almost always used for equality checks in Python.
The second method, the is operator, instead tests for object identity—it returns True
only if both names point to the exact same object, so it is a much stronger form of
equality testing.
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Really, is simply compares the pointers that implement references, and it serves as a
way to detect shared references in your code if needed. It returns False if the names
point to equivalent but different objects, as is the case when we run two different literal
expressions:

>>> L = [1, 2, 3]
>>> M = [1, 2, 3]         # M and L reference different objects
>>> L == M                # Same values
True
>>> L is M                # Different objects
False

Now, watch what happens when we perform the same operations on small numbers:

>>> X = 42
>>> Y = 42                # Should be two different objects
>>> X == Y
True
>>> X is Y                # Same object anyhow: caching at work!
True

In this interaction, X and Y should be == (same value), but not is (same object) because
we ran two different literal expressions. Because small integers and strings are cached
and reused, though, is tells us they reference the same single object.

In fact, if you really want to look under the hood, you can always ask Python how many
references there are to an object: the getrefcount function in the standard sys module
returns the object’s reference count. When I ask about the integer object 1 in the IDLE
GUI, for instance, it reports 837 reuses of this same object (most of which are in IDLE’s
system code, not mine):

>>> import sys
>>> sys.getrefcount(1)    # 837 pointers to this shared piece of memory
837

This object caching and reuse is irrelevant to your code (unless you run the is check!).
Because you cannot change numbers or strings in-place, it doesn’t matter how many
references there are to the same object. Still, this behavior reflects one of the many ways
Python optimizes its model for execution speed.

Dynamic Typing Is Everywhere
Of course, you don’t really need to draw name/object diagrams with circles and arrows
to use Python. When you’re starting out, though, it sometimes helps you understand
unusual cases if you can trace their reference structures. If a mutable object changes
out from under you when passed around your program, for example, chances are you
are witnessing some of this chapter’s subject matter firsthand.

Moreover, even if dynamic typing seems a little abstract at this point, you probably will
care about it eventually. Because everything seems to work by assignment and
references in Python, a basic understanding of this model is useful in many different
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contexts. As you’ll see, it works the same in assignment statements, function argu-
ments, for loop variables, module imports, class attributes, and more. The good news
is that there is just one assignment model in Python; once you get a handle on dynamic
typing, you’ll find that it works the same everywhere in the language.

At the most practical level, dynamic typing means there is less code for you to write.
Just as importantly, though, dynamic typing is also the root of Python’s polymor-
phism, a concept we introduced in Chapter 4 and will revisit again later in this book.
Because we do not constrain types in Python code, it is highly flexible. As you’ll see,
when used well, dynamic typing and the polymorphism it provides produce code that
automatically adapts to new requirements as your systems evolve.

Chapter Summary
This chapter took a deeper look at Python’s dynamic typing model—that is, the way
that Python keeps track of object types for us automatically, rather than requiring us
to code declaration statements in our scripts. Along the way, we learned how variables
and objects are associated by references in Python; we also explored the idea of garbage
collection, learned how shared references to objects can affect multiple variables, and
saw how references impact the notion of equality in Python.

Because there is just one assignment model in Python, and because assignment pops
up everywhere in the language, it’s important that you have a handle on the model
before moving on. The following quiz should help you review some of this chapter’s
ideas. After that, we’ll resume our object tour in the next chapter, with strings.

Test Your Knowledge: Quiz
1. Consider the following three statements. Do they change the value printed for A?

A = "spam"
B = A
B = "shrubbery"

2. Consider these three statements. Do they change the printed value of A?

A = ["spam"]
B = A
B[0] = "shrubbery"

3. How about these—is A changed now?

A = ["spam"]
B = A[:]
B[0] = "shrubbery"
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Test Your Knowledge: Answers
1. No: A still prints as "spam". When B is assigned to the string "shrubbery", all that

happens is that the variable B is reset to point to the new string object. A and B
initially share (i.e., reference/point to) the same single string object "spam", but two
names are never linked together in Python. Thus, setting B to a different object has
no effect on A. The same would be true if the last statement here was B = B +
'shrubbery', by the way—the concatenation would make a new object for its result,
which would then be assigned to B only. We can never overwrite a string (or num-
ber, or tuple) in-place, because strings are immutable.

2. Yes: A now prints as ["shrubbery"]. Technically, we haven’t really changed either
A or B; instead, we’ve changed part of the object they both reference (point to) by
overwriting that object in-place through the variable B. Because A references the
same object as B, the update is reflected in A as well.

3. No: A still prints as ["spam"]. The in-place assignment through B has no effect this
time because the slice expression made a copy of the list object before it was as-
signed to B. After the second assignment statement, there are two different list
objects that have the same value (in Python, we say they are ==, but not is). The
third statement changes the value of the list object pointed to by B, but not that
pointed to by A.
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